

Detailed Reaction Mechanisms for the Oxidative Coupling of Methane over La₂O₃/CeO₂ Nanofiber Fabric Catalysts

Canan Karakaya,*^[a] Huayang Zhu,^[a] Bahman Zohour,^[b] Selim Senkan,^[b] and Robert J. Kee^[a]

We develop and validate detailed reaction mechanisms to represent the oxidative coupling of methane (OCM) over a La_2O_3/CeO_2 nanofabric catalyst. The reaction mechanism includes 39 reversible gas-phase reactions and 52 irreversible surface reactions between 22 gas-phase species and 11 surface species. We use a model-based interpretation of spatially resolved concentration and temperature profiles measured by using a laboratory-scale packed-bed reactor. The reaction mechanisms are

1. Introduction

The catalytic oxidative coupling of methane (OCM) is a process in which methane and oxygen react over a catalyst to produce ethylene, ethane, and other C₃ products. The OCM process is a potentially viable route to convert natural gas to more valuable higher hydrocarbons and petrochemical feedstocks. The objective of this study is to develop detailed reaction mechanisms that represent the process quantitatively over La₂O₃/ CeO₂ catalysts. The reaction mechanisms include multiple elementary homogeneous gas-phase reactions coupled with multiple heterogeneous surface reactions. Such validated reaction mechanisms can be used to understand the complexities of the OCM reaction process and thus to assist the design and development of OCM reactors and practical technology.

Discovered by Keller and Bhasin in 1982,^[1] the OCM process can be represented globally as [Eq. (1)]:

$$2 CH_4 + O_2 \rightarrow C_2 H_4 + 2 H_2 O$$
 $\Delta H^{298}_{\circ} \approx -281 \text{ kJ mol}^{-1}$ (1)

The major desired product C_2H_4 has numerous industrial applications. For example, C_2H_4 is the monomer of polyethylene and an important component of some logistics fuels. The oligomerization of ethylene can contribute to the production of gasoline (C_5-C_{10}) or diesel fuel ($C_{10}-C_{20}$).^[2,3] Current OCM processes have C_2H_4 yields of approximately 10–15%, which is

[a]	Prof. C. Karakaya, H. Zhu, R. J. Kee Mechanical Engineering
	Colorado School of Mines Golden, CO 80401 (USA) E-mail: ckarakay@mines.edu
[b]	Dr. B. Zohour, S. Senkan Department of Chemical and Biomolecular Engineering University of California Los Angeles, CA 90095 (USA)
D	Supporting Information and the ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/cctc.201701172.

validated for inlet feed compositions in the range of $7 \leq CH_4/O_2 \leq 11$. The results are supported by a reaction pathway analysis that provides insight into the relative contributions of the gas-phase and surface reactions to form the desired C_{2+} and the undesired CO_x products. The results provide new quantitative insights into the complex nature of the OCM chemistry, which can assist practical process and reactor development.

significantly lower than the 25% yield that has been reported to be commercially viable.^[4,5] In addition to the desired C_2H_4 product, the OCM reaction also produces considerable amounts of C_2H_6 . The gas-phase C_3 yields (C_3H_6 and C_3H_8) are generally below 1%. The dehydrogenation of CH₄, C_2H_4 , and C_2H_6 also produces H₂ yields in the range of 1–5%. All these side products have industrial value but require separation. To date, despite the potential value, there has been only limited commercial development of the OCM process.

The OCM reaction products and their distributions depend on the operating temperature and the catalyst. The role of the catalyst is primarily to initiate methane activation by the abstraction of one hydrogen atom from methane with surface oxygen species and the suppression of deep oxidation to CO_x and H₂O. A number of catalysts are active for OCM, which include Mn/Na₂WO₄/SiO₂, La₂O₃, and Li/MgO. These catalysts are active at elevated temperatures, typically 700–850 °C. The criteria for the selection of a particular catalyst include stability and durability as well as C₂₊ (i.e., C₂ and C₃) selectivities and yields. The catalysts are implemented typically in packed-bed configurations.

Major design and operational challenges are associated with controlling the formation of undesired deep-oxidation products (i.e., CO, CO₂, and H₂O). The CO_x species not only decrease the desired C₂ carbon yields but also contribute to downstream separation costs.^[6,7] Unfortunately, under elevated temperature and oxidizing environments, the full oxidation of CH₄ and the desired C₂ species is thermodynamically more favorable than the pathway to the desired ethylene. A practically successful OCM process must avoid the full oxidation of the parent CH₄ and the produced C₂H₄.

The global OCM reaction [Eq. (1)] shows a stoichiometric ratio of CH₄/O₂=2. However, to avoid deep oxidation, practical reactors must operate in the range of $5 \le$ CH₄/O₂ \le 10. The CH₄ conversion is controlled by the O₂ in the feed mixture, and

higher oxygen levels contribute to a greater conversion. However, high O_2 levels tend to increase the reactor temperature and the undesired full oxidation.

ChemPubSoc

On one hand, high temperature promotes the desired nonoxidative CH_3 --H activation, which increases the CH_3 formation and rapid CH_3 recombination to form desired C_2 . On the other hand, temperatures that are too high promote competing deep oxidation by both gas-phase and surface reactions. Optimization of the operating temperature to promote methane dehydrogenation but prevent deep oxidation, depends greatly on the particular catalyst, the feed-mixture composition, and flow rates.

Practical packed-bed reactors do not operate isothermally (i.e., the temperature varies throughout the bed), and an elevated temperature is needed to initiate methane activation. However, exothermic oxidation contributes to undesired temperature increases that promote deep oxidation. Additionally, excessive temperatures and local temperature excursions can damage the catalyst and the reactor. Reactor design and control can benefit from an improved understanding of the fundamental chemistry as represented by detailed reaction mechanisms. The results of the present models suggest design strategies that use staged oxygen addition or oxygen permselective membranes to assist thermal control and thus improve OCM processes.

1.1. La₂O₃-based catalysts

La₂O₃ is an OCM catalyst with a high C₂ selectivity. Unfortunately, it is unstable above 600 °C and thus is not technologically practical. La₂O₃ reacts with CO₂ to form a dioxymonocarbonate structure at temperatures above 650 °C [Eq. (2)]:^[8,9]

$$La_2O_3 + CO_2 \rightarrow La_2O_2CO_3 \tag{2}$$

The La₂O₂CO₃ phase is also an active OCM catalyst but it is unstable at temperatures $>850\,^\circ\text{C}.^{[9]}$ Depending on how an OCM reactor is designed and controlled, local temperatures can exceed 850 $^\circ\text{C}.$

Despite the drawbacks, La_2O_3 is a relatively simple oxide (compared, for example, to $Mn/Na_2WO_4/SiO_2$) and is used widely on a laboratory scale to study OCM chemistry.^[10-16] As a result of recent advances in variants of La_2O_3 , there is good reason to revisit La_2O_3 as a potentially viable OCM catalyst.

Nanofabric catalyst synthesis is known to increase catalyst stability and reduce operating temperatures below 600 °C.^[14, 16-18] Hou et al.^[16] studied La₂O₃CO₃ catalysts with different nanoscale plate and rod morphologies, particle sizes, and calcination temperatures. The measured catalyst performance in a packed-bed reactor at atmospheric pressure and 420 °C showed 30% CH₄ conversion and 50% C₂₊ selectivity. The La₂O₃CO₃ catalyst was stable for over 50 h.

The C₂ selectivity and OCM yield can be increased by doping La₂O₃ catalysts with alkaline earth metals (Sr, Mg, Ca) that produce strong basic sites.^[10,13,19] Early studies indicated that Sr doping showed the most promising OCM activity.^[11,12,20] Choudhary et al.^[13] reported a 17% C₂ yield over Sr-La₂O₃ at

800 °C in a continuous-flow packed-bed reactor. Song et al.^[18] developed a stable Sr-La₂O₃ nanofiber catalyst, which produced approximately 16% C₂ yield at 500 °C and was stable up to 800 °C.

Noon et al.^[17] showed that La₂O₃/CeO₂ nanofabric catalysts delivered superior OCM performance compared to the same catalyst compositions in powder form. Based on packed-bed reactor measurements, Noon et al. reported a maximum of 16% C₂₊ yield at 620 °C.^[17] Additionally, the La₂O₃/CeO₂ catalyst was found to be coke tolerant. Based in large measure on the results of Noon et al.,^[17] in the present study we focus on the development of detailed reaction mechanisms to represent OCM chemistry for La₂O₃/CeO₂ nanofiber fabric catalysts.

2. Previous studies on OCM reaction kinetics

Although OCM is generally understood to be a catalytic process, it does depend on synergistic gas-phase chemistry. Especially above 600 °C, homogeneous gas-phase chemistry produces C_2H_4 and C_2H_6 without a catalyst. The relative importance of gas-phase chemistry depends on residence time and pressure, as well as the CH_4/O_2 ratio in the feed stream.^[21-23] Experimental studies show that C_2 formation rates depend strongly on CH_3^{\bullet} concentrations.^[10,12,20,24-27] The increase of the reaction temperature and pressure increases the formation rate of methyl radicals almost independent of the particular catalyst. However, in low-pressure regimes, the methyl radical formation rate depends weakly on temperature, but varies significantly depending upon the particular catalyst. As the catalyst increases the methyl radical formation rate, it also increases the C_2 formation rate.

Multistep global reactions have been developed, modified, and applied to model OCM chemistry. The most widely used reaction mechanism is a 10-step mechanism that was proposed in 1997 by Stansch et al.^[19] The Stansch catalytic reaction mechanism involves only gas-phase species (i.e., it does not involve surface adsorbates explicitly; Table 1). The relatively complicated empirical rate expressions implicitly incorporate parameters and functional dependencies that represent the catalyst. Although the Stansch model was developed for a La_2O_2/CaO catalyst, it has been modified and adapted to represent other OCM catalysts (e.g., Mn/Na₂WO₄/SiO₂) by tuning the

Table 1. Global reactions for OCM processes reported by Stansch et al.				
	Reaction	$\approx \Delta H_{_{298}}^{\circ}$ [kJ]		
1.	$CH_4 + 2O_2 \to CO_2 + 2H_2O$	-802		
2.	$2CH_4 + \frac{1}{2}O_2 \rightarrow C_2H_6 + H_2O$	-177		
3.	$CH_4 + O_2 \to CO + H_2O + H_2$	-277		
4.	$CO + \frac{1}{2}O_2 \rightarrow CO_2$	-283		
5.	$C_2H_6 + \frac{1}{2}O_2 \rightarrow C_2H_4 + H_2O$	-105		
6.	$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O_2$	-757		
7.	$C_2H_6\toC_2H_4+H_2$	+137		
8.	$\rm C_2H_4 + 2H_2O \rightarrow 2CO + 4H_2$	+210		
9.	$\rm CO + H_2O \rightarrow \rm CO_2 + H_2$	-41		
10.	$\rm CO_2 + H_2 \rightarrow \rm CO + H_2O$	+41		

individual rate expressions to fit measured packed-bed reactor performance.

Although lumped kinetic models (e.g., Stansch) are used to assist reactor development, they provide only a limited insight into the fundamental chemistry and have limited predictive capability. Compared to lumped kinetic models, detailed reaction mechanisms can provide a much richer description of the chemistry and can capture a larger range of processes. Although the development of the elementary reaction pathways and rate expressions can be challenging, a validated elementary mechanism has great practical benefits.

Thybaut et al. have developed reaction mechanisms for several OCM catalysts, which include Sr/La_2O_3 , LaSr/CaO, $NaMnW/SiO_2$, Li/MgO, and Sn-Li/MgO.^[28-32] However, to date, there are no published reaction mechanisms for La_2O_3/CeO_2 catalysts. In this study, we develop and validate a reaction mechanism for La_2O_3/CeO_2 nanofabric catalysts.

2.1. OCM reaction pathways

Both gas-phase and surface reactions play significant roles for CH_4 activation as well as C_{2+} and CO_x formation. Despite differences in the active catalytic sites for particular catalysts, it is generally known that the methane activation proceeds via the CH_3^{-1} radical. The initiating CH_3^{-1} formation reactions control the overall reaction rate.

Gas-phase chemistry contributes to CH_3^{\cdot} formation by both oxidative and nonoxidative reactions, which are generally know from combustion research.^[4,33–36] In the gas phase, methane can be attacked by either molecular oxygen or oxygen radicals [Eqs. (3)–(5)]:

$$CH_4 + O_2 \rightleftharpoons CH_3 + HO_2$$
 (3)

 $CH_4+O_2 \rightleftharpoons CH_3O$ +OH (4)

$$CH_4 + O' \rightleftharpoons CH_3' + OH'$$
 (5)

in which HO_2 can further contribute to the methane activation as [Eq. (6)]:

$$CH_4 + HO_2 \rightleftharpoons CH_3 + H_2O_2$$
 (6)

Nonoxidative CH_3 production may proceed by either thermal cracking or H radical attack as [Eqs. (7) and (8)]:

$$\mathsf{CH}_4 \rightleftharpoons \mathsf{CH}_3 + \mathsf{H}^{\bullet} \tag{7}$$

$$\mathsf{CH}_4 + \mathsf{H}^{\bullet} \rightleftharpoons \mathsf{CH}_3^{\bullet} + \mathsf{H}_2 \tag{8}$$

both of which require high temperatures.^[4]

The heterogeneous pathway for CH_3 radical formation is initiated by the reaction with surface-adsorbed oxygen O(s) [Eq. (9)].^[28,29]

$$CH_4 + O(s) \rightleftharpoons CH_3 + OH(s)$$
 (9)

As the O–H bonds in H₂O (497 kJmol⁻¹) are stronger than the C–H bond in CH₄ (439 kJmol⁻¹), methane activation can also be accomplished by the reaction of CH₄ with OH[•] radicals as [Eq. (10)]:^[4,33–37]

$$\mathsf{CH}_4 + \mathsf{OH}^{\bullet} \rightleftharpoons \mathsf{CH}_3^{\bullet} + \mathsf{H}_2\mathsf{O} \tag{10}$$

In addition to Reactions (4) and (5), Takanabe and Iglesia^[38] proposed that OH[•] radicals can be produced by the reaction of H_2O with O(s) on the surface or O_2 in the gas phase as [Eqs. (11) and (12)]:

$$H_2O + O(s) \rightleftharpoons OH' + OH(s) \tag{11}$$

$$2 H_2 O + O_2 \rightleftharpoons 4 O H$$
 (12)

In the presence of a catalyst, Reaction (11) is likely the dominant pathway.

Following methyl radical formation as a result of CH_4 activation, CH_3 recombination in the gas-phase produces C_2H_6 directly by a three-body reaction as [Eq. (13)]:

$$CH_3 + CH_3 + M \to C_2H_6 + M \tag{13}$$

Further C_2H_6 dehydrogenation produces C_2H_4 by reaction with H[•], OH[•], or CH₃[•] to form the ethyl radical (C_2H_5 [•]). Reactions with O(s) can also produce the ethyl radical (C_2H_5 [•]) that also leads to C_2H_4 .

Lundsford argued that CO is formed by gas-phase reactions, whereas H_2O and CO_2 are formed by surface reactions.^[39] Sun et al.^[28] proposed that CO, CO₂, and H₂O are formed both by homogeneous and heterogeneous pathways.

Broadly speaking, the reaction pathways are expected to be generally similar for Li/MgO, Sr/CaO, Sr/La₂O₃, Mn/Na₂WO₄/SiO₂, Mn/Na₂WO₄/MgO, and La₂O₃/CeO₂ catalysts.^[10, 12, 24, 26, 39]

2.2. Gas-phase kinetics

Based on extensive combustion research, the elementary gasphase reactions that contribute to the OCM process are relatively well understood. Several gas-phase reaction mechanisms have proposed since the early 1980s,[4,33-36,40-45] most of which are concerned primarily with methane total oxidation. The gasphase kinetic models by Warnatz,^[34] Mims et al.,^[42] Smith et al.,^[35] Wang et al.,^[43] and Dooley et al.^[36] contain comprehensive reaction steps for the oxidation of C_1-C_4 species. The gasphase mechanisms developed by Zanthoff and Baerns,^[41] Lopez et al.,^[44] and Chen et al.^[33] were developed specifically for the oxidation of C_1-C_3 species. The mechanism described by Konov^[45] is concerned with C_1-C_6 species and their nitrates formed in N-containing environments. Some of these reaction mechanisms contain thousands of reaction steps among hundreds of species. However, such detailed mechanisms can be computationally expensive. The resolution of concentration profiles with thousands of reaction steps is usually practical for 1D physical models. Nevertheless, the development of reaction mechanisms with fewer species and reactions has a significant practical value.

www.chemcatchem.org

The reduced gas-phase kinetic models by Zanthoff and Baerns,^[41] Reyes et al.,^[4] and Chen et al.^[33] were developed and validated for OCM conditions. The model described by Zanthoff and Baerns^[41] is composed of 193 reversible elementary gas-phase reaction steps between 33 species. The model developed by Reyes et al.^[4] contains 145 reversible gas-phase reaction step between 28 species. The model constructed by Chen et al.^[33] is smaller and contains 39 reversible gas-phase reactions among 22 species. As each of these reduced mechanisms was developed and validated under different reaction conditions (e.g., residence time, CH₄/O₂ ratios, temperature range), the gas-phase behaviors may not be captured fully for different conditions.

In 1994, with the use of a tubular packed-bed reactor with a Ce/Li/MgO OCM catalyst, Dittmeyer measured temperature and concentration profiles.^[46] With measurements and comparisons of profiles with and without the catalyst, this study provided new insights about the interactions of gas-phase species and catalytic chemistry. More recently, Mavlyankariev studied OCM gas-phase chemistry numerically and experimentally.^[47] The gas-phase concentration and temperature profiles along an empty tubular reactor were measured by using a microprobe sampling technique developed originally by Horn et al.[48] Mavlyankariev also tested all available kinetic models^[4,33-36,41-45] and compared them with the experimental measurements. Mavlyankariev reported that the kinetic model proposed by Dooley et al.,^[36] which contained 1583 elementary reactions between 269 species, delivered the best performance to predict the concentration and temperature profiles within the reactor. Mavlyankariev then reduced the model put forward by Dooley et al.^[36] to a mechanism with 332 reaction steps and 50 species. Mavlyankariev also reported that the model developed by Chen et al.^[33] predicted much less conversion than was measured.

Despite the deficiencies identified by Mavlyankariev, the relatively small model presented by Chen et al.^[33] does represent all the major and minor OCM products. In part because of its compact size, the coupling of the model described by Chen et al. with surface-chemistry models is relatively straightforward. The present model begins with the gas-phase model developed by Chen et al.,^[33] but we modified the pre-exponential rate constants based on the modeling of the spatially resolved concentration and temperature profiles measured by Zohour et al.^[49]

2.3. Proposed gas-phase OCM chemistry

The 39 elementary gas-phase reaction steps for the OCM process proposed by Chen et al.,^[28,33] which involves 12 stable molecules and 10 radicals, are listed in Table 2. The 12 molecules are O_2 , H_2O , CO, CO_2 , CH_4 , CH_2O , C_2H_2 , C_2H_4 , C_2H_6 , C_3H_{6r} ,

Table 2. Gas-phase OCM reaction mechanism. The reaction pathways are based on
those reported by Chen et al ^[33] The rate-expression parameters are represented in
Arrhenius form as $k = AT^{\beta} exp(-E/RT)$.

	Reaction	Α	β	Ε
		[cm, mol, s]	-	[kJ mol ⁻¹]
1.	$CH_4 + O_2 \rightleftharpoons CH_3^{\bullet} + HO_2^{\bullet}$	1.83×10 ⁺¹²	0.00	193.86
2.	$CH_4 + H^{\bullet} \rightleftharpoons CH_3^{\bullet} + H_2$	$2.04 \times 10^{+14}$	0.00	41.17
3.	$CH_4 + O^{\bullet} \rightleftharpoons CH_3^{\bullet} + OH^{\bullet}$	$9.27 \times 10^{+14}$	0.00	33.83
4.	$CH_4 + OH^{\bullet} \rightleftharpoons CH_3^{\bullet} + H_2O$	5.43×10 ⁺¹⁷	0.00	71.43
5.	$CH_4 + HO_2^{\bullet} \rightleftharpoons CH_3^{\bullet} + H_2O_2$	$3.01 \times 10^{+13}$	0.00	59.61
б.	$CH_3^\bullet + O_2 {\rightleftharpoons} CH_3 O^\bullet + O^\bullet$	$1.58 \times 10^{+14}$	0.00	91.00
7.	$CH_3^{\bullet} + O_2 \rightleftharpoons CH_2O^{\bullet} + OH^{\bullet}$	8.59×10 ⁺¹³	0.00	73.66
8.	$CH_3^{\bullet} + HO_2^{\bullet} \rightleftharpoons CH_3O^{\bullet} + OH^{\bullet}$	$4.85 \times 10^{+14}$	0.00	0.00
9.	$CH_3^\bullet + CH_3^\bullet + M{\rightleftharpoons}C_2H_6 + M$	2.00×10 ⁺¹⁹	0.00	0.00
10.	$CH_3O^{\bullet} + M{\rightleftharpoons}CH_2O^{\bullet} + H + M$	3.58×10 ⁺²⁰	0.00	35.0
11.	$CH_2O^{\bullet} + OH^{\bullet} \rightleftharpoons CHO^{\bullet} + H_2O$	9.80×10 ⁺¹²	0.00	5.00
12.	$CH_2O^\bullet + HO_2^\bullet{\rightleftharpoons}CHO^\bullet + H_2O_2$	9.17×10 ⁺¹⁴	0.00	10.12
13.	$CH_2O^{\bullet} + CH_3^{\bullet} \rightleftharpoons CHO^{\bullet} + CH_4$	$1.00 \times 10^{+13}$	0.00	95.03
14.	$CHO^\bullet + M{\rightleftharpoons}CO + H^\bullet + M$	$3.80 \times 10^{+12}$	0.00	64.36
15.	$CHO^{\bullet} + O_2 \rightleftharpoons CO + HO_2^{\bullet}$	9.71×10 ⁺¹⁶	0.00	0.00
16.	$CO + HO_2^{\bullet} \rightleftharpoons CO_2 + OH^{\bullet}$	3.08×10 ⁺¹⁶	0.00	107.34
17.	$C_2H_6 + H^\bullet{\rightleftharpoons}C_2H_5^\bullet + H_2$	8.10×10 ⁺⁰⁹	0.00	51.70
18.	$C_2H_6 + OH^\bullet{\rightleftharpoons}C_2H_5^\bullet + H_2O$	8.45×10 ⁺¹²	0.00	17.16
19.	$C_2H_6+CH_3^{\bullet}{\rightleftharpoons}C_2H_5^{\bullet}+CH_4$	8.29×10 ⁺¹³	0.00	64.73
20.	$C_2H_5^{\bullet} + HO_2^{\bullet} {\rightleftharpoons} CH_3^{\bullet} + CH_2O^{\bullet} + OH^{\bullet}$	8.48×10 ⁺¹³	0.00	0.0
21.	$C_2H_5^{\bullet} + M{\rightleftharpoons}C_2H_4 + H^{\bullet} + M$	3.96×10 ⁺²³	0.00	167.66
22.	$C_2H^\bullet_5 + O_2{\rightleftharpoons}C_2H_4 + HO_2^\bullet$	5.35×10 ⁺¹²	0.00	53.20
23.	$C_2H_4 + O_2 {\rightleftharpoons} C_2H_3^\bullet + HO_2^\bullet$	9.81×10 ⁺¹³	0.00	144.55
24.	$C_2H_4+H^{\bullet}{\rightleftarrows}C_2H_3^{\bullet}+H_2$	$1.50 \times 10^{+10}$	0.00	42.70
25.	$C_2H_4 + OH^\bullet{\rightleftharpoons}C_2H_3^\bullet + H_2O$	6.12×10 ⁺¹¹	0.00	24.70
26.	$C_2H_4 + CH_3^\bullet{\rightleftharpoons}C_2H_3^\bullet + CH_4$	3.99×10 ⁺¹²	0.00	51.46
27.	$C_2H_4 + OH^\bullet{\rightleftharpoons}CH^\bullet_3 + CH_2O^\bullet$	2.72×10 ⁺¹¹	0.00	0.00
28.	$C_2H_3^{\bullet} + M{\rightleftharpoons}C_2H_2 + H^{\bullet} + M$	4.21×10 ⁺¹⁶	0.00	176.44
29.	$C_2H_3^{\bullet} + O_2 {\rightleftharpoons} C_2H_2 + HO_2^{\bullet}$	$9.00 \times 10^{+12}$	0.00	0.00
30.	$C_2H_3^{\bullet} + O_2 {\rightleftharpoons} CH_2O^{\bullet} + CHO^{\bullet}$	9.50×10 ⁺¹⁷	0.00	0.00
31.	$C_2H_5^{\bullet} + CH_3^{\bullet} \rightleftharpoons C_3H_8$	6.00×10 ⁺¹³	0.00	0.00
32.	$C_3H_8+H^{\bullet}{\rightleftharpoons}C_3H_7^{\bullet}+H_2$	7.00×10 ⁺⁰⁹	0.00	32.0
33.	$C_2H_4 + CH_3^{\bullet} \rightleftharpoons C_3H_7^{\bullet}$	$8.00 \times 10^{+12}$	0.00	29.00
34.	$C_3H_7^{\bullet} \rightleftharpoons C_3H_6 + H^{\bullet}$	5.50×10 ⁺¹⁵	0.00	156.00
35.	$O_2 + H^{\bullet} \rightleftharpoons OH^{\bullet} + O^{\bullet}$	$2.20 \times 10^{+14}$	0.00	70.30
36.	$O_2 + H^\bullet + M{\rightleftharpoons}HO_2^\bullet + M$	1.39×10 ⁺¹⁷	0.00	0.0
37.	$HO_2^\bullet + HO_2^\bullet {\rightleftharpoons} O_2 + OH^\bullet + OH^\bullet$	$8.00 \times 10^{+13}$	0.00	0.00
38.	$H_2O_2 + M{\rightleftharpoons}OH^\bullet + OH^\bullet + M$	$1.27 \times 10^{+18}$	0.00	169.36

 $C_3H_{8^{\prime}}$ and H_2O_2 . The 11 radical species are H[•], O[•], OH[•], HO₂[•], CH₃[•], HCO[•], CHO[•], CH₃O[•], C₂H₅[•], C₂H₇[•], and C₃H₃[•]. The gas-phase species may react between themselves or, as discussed subsequently, may react with surface-adsorbed species on the catalyst.

According to the mechanism put forward by Chen et al.,^[33] methane activation is initiated by direct reactions with O₂ and the radicals O', H', OH', and HO₂'. CH₃' recombination first produces C₂H₆. Subsequent radical attack (H', OH', or CH₃') on C₂H₆ promotes dehydrogenation to form gas-phase H₂, H₂O, CH₄, and the unstable C₂H₅' radical. The desired C₂H₄ is produced by the further reactions of C₂H₅' with radicals (H', O', and OH') and O₂. Unfortunately, the rich gas-phase radical pool promotes further deep oxidation of C₂H₄ to form CO_x and H₂O. Higher hydrocarbons such as C₃ species are also formed through C₂H₅' and CH₃' radical–radical reactions.

All the reaction steps in Table 2 are written reversibly, and the reverse reaction rates are evaluated based on the reaction

equilibrium constants. The GRI thermodynamic database is used as the source of the thermodynamic properties of the species. The Arrhenius rate-expression parameters listed in Table 2 are modified from those reported by Chen et al.^[33]

Based on the adjusted rate constants, the overall methane conversion is controlled primarily by methane activation reactions (i.e., Table 2, Reactions 1 and 2). The CH₃[•] radical recombination reaction (Table 2, Reaction 9) also plays a significant role in the overall methane conversion. The CO and CO₂ concentrations depend strongly on the oxidation of CH₃[•] radicals through Reactions 6 and 7 (Table 2). The formation of C₃ species is controlled by chain growth if the CH₃[•] radical attacks C₂H₄ and C₂H₅[•] (Reactions 31 and 33). The low-temperature CO_x formation is controlled by the gas-phase oxidation of formal-dehyde (Table 2, Reaction 12).

2.4. Previous studies on OCM surface kinetics

Most previous studies on OCM surface kinetics focus on catalysts with relatively simple crystal structures, such as Li/MgO and La_2O_3 . Simon et al.^[50] proposed a detailed surface mechanism for La_2O_3 , which is coupled with 450 gas-phase reactions. The model was validated using measured results from an isothermal, continuously stirred tank reactor. Unfortunately, they did not describe the gas-phase reaction mechanism fully.

Sinev et al.^[51–53] developed a detailed surface reaction mechanism for the OCM process on Li/MgO catalysts. They reported that lattice oxygen in Li/MgO could participate in the catalytic process. They considered three Li oxidation states (Li, LiO, and LiOH) and their reactions with gas-phase species. Subsequently, the surface kinetic model was extended to predict newer OCM experiments.^[54,55]

Sun et al.^[28] proposed a detailed OCM reaction mechanism for Li/MgO and Sn/Li/MgO catalysts. This mechanism consisted of 14 surface reactions and 39 gas-phase reactions. The mechanism represents the adsorption of gas-phase species, reaction of gas-phase species (either radical or stable molecules) with surface adsorbates (Eley–Rideal steps), and surface–surface reactions. Methane activation proceeds by methyl radical formation in the gas-phase as well as on the catalyst surface. Methyl radicals recombine to form C_2H_6 . The kinetic model also includes the direct oxidation of C_2H_4 by surface reactions.

Alexiadis et al.^[31] extended the reaction network by including the deep oxidation of C₂H₄ by surface reactions. The reaction kinetics were then applied to several other catalysts, which included Mn/Na₂WO₄/SiO₂, Li/MgO, SrLaO, and Sn/ LiMgO.^[32,56] The activation barriers of key reaction families (i.e., H[•] abstraction, OH[•] recombination, CO oxidation, and C–C cleavage on the surface) on different catalysts were adjusted based on the Evans–Polanyi relationship, that is, $E_a = E_0 + \alpha \Delta H$, in which E_a is the forward activation barrier, E_0 is a reference activation energy, ΔH is the reaction enthalpy, and $0 \le \alpha \le 1$. Both E_0 and α are specific to the reaction family and the catalyst.^[56]

Instead of focusing on an individual catalyst and reaction rate constants, Su et al.^[57] used microkinetic modeling to

predict the upper limit of the C_2 yield. From a plausible OCM reaction pathway and using the gas-phase kinetics described by Mims et al.,^[42] the maximum C_2 yield can be reached by maximizing the significant reaction rates. The OCM process was found to be a thermodynamically limited process with an upper limit for the C_2 yield of 28%.

2.5. Proposed surface reaction mechanism

In the present study, we begin with the surface reaction pathways proposed by Alexiadis et al.,^[31] which were developed originally for the OCM process on Li/MgO and Sn/Li/MgO catalysts. The reaction network includes reactions between gasphase and surface-adsorbed species. The reactions are stated typically in terms of Eley–Rideal or Langmuir–Hinshelwood formalisms. The activation of CH₄ with O(s) produces CH₃[•], which promotes the desired C₂ production. However, O(s) can also react competitively with CH₃[•] radicals to form undesired CO and CO₂. The desired gas-phase products C₂H₄ and C₂H₆ can also react with O(s) to form C₂H₅[•] and C₂H₃[•], which can further react in the gas phase to promote undesired CO, CO₂, and H₂O. As anticipated, the relatively complex heterogeneous reaction pathways that lead to C₂₊ formation are influenced significantly by temperature, residence time, and catalyst loading.

The CeO₂ in the La₂O₃/CeO₂ may play a role as a redoxactive catalyst support, which may help to diminish coke formation and thus improve the catalyst durability. In other words, the La₂O₃/CeO₂ structure may exhibit some bifunctional catalytic behaviors. However, the current reaction mechanism does not consider any such catalyst bifunctionality. Rather, it approximates the La₂O₃/CeO₂ as a single-phase surface. The nomenclature La(s) is used to represent a surface site. The effective catalyst site density (Γ) is estimated to be 9.84× 10^{-10} mol cm⁻².

The heterogeneous reaction mechanism and rate expressions are given in Table 3. The reaction mechanism involves 11 surface species and 16 gas-phase species, all of which participate in gas-phase reactions as well. The surface reaction mechanism is written as irreversible reaction pairs with pre-exponential factors, temperature dependencies, and activation energies represented in modified Arrhenius form or as sticking probabilities. Writing the reactions as irreversible pairs avoids the need to know the thermodynamic properties of surface adsorbents. However, the reaction pairs are not constrained to be thermodynamically consistent and preserve microscopic reversibility. A possible consequence of the irreversible-pair formulation is that the de facto equilibrium constants (i.e., ratio of forward and reverse rates) may appear to be nonphysical. For example, an artificially high equilibrium constant simply means that the forward reaction is dominant. Such behavior has no practical consequence on the model predictions but could potentially cause computational difficulties. Nevertheless, the gasphase reactions are reversible and thermodynamically consistent, which does preserve overall thermodynamic consistency for the gas-phase species. Details of the surface-chemistry formalism have been given by Kee et al.^[58] and Coltrin et al.^[59]

Table 3. Surface reaction kinetics for oxidative coupling of methane over La₂O₃/CeO₂ nanofabric catalysts. Gas-phase radical species are indicated by the '. The active site is shown as La(s) and the catalytic surface site density is $\Gamma = 9.84 \times 10^{-10}$ mol cm⁻².

	Reaction	A or sticking coefficient [cm, mol, s]	β -	E [kJ mol ⁻¹]
1.	$O_2 + La(s) \rightarrow O(s) + O(s)$	1.80×10 ⁻⁰¹	0.00	0.00 ^[a]
2.	$O(s) + O(s) \rightarrow O_2 + La(s) + La(s)$	$1.00 \times 10^{+22}$	0.00	60.7
3.	$CH_4 + O(s) \rightarrow CH_3^{\bullet} + OH(s)$	$7.50 \times 10^{+10}$	0.00	174.4
4.	$CH_{3}^{\bullet} + OH(s) \rightarrow CH_{4} + O(s)$	$1.91 \times 10^{+10}$	0.00	105.0
5.	$C_2H_4 + O(s) \rightarrow C_2H_3^{\bullet} + OH(s)$	6.40×10 ⁺¹⁰	0.00	100.4
6.	$C_2H_2^{\bullet} + OH(s) \rightarrow C_2H_4 + O(s)$	5.42×10 ⁺¹³	0.00	90.1
7.	$C_2H_6^{\bullet} + O(s) \rightarrow C_2H_5^{\bullet} + OH(s)$	$4.05 \times 10^{+13}$	0.00	88.2
8.	$C_2H_5^{\bullet} + OH(s) \rightarrow C_2H_6 + O(s)$	6.37×10 ⁺¹²	0.00	98.5
9.	$OH(s) + OH(s) \rightarrow H_2O(s) + O(s)$	7.25×10 ⁺²⁰	0.00	190.3
10.	$H_2O(s) + O(s) \rightarrow OH(s) + OH(s)$	$1.17 \times 10^{+20}$	0.00	138.2
11.	$H_2O(s) \rightarrow H_2O + La(s)$	$1.10 \times 10^{+13}$	0.00	54.2
12.	$H_2O + La(s) \rightarrow H_2O(s)$	3.52×10^{-02}	0.00	0.00 ^[a]
13.	$CH_{2}^{\bullet} + O(s) \rightarrow CH_{2}O(s)$	7.25×10 ⁺¹⁰	0.00	0.0
14.	$CH_2O(s) \rightarrow CH_2^{\bullet} + O(s)$	$2.24 \times 10^{+11}$	0.00	144.6
15.	$CH_2O(s) + O(s) \rightarrow CH_2O(s) + OH(s)$	$9.72 \times 10^{+22}$	0.00	0.0
16.	$CH_2O(s) + OH(s) \rightarrow CH_2O(s) + O(s)$	$1.69 \times 10^{+21}$	0.00	145.9
17	$CH_2O(s) + O(s) \to HCO(s) + OH(s)$	$9.69 \times 10^{+20}$	0.00	55.1
18	$HCO(s) + OH(s) \rightarrow CH_2O(s) + O(s)$	$1.75 \times 10^{+20}$	0.00	132.6
19	$HCO(s) + O(s) \rightarrow CO(s) + OH(s)$	$9.72 \times 10^{+24}$	0.00	57
20	$CO(s) + OH(s) \rightarrow HCO(s) + O(s)$	$1.81 \times 10^{+19}$	0.00	133.9
20.	$CO(s) + O(s) \rightarrow CO_{-}(s) + Ia(s)$	$5.91 \times 10^{+22}$	0.00	0.0
27.	$CO_{1}(s) + La(s) \rightarrow CO_{2}(s) + La(s)$	$2.39 \times 10^{+20}$	0.00	155.3
22.	$CO_2(3) + Eu(3) \rightarrow CO(3) + O(3)$	5.00×10^{-06}	0.00	0 0 ^[a]
23.	$CO(s) \rightarrow CO(s)$	$3.00 \times 10^{+14}$	0.00	45.4
24.	$CO_{1} + La(s) \rightarrow CO_{2}(s)$	2.50×10^{-06}	0.00	
25.	$CO_2 + CO_3 \rightarrow CO_2(3)$	$5.80 \times 10^{+14}$	0.00	45.9
20.	$C H \rightarrow C C_2 + C H O(c)$	$3.00 \times 10^{+12}$	0.00	95.3
27.	$C_2\Pi_4 + O(s) \rightarrow C_2\Pi_4O(s)$	$2.20 \times 10^{+11}$	0.00	186.3
20.	$C_{2}\Pi_{4}O(s) \rightarrow C_{2}\Pi_{4} + O(s)$	$1.00 \times 10^{+21}$	0.00	76.00
29.	$C_{2}\Pi_{4}O(s) + OH(s) \rightarrow C_{2}\Pi_{3}O(s) + OH(s)$	$1.00 \times 10^{+21}$	0.00	70.00
20. 21	$C_2\Pi_3O(s) + O\Pi(s) \rightarrow C_2\Pi_4O(s) + O(s)$	$1.00 \times 10^{+21}$	0.00	5.0
27	$C_2 \Pi_3 O(s) + O(s) \rightarrow C \Pi_2 O(s) + \Pi C O(s)$	$1.00 \times 10^{+21}$	0.00	196.5
22.	$CH_2^{\circ}O(s) + HCO(s) \rightarrow C_2H_3O(s) + O(s)$	$1.00 \times 10^{+12}$	0.00	180.5
55. 24	$C_{2}\Pi_{5} + O(s) \rightarrow C_{2}\Pi_{4} + O(s)$	$1.00 \times 10^{+10}$	0.00	70.0
34. 25	$C_2 \Pi_4 + O\Pi(S) \rightarrow C_2 \Pi_5 + O(S)$	$3.00 \times 10^{+11}$	0.00	70.9
33. 26	$CH_3O^{\bullet} + OH(s) \to CH_2O^{\bullet} + OH(s)$	$7.00 \times 10^{+11}$	0.00	307.8 26 F
30. 27	$CH_2O^{\bullet} + OH(S) \to CH_3O^{\bullet} + OH(S)$	1.00 × 10 ⁺¹³	0.00	20.5
37. 20	$CH_2O + O(S) \rightarrow CHO + OH(S)$	$1.00 \times 10^{+10}$	0.00	109.9
38.	$CHO^{\bullet} + OH(s) \to CH_2O^{\bullet} + O(s)$	$1.00 \times 10^{+12}$	0.00	39.3
39. 40	$CHO + O(s) \to CO + OH(s)$	$1.00 \times 10^{+13}$	0.00	88.1
40.	$CO + OH(s) \rightarrow CHO + O(s)$	$1.00 \times 10^{+13}$	0.00	89.7
41.	$H_2 + O(S) \rightarrow H + OH(S)$	8.00 × 10 ⁺¹⁰	0.00	400.0
42.	$H^{2} + OH(s) \rightarrow H_{2} + O(s)$	$1.00 \times 10^{+13}$	0.00	0.0
43.	$H_2O_2 + O(s) \rightarrow HO_2 + OH(s)$	1.00 × 10 ⁺¹³	0.00	344.0
44.	$\Pi U_2 + U \Pi(S) \rightarrow \Pi_2 U_2 + U(S)$	1.00 × 10 ⁺¹³	0.00	13.8
45. 46	$OH^{\bullet} + OH(s) \to OH^{\bullet} + OH(s)$	$1.00 \times 10^{+11}$	0.00	390.0
46.	$O^{+} + OH(s) \rightarrow OH^{+} + O(s)$	1.00×10 ⁺¹¹	0.00	0.0
47.	$H_2 U + U(s) \rightarrow UH^2 + UH(s)$	1.00×10 ⁺¹¹	0.00	460.0
48.	$UH^{*} + UH(s) \rightarrow H_2U + U(s)$	1.00×10 ⁺¹¹	0.00	0.0
49.	$HO_2^{\bullet} + O(s) \rightarrow O_2 + OH(s)$	$1.00 \times 10^{+11}$	0.00	224.0
50.	$O_2 + OH(s) \rightarrow HO_2^{\bullet} + O(s)$	1.00×10 ⁺¹³	0.00	54.0
51.	$HO_2^{\bullet} + La(s) \rightarrow OH^{\bullet} + O(s)$	1.00×10 ⁺¹⁰	0.00	0.0
52.	$OH^{\bullet} + O(s) \rightarrow HO_2^{\bullet} + La(s)$	$1.00 \times 10^{+11}$	0.00	30.0
52. $OH^{\bullet} + O(s) \rightarrow HO_2^{\bullet} + La(s)$ [a] Most reaction rate expressions are written in modified Arrhenius form $k = AT^{\beta}exp(-E/RT)$. Reactions 1, 12, 23 and 25 are the adsorption reactions and A represents the sticking coefficient.				

The nominal values for the rate constants are estimated using transition-state theory. Pre-exponential factors *A* are evaluated as [Eq. (14)]:

$$\mathsf{A} = \frac{k_{\mathsf{B}}T}{h} \frac{1}{\Gamma^{n-1}} \tag{14}$$

in which $k_{\rm B}$ is the Boltzmann constant, h is the Planck constant, Γ is the surface site density, and n is the reaction order. For a first-order surface reaction, the nominal value of A is estimated to be approximately $10^{13} \, {\rm s}^{-1}$.^[60,61]

The initial activation barriers are estimated based on the Evans–Polanyi relationship between reaction enthalpies and activation barriers. The reaction enthalpies for H abstraction from CH_4 , OH recombination, CO oxidation and C–C cleavage, and O_2 chemisorption on the surface are used as catalyst descriptors.^[32] The reaction rates (i.e., activation barriers, temperature dependencies, and pre-exponential factors) were adjusted to match the spatially resolved concentration and temperature profile measurements reported by Zohour et al.^[49] The "fitting" process did not use any formal or automated optimization procedure. Rather, it was accomplished by extensive packed-bed-reactor simulations and careful comparisons with the measured profiles.

3. Packed-bed profile measurements

We use spatially resolved measurements that were published previously by Zohour et al.^[49,62] A flakelike fabric "particle" of the La_2O_3/CeO_2 nanofiber catalyst is shown in Figure 1a, and a SEM image that shows the small-scale nanofiber structure clearly is presented in Figure 1b. The effective bed porosity is estimated to be 60%.

A schematic representation of the packed-bed reactor with microprobe sampling is shown in Figure 2. The quartz tube that houses the catalyst bed has an internal diameter of 4 mm. The tube was packed with 20 mg of the La₂O₃/CeO₂ nanofiber catalyst sandwiched between two quartz wool layers in front of and behind the catalyst. The catalyst bed was 14 mm long. The front-side quartz wool was 4 mm long, and the back-end quartz wool was 7 mm long. The reactor was housed in a furnace heated electrically, and the furnace temperature was set to be the same as the gas temperature of the premixed CH₄ and O₂ feed flow. The total inlet flow rate was fixed as 160 cm³min⁻¹ at standard temperature and pressure (STP). In a series of experiments, the premixed CH_4/O_2 ratio was varied from 7 to 11 without the addition of any diluent. The inlet gas temperature varied from 570 to 700 °C.

An 800 μm quartz capillary probe was positioned along the centerline of the packed bed for gas sampling. The microprobe axial position was controlled manually by using a micropositioning device. The capillary probe withdrew gas samples at 5 cm³ min⁻¹ at STP, and the gas was analyzed by using GC. Steady-state concentrations of CH₄, O₂, H₂,

Figure 1. a) Two fabric flakes of the La_2O_3/CeO_2 nanofabric catalyst. b) SEM image of the nanofiber structure.

Figure 2. Schematic representation of the reactor bed. The 14 mm catalyst section is held in place by quartz wool. The internal tube diameter is 4 mm. The translating sampling probe is positioned along the bed centerline.

CO, CO₂, C_2H_4 , C_2H_6 , and C_3 (C_3H_6 and C_3H_8) were measured directly by using GC, and the local H_2O concentration was evaluated from an oxygen atom balance. The quartz capillary probe also held a K-type thermocouple. After gas sampling, the temperature measurement was accomplished when no gas was withdrawn by the capillary tube. The measured temperature and concentration profile began at the front face of the quartz wool, continued through the catalyst bed, and through the

back side quartz wool. Thus, concentration and temperature measurements were made within the entire 25 mm length of the packed bed.

4. Packed-bed model

The tubular packed-bed reactor was modeled by assuming a 1D axial reacting porous medium. In other words, any radial variations were neglected. As the catalytic packed-bed model has been documented previously,^[63] only a summary is provided here.

The transient continuity equations for gas-phase species and overall mass conservation can be written in a conservative form as [Eqs. (15) and (16)]:

$$\frac{\partial \left(\varphi_{g} \rho_{g} Y_{k}\right)}{\partial t} + \nabla \cdot \mathbf{j}_{k} = \left(\varphi_{g} \dot{\omega}_{k} + A_{s} \dot{s}_{k}\right) W_{k}$$
(15)

$$\frac{\partial (\varphi_g \rho_g)}{\partial t} + \sum_{k=1}^{K_g} \nabla \cdot \mathbf{j}_k = \sum_{k=1}^{K_g} A_s \dot{s}_k W_k \tag{16}$$

In these equations, the independent variables are t and the axial spatial coordinate. Dependent variables are ρ_g and Y_{kr} which represent the gas-phase mixture mass density and the species mass fractions. Other variables and parameters include the bed porosity ϕ_g and the specific catalyst surface area A_s . The species molecular weights are represented as W_k . Chemical production rates by homogeneous and heterogeneous reactions are represented by $\dot{\omega}_k$ and \dot{s}_k , respectively. The total number of gas-phase species is represented by K_g .

If we consider the molecular diffusion (ordinary and Knudsen) and Darcy flow for the gaseous species transport within the porous bed, the gas-phase mass fluxes \mathbf{j}_k can be represented as [Eq. (17)]:

$$\mathbf{j}_{k} = \rho_{g} Y_{k} \mathbf{v} - W_{k} D_{k}^{e} \nabla[X_{k}]$$
(17)

The superficial velocity \mathbf{v} thorough the porous media can be represented using Darcy's law as [Eq. (18)]:

$$\mathbf{v} = -\frac{B}{\mu}\nabla p \tag{18}$$

in which *B* is the permeability of the porous medium, *p* is the gas-phase pressure, and μ is the gas-phase mixture viscosity. An effective diffusion coefficient D_k^e can be expressed in terms of ordinary and Knudsen diffusion as [Eq. (19)]:

$$\frac{1}{D_k^{\rm e}} = \frac{1}{D_{k,m}^{\rm e}} + \frac{1}{D_{k,Kn}^{\rm e}} \tag{19}$$

The effective ordinary and Knudsen diffusion coefficients are written as [Eq. (20)]:

$$D_{k,m}^{e} = \frac{\varphi_{g}}{\tau} D_{k,m}$$

$$D_{k,Kn}^{e} = \frac{2}{3} \frac{r_{p} \varphi_{g}}{\tau} \sqrt{\frac{8RT}{\pi W_{k}}}$$
(20)

The effective ordinary mixture-averaged diffusion coefficient is $D_{k,m}^{e}$, and $D_{k,m}$ is the gas-phase mixture-averaged diffusion coefficient. The effective Knudsen diffusion is represented as $D_{k,Kn}^{e}$. The effective pore radius is denoted as r_{p} , and the tortuosity is represented as τ . All the other thermodynamic properties and transport parameters were evaluated using the Chemkin software, and fundamental details of the underpinning formulations have been described by Kee et al.^[58]

In addition to gas-phase concentrations, the heterogeneous reaction rates (Table 3) depend also on the concentrations of the surface adsorbates. The adsorbate concentrations on the catalyst surface can be represented using site fractions θ_{k} . If we neglect any adsorbate diffusion on the catalyst surfaces, the governing equations for temporal variations of surface species caused by heterogeneous reactions can be represented as [Eq. (21)]:

$$\frac{d\theta_k}{dt} = \frac{\dot{s}_k}{\Gamma} \tag{21}$$

in which Γ is the available site density. At steady state $\dot{s}_k = 0$ for all the adsorbed surface species.

An energy-conservation equation could be used to predict the thermal profiles within the bed. However, rather than solving an energy equation, the present model imposes the measured axial temperature profile. This approach enables attention to be focused on the reaction mechanisms without inevitable assumptions about thermal coupling with the furnace.

Solving the conservation equations depends on boundary conditions. At the reactor inlet, the species mass flow rates are specified. The pressure at the outlet is also specified. The spatial operators are approximated using 1D finite-volume spatial discretization on a mesh network. The transient model is solved using a method-of-lines algorithm, and the time marching was accomplished by using Limex.^[64] The steady-state profiles are found as the long-time solution of the transient problem.

The overall reactor performance can be represented in terms of reactant (i.e., CH_4) conversion as well as product yields and selectivities. Within the bed, the local methane conversion can be defined as [Eq. (22)]:

$$X_{\rm CH_4} = \frac{J_{\rm CH_4,in} - J_{\rm CH_4}}{J_{\rm CH_4,in}}$$
(22)

in which $J_{CH_4,in}$ is the CH₄ molar flux at the reactor inlet, and J_{CH_4} is the local CH₄ molar flux. The species yields Y_k can be defined as [Eq. (23)]:

$$Y_k = \frac{n_{c,k}J_k}{J_{CH_4,in}}$$
(23)

in which $n_{c,k}$ is the number of carbon atoms in a particular species (e.g., $n_{c,C_2H_4}=2$) and J_k is the local species molar flux, which can be related to the species mass fluxes j_k as $J_k = j_k/W_k$. The carbon selectivity S_k for a particular gas-phase species k can be defined as [Eq. (24)]:

$$S_{k} = \frac{n_{c,k}J_{k}}{J_{CH_{4},in} - J_{CH_{4}}}$$
(24)

5. Results and Discussion

The physical parameters and operating conditions for the packed-bed reactor are given in Table 4. The packed-bed reactor model requires the physical parameters of the particle and packed-bed as model inputs. Unlike a typical packed-bed

Table 4. Reaction conditions used as model input parameters.			
Parameter	Value		
Inlet temperature, T	570–700 °C		
Pressure, p	1 atm		
Inlet velocity at STP, U _{in}	21.2 cm s ⁻¹		
CH_4/O_2 ratio	$7 \le CH_4/O_2 \le 11$		
Catalyst bed length, L	14 mm		
Reactor outer diameter	6 mm		
Reactor inner diameter	4 mm		
Bed porosity, ϕ	0.60		
Tortuosity, $ au$	2.5		
Surface-to-volume ratio, A _s	$1.4 \times 10^4 \text{ cm}^{-1}$		
Quartz wool porosity	0.3		
Quartz wool tortuosity	2.0		
Quartz wool particle diameter	$1.00 \times 10^{-1} \text{ mm}$		
Quartz wool pore diameter	$9.00 \times 10^{-2} \text{ mm}$		

reactor, the catalyst is not in a particle form but rather in the form of packed flakelike sheets (Figure 1). Thus, typical parameters such as particle size and pore diameter have no direct physical meaning for the nanofiber structure. Nevertheless, particle size and pore diameter are estimated from the bulk density and packed-bed porosity by assuming spherical particles. The model uses a 125 μ m particle diameter and 30 μ m pore diameter as parameters.

The model considers three separate regions of the bed: the initial 4 mm quartz wool packing, the 14 mm catalyst bed, and the downstream 7 mm quartz wool packing. As gas-phase reactions can occur without a catalyst, it is important to represent the full reactor bed by considering the gas-phase reactions in both quartz wool sections. The reaction mechanism is calibrated and validated by the direct comparison of the predicted species mole fraction profiles, the methane conversion, and the product selectivity and yield with the experimental measurements for three different CH_4/O_2 ratios.

5.1. Effect of feed composition: $CH_4/O_2 = 9$

The concentration profiles of measured and predicted species for a feed mixture of $CH_4/O_2=9$ are shown in Figure 3. The

Figure 3. Comparison of measured (symbols) and predicted (lines) concentration and temperature profiles along the reactor bed. The reactor inlet temperature is 610 °C, the inlet CH_4 fraction is 0.90, and O_2 mole fraction is 0.10 ($CH_4/O_2 = 9$).

gas-phase reactions are initiated within the front quartz wool section. However, because the temperature is relatively low in this region (\approx 650 °C), the CH₄ conversion is very low.

As the gases enter the catalytic region, the rapid decrease in the oxygen concentration aligns with the consumption of methane (Figure 3). The oxygen is consumed fully by 9 mm. The O_2 and CH_4 concentration profiles indicate that methane conversion is limited by oxygen availability. The primary gasphase products are C_2 , CO_x , and H_2O , which reach their maximum values as the O_2 is consumed fully. The rapid exothermic oxidation contributes to a rapid temperature increase, and the temperature exceeds 750 °C by 9 mm from the reactor inlet (4 mm of quartz and 5 mm of active catalyst). The elevated temperature increases the formation rates of CH_3^+ and C_2 . However, the elevated temperature also contributes to competitive total oxidation, which leads to CO and CO_2 on the downstream sections of the catalyst bed.

The C₂H₄ profile develops more slowly than that of O₂ and CH₄ (Figure 3), but is comparable to the C₂H₆ and CO₂ profiles. This behavior suggests that C₂H₄ formation proceeds by C₂H₆ dehydrogenation. Additionally, the CO, CO₂, H₂O, and H₂ profiles show that their formation begins earlier than C₂₊ formation. This indicates that direct CH₄ oxidation is dominant. By the 12 mm position within the bed, all the species have effectively reached their asymptotic values. However, as a result of heat loss to the external environment (i.e., the relatively cool furnace walls), the temperature profile decreases.

Spatial profiles of the CH₄ conversion and the C₂₊ and CO_x yields are shown in Figure 4a. Within the front-side quartz wool, at which only the gas-phase reactions are active, the CH₄ conversion is less than 0.5%. However, within the first 5 mm of the catalyst bed, both the CH₄ conversion and the C₂₊ and CO_x yields reach their maximum values.

CHEMCATCHEM

Full Papers

Figure 4. Comparison of measured (symbols) and predicted (lines) methane conversion and yield and C₂ selectivity along the reactor bed. The reactor inlet temperature is 610 °C, the inlet CH₄ fraction is 0.90, and O₂ mole fraction is 0.10 (CH₄/O₂=9).

Spatial profiles of the C₂H₆ and C₂H₄ selectivities are shown in Figure 4b. The primary gas-phase product formed within the first 2 mm of the front-side quartz wool section is C₂H₆. As the reactor temperature and CH₄ conversion increase within the bed, C₂H₆ becomes dehydrogenated to produce C₂H₄. At the 3 mm location within the front-side quartz wool, the C₂H₆ selectivity decreases sharply. However, the C₂H₄ selectivity increases only slightly because of competitive CO_x production.

5.1.1. CO_x formation pathways

 CO_x and C_{2+} formation occurs essentially simultaneously (Figure 4a). Both surface and gas-phase reaction mechanisms include direct and indirect CO_x formation pathways. The direct gas-phase oxidation path is dominated by the reaction of CH_3 [•] with O_2 to form $CH_3O^{•}$ and $CH_2O^{•}$ (Reactions 6 and 7 in Table 2). The indirect CO_x formation occurs in the gas-phase by the reaction of C_2H_4 with O_2 (Reaction 23), H[•] (Reaction 24), OH[•] (Reaction 25), and $CH_3^{•}$ (Reaction 26) to form $C_2H_3^{•}$. On the catalyst surface, the direct oxidation proceeds by the reaction of $CH_3^{•}$ with O(s) (Reaction 13 in Table 3) to form $CH_3O(s)$. The indirect oxidation of C_2H_4 occurs by the reaction of C_2H_4 with O(s) to form $C_2H_3^{•}$ (Reaction 5 in Table 3) or to form $C_2H_4O(s)$ (Reaction 27 in Table 3).

The contribution of gas-phase and surface reactions to form CO_x depends on the local oxygen concentration and temperature. Reaction pathway diagrams for CO and CO_2 formation at three locations within the catalytic bed are shown in Figure 5. The reaction pathway diagram at the beginning of the catalyst bed at which the local temperature is $660^{\circ}C$ is shown in

Figure 5. Contribution of reaction pathways to form CO and CO_2 at three axial positions within the reactor. The thickness of the arrows represents the magnitude of the reaction rates. Gas-phase reactions are shown as dashed lines, and the surface reactions are shown as red solid arrows. The black arrows indicate the combination of gas-phase and surface reactions.

Figure 5a. The direct oxidation pathway in the gas-phase is dominant at this relatively low temperature. After the formation of CH_3 , the gas-phase oxidation of CH_3 forms CH_3O and CH_2O by Reactions 6 and 7 (Table 2), and then CHO by Reactions 10–13, and finally CO and CO_2 . The direct and indirect surface reaction contributions to CO_x formation are relatively

CHEMCATCHEM Full Papers

weak (Figure 5 a). The reaction pathways at the local temperature of 760 °C are shown in Figure 5 b. A this point, the contribution from indirect gas-phase oxidation becomes more significant. Between 0.1 and 9 mm, temperature affects the reaction pathways similarly. In this region, the contribution of gasphase reactions to CO_x formation increases linearly as a function of temperature. The oxidation of C_2H_4 and C_2H_6 is the dominant pathway for CO and CO_2 formation. At 760 °C, C_2H_4 oxidation by O(s) to form $C_2H_4O(s)$ is also significant. The reaction pathways at 790 °C are shown in Figure 5 c. The direct gas-phase oxidation pathway for the consumption of C_2H_4 and C_2H_6 is dominant. A significant increase in $C_2H_3O(s)$ formation from the dehydrogenation of $C_2H_4O(s)$ with O(s) (Table 3, Reaction 27) contributes greatly to CO and CO_2 formation.

5.1.2. H₂O formation pathways

Rate analysis similar to the CO_x study was also performed for H₂O formation. At low temperature (660 °C), the direct oxidation of CH₄ with OH[•] (Reaction 4 in Table 2) occurs primarily in the gas phase. Moreover, CH₂O[•] oxidation with OH[•] (Reaction 11 in Table 2) can produce H₂O as well, which is analogous to the pathway for the formation of CO and CO₂. The other two primary gas-phase reactions that contribute to H₂O formation are the oxidation of C₂H₄ and C₂H₆ with OH[•] (Reactions 18 and 25). As Reactions 18 and 25 are fast and nearly equilibrated, an increase of the H₂O concentration tends to shift the reactions in the reverse direction, which decreases the C₂ oxidation to form CO_x and, thus, increases the C₂₊ yield. This behavior is consistent with the observations by Takanabe and Iglesia on the Mn/Na₂WO₄/SiO₂ catalyst^[38] and by Liang et al. on the same catalyst without Mn.^[65]

Gas-phase H₂O also reacts on the catalyst surface to form OH(s), which affects the heterogeneous methane activation directly. The reverse reaction rate for methane activation depends on the OH(s) concentration (CH₃+OH(s) \rightarrow CH₄+O(s)). Similarly, the oxidation of C₂H₆ and C₂H₄ by surface reactions also depends on the OH(s) concentration. Thus, high OH(s) concentrations can decrease the indirect oxidation of C₂. Takanabe and Iglesia^[38] used a Mn/Na₂WO₄/SiO₂ catalyst to show experimentally that the introduction of low levels of H₂O (\approx 0.4%) in the feed CH₄/O₂ mixture could improve the methane conversion and C₂ selectivity.^[38]

5.2. Effect of feed composition: $CH_4/O_2 = 7$

The modeled and measured gas-phase profiles for a feed mixture of $CH_4/O_2 = 7$ are shown in Figure 6. Similar to the case of $CH_4/O_2 = 9$, the methane conversion is limited by the oxygen availability. Rapid O_2 consumption contributes to rapid temperature increases, and the peak temperature was achieved within the first 5 mm of the catalyst bed. At the point of maximum temperature, all the species profiles had reached their asymptotic levels. Although the indirect oxidation path is not observed directly, a rate analysis indicates that the contribution of C_2H_4 and C_2H_6 become significant at high temperatures. The modeled profiles agree well with the measured profiles. The

Figure 6. Comparison of measured (symbols) and predicted (lines) concentration and temperature profiles along the reactor bed. The reactor inlet temperature is 570 °C, the inlet CH₄ fraction is 0.875, and O₂ mole fraction is 0.125 (CH₄/O₂=7).

model predicts the early formation of H_2 just at the entrance to the active catalyst bed, which is consistent with the experimental observation. However, the model predicts significantly higher H_2 mole fractions than are measured. This issue is discussed further in Section 5.4.

Compared to the results presented in Figure 4a, the methane conversion and C_{2+} yields increase slightly with the increase of the amount of oxygen in the gas mixture (Figure 7a). A slight increase in the CO_x yield is also noticeable. Despite the noticeable decrease in the C_2H_6 mole fraction (i.e., 43% at CH₄/ $O_2=9$ compared to 37% at CH₄/ $O_2=7$), the C_2H_4 selectivity remains almost the same (i.e., $\approx 26\%$; Figure 7b).

5.3. Effect of feed composition: $CH_4/O_2 = 11$

The measured and predicted mole fraction profiles with CH₄/ $O_2 = 11$ are shown in Figure 8. A decrease of the inlet oxygen concentration leads to the requirement of a higher temperature (i.e., 700 $^{\circ}$ C) to initiate reactions. Profiles of the desired C₂₊ products and the total-oxidation products CO_x generally follow trends that are similar to those with higher oxygen feeds. Compared to the cases of $CH_4/O_2 = 9$ and 7, the profiles for $CH_4/O_2 = 11$ develop more slowly. This could be caused by lower heat release rates and lower temperatures. As the O₂ concentration decreases, total oxidation and hence the heat release is much lower than that for the more O2-rich conditions. The results shown in Figures 7a and b support this possibility. At $CH_4/O_2 = 11$ the methane conversion is lower than that for the $CH_4/O_2 = 9$ and 7 inlet conditions, but the C_{2+} selectivity is higher (77% at $CH_4/O_2 = 11$ and 68% at $CH_4/O_2 = 7$). However, because the methane conversion is much lower at $CH_4/O_2 = 11$ than it is at $CH_4/O_2 = 9$ and 7, the overall C_{2+} yield is lower.

CHEMCATCHEM

Full Papers

Figure 7. Comparison of measured (symbols) and predicted (lines) reactor performance. a) Profiles of methane conversion and yield. b) C_2 selectivity profiles. The reactor inlet temperature is 570 °C, the inlet CH₄ fraction is 0.875, and O_2 mole fraction is 0.125 (CH₄/ O_2 =7).

15

20

Figure 8. Comparison of measured (symbols) and predicted (lines) concentration and temperature profiles along the reactor bed. The reactor inlet temperature is 700 °C, the inlet CH₄ fraction is 0.9167, and O₂ mole fraction is 0.0833 (CH₄/O₂ = 11).

A significantly nonlinear trend between the CH_4 conversion and C_2 yield is shown in Figures 4,7 and 9. The methane conversion increases with the increasing O_2 ratio in the feed as O_2 is the limiting reactant in OCM chemistry. A relatively high O_2 content in the feed stream increases the rate of total oxidation,

Figure 9. Comparison of measured (symbols) and predicted (lines) reactor performance. a) Profiles of methane conversion and yield. b) C_2 selectivity profiles. The reactor inlet temperature is 700 °C, the inlet CH₄ fraction is 0.9167, and O_2 mole fraction is 0.0833 (CH₄/ O_2 = 11).

which is exothermic and results in a greater heat release. As the temperature increases, methane conversion and hence the CH₃[•] formation rate increases. Consequently, the C₂₊ formation rate increases. However, at high temperatures, indirect CO_x formation by gas-phase and surface reactions becomes increasingly significant with the deleterious oxidative consumption of C₂H₄ and C₂H₆.

Coke formation and catalyst durability introduce another practical aspect for adjusting the CH₄/O₂ ratios. As is evident from the concentration profiles, O₂ is consumed rapidly and only a few mm (\approx 5 mm) of the catalyst bed operates in an oxidative environment. As the profiles develop fully and the temperatures are high, the hydrocarbons (i.e., CH₄ and C₂₊) react in an oxygen-deficient environment. At high temperatures (>700 °C) and under nonoxidative conditions, the dehydrogenation of CH₄ and C₂ can form coke or other condensable hydrocarbon deposits easily. Although no significant coke was detected during the catalytic measurements within the 24 h tests, gradual catalyst deactivation might occur with long-term operation.

The local heat release rates and temperature increases are coupled directly with O_2 consumption. Consequently, as an alternative to premixing the CH_4/O_2 feed stream, it should be possible to control the heat release and C_2 oxidation by introducing the O_2 axially along the length of the catalyst bed. Zohour et al.^[66] showed that the C_{2+} yield increases by approximately 30% with the injection of O_2 at two positions within the catalyst bed. In these experiments, the total O_2 input was the same as in the initially premixed case. It should be possible to optimize the number injection ports and the O_2

introduction rates to increase C₂ yield.^[4,67-69] As an alternative to multiple O₂ injection ports, porous or ion transport O₂ membranes could also be used to supply O₂ along the axial length of the reactor. Such strategies seek to avoid local hot spots and any deleterious secondary oxidation reactions.^[70-75]

5.4. H₂ formation

As noted in the foregoing discussion, there are significant discrepancies between the magnitudes of the modeled and measured H_2 profiles. The modeled results are systematically higher than the reported measurements.^[49] Inasmuch as all the other species profiles agree well, the H_2 discrepancy is surprising. Thus, some further analysis based on hydrogen atomic balances is developed to seek resolution and possibly to reinterpret the measurements.

A comparison of the revised and measured H_2 profiles with the model predictions for the three CH_4/O_2 ratios is shown in Figure 10. The filled symbols represent the reported measurements, and the empty symbols represent the "measurements" revised by the atomic hydrogen balances from all other measured gas-phase species. In other words, the revised H_2 measurements preserve the hydrogen atom balance. The model predictions are in good agreement with the revised H_2 profiles (Figure 10). Thus, there is reason to suspect some inaccuracy in the H_2 measurements reported initially. In all cases, the H_2 levels are low, with mole fractions in the range of 1–5%.

Zohour et al.^[49] noted the "early" appearance of H_2 relative to the other gas-phase species near the beginning of the active catalyst section. They postulated that a sequence of surface reactions could be responsible for early H_2 formation as [Eqs. (25)–(31)]:

$$CH_3 \cdot + OH(s) \rightarrow CH_2O(s) + H_2$$
(25)

 $CH_2O(s) \rightarrow La(s) + CO(s) + H_2 \tag{26}$

$$CO(s)+O(s) \rightarrow La(s)+CO_2 \tag{27}$$

$$CH_3 \cdot + O(s) \rightarrow CH_3O(s) \rightarrow CHO(s) + H_2$$
(28)

$$CHO(s)+O(s) \rightarrow La(s)+H(s)+CO_2 \tag{29}$$

$$CHO(s) \rightarrow H(s) + CO \tag{30}$$

$$H(s)+H(s) \rightarrow 2 La(s)+H_2 \tag{31}$$

In these reactions we assume that H(s) is formed on the surface, and all such reactions are included in Table 3. However, as an alternative to the formation of H(s) on the surface, we also include the possibility of the heterogeneous oxidation of CH₂O(s) and CHO(s) to form OH(s) (i.e., Table 3, Reactions 15, 17, and 19). Although these surface reaction pathways do not affect H₂ formation directly, they do act to promote gas-phase H₂O and H₂ production.

The model predicts the early H_2 formation successfully, which is generally in good agreement with the experiments (Figures 6–8). H_2 begins to form immediately at the beginning of the catalytic region, which suggests a direct reaction pathway. A rate analysis confirms that the H_2 forms directly by a

Figure 10. Comparison of model-predicted H_2 profiles with reported and revised measurements for three CH_4/O_2 ratios. The revised measurements are based on hydrogen atom balances and other species measurements.

gas-phase reaction. Reaction 2 in Table 2 (CH₄+H \rightleftharpoons CH₃+H₂) is the primary pathway for H₂ production. H' is formed primarily by CHO⁺+M \rightleftharpoons CO+H⁺+M (Table 2, Reaction 14). At temperatures above 750 °C, C₂H₆ and C₂H₄ dehydrogenation reactions form H', which also contributes to H₂ formation by Reactions 16, 20, and 23 in Table 2.

6. Summary and Conclusion

We develop detailed and predictive reaction mechanisms that represent gas-phase and surface chemistry for the oxidative coupling of methane over nanofabric La₂O₃/CeO₂ catalysts. The gas-phase reaction mechanism includes 39 reversible reactions between 22 species. The surface mechanisms include 52 irreversible reactions between 11 surface species and 16 gasphase species. The chemistry is developed and validated in concert with measured gas-phase species profiles in a packedbed reactor. Electronic versions of the reaction mechanisms and related thermodynamic and transport files are provided as Supporting Information. The reaction mechanisms represent a comprehensive picture of nonisothermal oxidative coupling of methane (OCM) chemistry with nanofabric La₂O₃/CeO₂ catalysts. The starting point for the gas-phase reaction mechanism was taken from Chen et al.^[33] The surface-reaction pathway was taken from the study by Alexiadis et al.^[31] in which the Sr/La₂O₃ catalyst was considered. Earlier studies suggested that OCM reaction pathways are similar even for different catalysts such as Li/MgO, Sr/La₂O₃, and Mn/Na₂WO₄/SiO₂. With such general similarity in mind, in this study we have extended earlier work to develop a new reaction mechanism for the nanofabric La₂O₃/CeO₂ catalyst. As a result of the expected similarity, the present detailed reaction mechanisms also serve as a foundation for extension to other OCM catalysts.

The mechanism development is based on unique spatially resolved concentration and temperature measurements in a packed-bed reactor.^[49] Compared to typical packed-bed experiments from which only gas-phase species measurements in the exit flow are reported, the spatially resolved species profiles offer enormous value to understand reaction pathways. Gas-phase reactions are the dominant pathways for CO_x formation, whereas heterogeneous reactions on the catalyst contribute significantly to CH₄ activation. The catalyst also serves as an O₂ pool, and O₂ adsorption and desorption behavior controls the O₂ that is available in the gas phase and hence the formation of total oxidation products.

Results of the study show that CH₄ activation proceeds by the coupled interactions of the gas-phase and surface reactions. Initially, exothermic gas-phase oxidation provides the reaction heat and elevated temperature needed to activate surface reactions. Methane conversion is limited by oxygen availability in the feed stream, and the desired C_2 formation rate is controlled by the CH3[•] that is produced by gas-phase and surface reactions. Broadly speaking, the La2O3/CeO2 catalyst controls the gas-phase chemistry by controlling the oxygen adsorption-desorption rates. Practical OCM technology depends on balancing the desired C_{2+} production and the undesired deep oxidation to CO, CO₂, and H₂O. As the deep oxidation is thermodynamically favored, technologically viable process design and control can be challenging. The predictive understanding that emerges from detailed reaction mechanisms is expected to play a valuable role in process design, control, and optimization of practical technology.

Acknowledgements

R.J.K. and C.K. gratefully acknowledge support from the Air Force Office of Scientific Research (FA9550-12-1-0495) and insightful discussions with Dr. Jeffrey G. Weissman (Precision Combustion, Inc.) about OCM chemistry and processes. S.S. and B.Z. acknowledge the National Science Foundation (NSF) GRFP Support (Grant No. DGE1144087). B.Z. also acknowledges the University of California, Los Angeles (UCLA) Graduate Division Fellowship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: gas-phase reactions • heterogeneous catalysts • oxidation • reaction mechanisms • surface chemistry

- [1] G. E. Keller, M. M. Bhasin, J. Catal. 1982, 73, 9-19.
- [2] E. F. Lutz, J. Chem. Educ. 1986, 63, 202–203.
- [3] M. Lallemand, A. Finiels, F. Fajula, F. Hulea, Appl. Catal. A 2006, 301, 196–201.
- [4] S. C. Reyes, E. Iglesia, C. P. Kelkar, Chem. Eng. Sci. 1993, 48, 2643-2661.
- [5] J. H. Lunsford, Catal. Today 2000, 63, 165-174.
- [6] H. R. Godini, S. Xiao, S. Jaso, G. Wozny, Fuel Process. Technol. 2013, 106, 684–694.
- [7] S. Stünkel, D. Illmer, A. Drescher, R. Schomächer, G. Wozny, *Appl. Therm. Eng.* 2012, 43, 141–147.
- [8] R. P. Taylor, G. L. Schrader, Ind. Eng. Chem. Res. 1991, 30, 1016-1023.
- [9] T. Levan, M. Che, J. M. Tatibouet, M. Kermarec, J. Catal. 1993, 142, 18– 26.
- [10] K. D. Campbell, H. Zhang, J. H. Lunsford, J. Phys. Chem. 1988, 92, 750-753.
- [11] J. M. DeBoy, R. F. Hicks, J. Catal. **1988**, 113, 517-527.
- [12] M. T. Xu, J. H. Lunsford, Catal. Lett. 1991, 11, 295-300.
- [13] V. R. Choudhary, S. A. R. Mulla, V. H. Rane, J. Chem. Technol. Biotechnol. 1998, 72, 125–130.
- [14] P. Huang, Y. Zhao, J. Zhang, Y. Zhu, Y. Sun, Nanoscale 2013, 5, 10844– 10848.
- [15] Y. Lei, C. Chu, S. Li, Y. Sun, J. Phys. Chem. C 2014, 118, 7932-7945.
- [16] Y. H. Hou, W. C. Han, W. S. Xia, H. L. Wan, ACS Catal. 2015, 5, 1663– 1674.
- [17] D. Noon, A. Subsai, S. Senkan, ChemCatChem 2013, 5, 146-149.
- [18] J. Song, Y. Sun, R. Ba, S. Huang, Y. Zhao, J. Zhang, Y. Sun, Y. Zhu, Nanoscale 2015, 7, 2260–2264.
- [19] Z. Stansch, L. Mleczko, M. Baerns, Ind. Eng. Chem. Res. 1997, 36, 2568– 2579.
- [20] Y. Feng, J. Niiranen, D. Gutman, J. Phys. Chem. 1991, 95, 6558-6563.
- [21] G. S. Lane, E. E. Wolf, J. Catal. 1988, 113, 144–163.
- [22] K. Otsuka, Y. Uragami, M. Hatano, Catal. Today 1992, 13, 291-300.
- [23] B. Beck, V. Fleisher, S. Arndt, M. G. Hevia, A. Urakawa, P. Hugo, R. Schomacher, *Catal. Today* **2014**, *228*, 212–218.
- [24] K. D. Campbell, J. H. Lunsford, J. Phys. Chem. 1988, 92, 5792-5796.
- [25] D. J. Driscoll, W. Martir, J. X. Wang, J. H. Lunsford, J. Am. Chem. Soc. 1985, 107, 58–63.
- [26] Y. D. Tong, M. P. Rosynek, J. H. Lunsford, J. Phys. Chem. 1989, 93, 2896– 2898.
- [27] L. Luo, X. Tang, W. Wang, Y. Wang, S. Sun, F. Qi, W. Huang, Sci. Rep. 2013, 3, 1625–1631.
- [28] J. Sun, J. W. Thybaut, G. B. Marin, Catal. Today 2008, 137, 90-102.
- [29] J. W. Thybaut, J. Sun, L. Olivier, A. C. V. Veen, C. Mirodatus, G. B. Marin, *Catal. Today* **2011**, *159*, 29–36.
- [30] J. W. Thybaut, G. B. Marin, C. Mirodatos, Y. Schuurman, A. C. van Veen, V. A. Sadykov, H. Pennemann, R. Bellinghausen, L. Mleczko, *Chem. Ing. Tech.* 2014, *86*, 1855–1870.
- [31] V. I. Alexiadis, J. W. Thybaut, P. N. Kechagiopoulis, M. Chaar, A. C. Van Veen, M. Muhler, G. B. Marin, Appl. Catal. B 2014, 150, 496–505.
- [32] V. I. Alexiadis, M. Chaar, A. van Veen, M. Muhler, J. W. Thybaut, G. B. Marin, Appl. Catal. B 2016, 199, 252–259.
- [33] Q. Chen, P. M. Couwenberg, G. B. Marin, AIChE J. 1994, 40, 521-535.
- [34] J. Warnatz, Rate coefficients in the C/H/O system in combustion chemistry, Springer, Berlin, 1984.
- [35] G. P. Smith, D. M. Golden, M. Frenchlach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianski, Z. Qin, GRI Mechanism Version 3.0, 1999.
- [36] S. Dooley, M. P. Burke, M. Chaos, Y. Stein, F. L. Dryer, O. Finch, J. M. Simmie, H. J. Curran, Int. J. Chem. Kinet. 2010, 42, 527–549.
- [37] Q. Chen, J. H. B. J. Hoebink, G. B. Marin, Ind. Eng. Chem. Res. 1991, 30, 2088–2097.

- [38] K. Takanabe, E. Iglesia, Angew. Chem. Int. Ed. 2008, 47, 7689-7693; Angew. Chem. 2008, 120, 7803-7807.
- [39] J. H. Lunsford, Angew. Chem. Int. Ed. Engl. 1995, 34, 970–980; Angew. Chem. 1995, 107, 1059–1070.
- [40] J. A. Miller, C. T. Bowman, Prog. Energy Combust. Sci. 1989, 15, 287338.
- [41] H. Zanthoff, M. Baerns, Ind. Eng. Chem. Res. 1990, 29, 2-10.
- [42] C. A. Mims, R. Mauti, A. M. Dean, K. D. Rose, J. Phys. Chem. 1994, 98, 13357–13372.
- [43] H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin, F. Egolfopoulos, C. K. Law, *High temperature combustion reaction model of H2/CO/C1-C4 compounds*, University of Southern California, **2007**, http://ignis.usc.edu/ USC~Mech~II.htm.
- [44] J. G. Lopez, C. L. Rasmussen, M. U. Alzueta, Y. Gao, P. Marshall, P. Glarborg, Proc. Combust. Inst. 2009, 32, 367–375.
- [45] A. A. Konnov, Combust. Flame **2009**, 156, 2093–2105.
- [46] R. Dittmeyer, PhD thesis, Universität Erlangen-Nürnberg, 1994.
- [47] S. Mavlyankariev, PhD thesis, Technische Universität Berlin, 2013.
- [48] R. Horn, K. A. Williams, N. J. Degenstein, L. D. Schmidt, J. Catal. 2006, 242, 92–102.
- [49] B. Zohour, D. Noon, S. Senkan, *ChemCatChem* **2013**, *5*, 2809–2812.
- [50] Y. Simon, F. Baronnet, P.-M. Marquaire, Ind. Eng. Chem. Res. 2007, 46, 1914–1922.
- [51] M. Yu. Sinev, *Catal. Today* **1992**, *13*, 561–564.
- [52] M. Yu. Sinev, B. Yu. Bychkov, V. N. Korchak, O. V. Krylov, Catal. Today 1990, 6, 543–549.
- [53] M. Yu. Sinev, *Catal. Today* **1995**, *24*, 389–393.
- [54] M. Yu. Sinev, Russ. J. Phys. Chem. B 2007, 1, 412-433.
- [55] M. Yu. Sinev, Z. T. Fattakhova, V. I. Lomonosov, Yu. A. Gordienko, J. Nat. Gas Chem. 2009, 18, 273–287.
- [56] P. N. Kechagiopoulos, J. W. Thybaut, G. B. Marin, Ind. Eng. Chem. Res. 2014, 53, 1825 – 184021.
- [57] Y. S. Su, J. Y. Ying, W. H. Green Jr., J. Catal. 2003, 218, 321-333.
- [58] R. J. Kee, M. E. Coltrin, P. Glarborg, *Chemically Reacting Flow*, Wiley, Hoboken, NJ, 2003.
- [59] M. E. Coltrin, R. J. Kee, F. M. Rupley, Int. J. Chem. Kinet. 1991, 23, 1111– 1128.
- [60] L. Maier, N. Schaedel, K. H. Delgado, S. Tisher, O. Deutschmann, Top. Catal. 2011, 54, 845–858.
- [61] M. Maestri, D. G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, J. Catal. 2008, 259, 211–222.
- [62] D. Noon, B. Zohour, S. Senkan, J. Nat. Gas Sci. Eng. 2014, 18, 406-411.
- [63] H. Zhu, R. J. Kee, J. R. Engel, D. T. Wickham, Proc. Combust. Inst. 2007, 31, 1965 – 1972.
- [64] P. Deuflhard, E. Hairer, J. Zugck, Numer. Math. 1987, 51, 501-516.
- [65] Y. Liang, Z. Li, M. Nourdine, S. Shahid, K. Takanabe, ChemCatChem 2014, 6, 1245–1251.
- [66] B. Zohour, D. Noon, S. Senkan, ChemCatChem 2014, 6, 2815–2820.
- [67] J. M. Santamaria, E. E. Miro, E. E. Wolf, Ind. Eng. Chem. Res. 1991, 30, 1157–1165.
- [68] J. Santamaría, M. Menéndez, J. A. Peña, J. I. Barahona, Catal. Today 1992, 13, 353–360.
- [69] I. P. Androulakis, S. C. Reyes, AIChE J. 1999, 45, 860-868.
- [70] Y. Zeng, Y. S. Lin, S. L. Swartz, J. Membr. Sci. 1998, 150, 87-98.
- [71] Z. Shao, H. Dong, G. Xiong, Y. Cong, W. Yang, J. Membr. Sci. 2001, 183, 181–192.
- [72] O. Czuprat, T. Schiestel, H. Voss, J. Caro, Ind. Eng. Chem. Res. 2010, 49, 10230-10236.
- [73] H. R. Godini, S. Jaso, S. Xiao, H. Arellano-Garcia, M. Omidkhah, G. Wozny, Ind. Eng. Chem. Res. 2012, 51, 7747 – 7761.
- [74] H. R. Godini, H. Trivedi, A. Gili de Villasante, O. Gorke, S. Jaso, U. Simon, A. Berthold, W. Witt, G. Wozny, *Chem. Eng. Res. Des.* 2013, *91*, 2671– 2681.
- [75] N. H. Othman, Z. Wu, K. Li, J. Membr. Sci. 2015, 488, 182-193.

Manuscript received: July 18, 2017

Revised manuscript received: August 4, 2017

- Accepted manuscript online: August 14, 2017
- Version of record online: December 4, 2017

CHEMCATCHEM Full Papers