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Abstract. Control synthesis is slowly transcending its traditional ap-
plication domain within engineering to find interesting and useful appli-
cations in computer science. Synthesis of interfaces, distributed network
monitors or reactive programs are some examples that benefit from this
design paradigm. In this paper we shed new light on the interplay be-
tween the fundamental notion of bisimulation and the control synthesis
problem. We first revisit the notion of alternating simulation introduced
by Alur and co-workers as it naturally captures important ingredients of
the control synthesis problem. We then show that existence of controllers
enforcing specifications through bisimulation, alternating simulation or
simulation can be characterized by the existence of certain alternating
simulations and bisimulations between the specification and the system
to be controlled. These results highlight and unify the role of simula-
tions and bisimulations in the control synthesis setting for a wide range
of concurrency models. This is achieved by developing our study within
the framework of open maps. We illustrate our results on transition sys-
tems and timed transition systems.

1 Introduction

Computer Science and Control Theory. The control synthesis problem is
the central theme of control theory. The traditional setup consists of a system,
usually modeled by a differential equation with certain inputs that can be freely
assigned, and a specification. The objective is to synthesize a controller, which
based on the observation of the current system state, changes the system in-
puts in order to alter its behavior and to enforce the specification. However,
many man made systems are not adequately described by differential equations
and in the late 80’s Ramadage and Wonham initiated the application of control
theoretic ideas to the control of systems described by finite state automata [1].
Even though a different model is used, the same control synthesis problem was
shown to be relevant in this context. As introduced by Ramadge and Wonham,
the control synthesis problem consists in synthesizing a supervisor finite state
automaton C whose parallel composition with the finite state automaton P ,
modeling the system to be controlled, recognizes a specified regular language S.
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If one interprets P , S and C as software models, the same problem immediately
suggests different applications within computer science such as synthesis of in-
terfaces between software modules [2], distributed monitoring of networks [3],
synthesis of reactive embedded controllers [4], etc.
Approximately at the same time that Ramadage and Wonham were obtaining

the first results on supervisory control, a similar problem was being investigated
in the computer science community: Pnueli and Rosner considered synthesis of
reactive software [5, 6]. Synthesis of software from (temporal logic) specifications
had already been addressed by the computer science community [7, 8] for closed
systems. Independently of the (computer or control) perspective, it is the au-
thor’s belief that control synthesis problems benefit from the different approaches
and contributions originating from computer science and control communities.

Motivation. In this paper we revisit the control synthesis problem in a branch-
ing time framework with 3 main objectives:

– Unify control synthesis results across several different concurrency models
such as transition systems, asynchronous transition systems, probabilistic
transition systems, timed transition systems, Petri nets, etc.

– Highlight the fundamental role played by the notions of bisimulation, alter-
nating simulation and simulation in control synthesis problems.

– Reduce decidability and complexity of control synthesis to decidability and
complexity of bisimulation, alternating simulation and simulation.

To accomplish the first objective, we develop our results within the general
framework of open maps introduced by Joyal and co-workers [9]. Open maps
provide a unified language to discuss and prove results for a large class of appar-
ently different concurrency models. We will use transition systems as a source
of motivation and examples throughout the paper and we will also apply our
results to timed transition systems which underlie timed automata. However,
the general framework of open maps allows to export the presented results to
other classes of concurrency models as described in [10, 9, 11, 12].
The second objective motivated us to generalize Alur and co-workers [13]

notion of alternating simulation to the open maps framework. Such generaliza-
tion provides the right language to formulate the control synthesis problem by
considering the environment as an opponent trying to violate the specification.
The proposed notion coincides with Alur and co-workers notion for transition
systems and provides notions of alternating simulation for other classes of con-
currency models through the co-reflections introduced in [10]. Such notions and
corresponding logic characterizations remain largely unexplored as we focus, in
this paper, on the control synthesis problem.
The open maps framework was also crucial in highlighting the similarities

and differences between the different versions of the control synthesis problem
we have considered. We studied three natural requirements to be enforced by
control: bisimulation, alternating simulation and simulation. For each different
requirement, we show that existence of a controller is characterized by existence
of a bisimulation, alternating simulation or simulation between the specification
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and the system to be controlled. In addition to unifying existing results and to
highlight the role of bisimulation and similar notions, the developed results also
allow to reduce decidability and complexity of control synthesis to decidability
and complexity of bisimulation and related notions.

Related Work. The control synthesis problem for transition systems in a
branching time framework has been shown to be decidable by Madhusudan and
Thiagarajan in [14]. The main ingredient was the characterization of controllers
in terms of good subgraphs and strong subgraphs whose existence can be decided.
However, it was not clear in [14] how such objects depend on the underlying
concurrency model (transition systems) neither how they relate with alternating
simulations. Our results show that such graphs correspond in fact to certain
simulations and bisimulations between specification and the system to be con-
trolled. Furthermore, by reformulating existence results in terms of such well
known notions, the results become applicable to other classes of systems where
these notions make sense. The relation between bisimulation and supervisory
control problems was also discussed in [15]. However, bisimulation was used as
a way to efficiently compute controllers in a linear time framework, rather than
as an essential ingredient for branching time. A different approach was discussed
in [16] using co-algebraic methods. Even though bisimulation was used in a
fundamental way, through co-inductive definitions and proofs, the approach is
rather different from the one considered in this paper. In [16], the adversarial
effect of disturbances is captured by a new composition operator rather than by
the use of alternating simulations. It is therefore not possible to understand how
the requirements for the existence of controllers can be weakened by weakening
the required relation between specification and controlled system. Supervisory
controllers in branching time were also considered in [17], however failure seman-
tics was used instead of bisimulation to specify the desired behavior. Other lines
of research in branching time scenarios considered supervisory control problems
for CTL or CTL∗ specifications [18, 19, 20].

2 The Model

The control synthesis problem can naturally be viewed as a game between the
controller and the environement. To provide motivation for the abstract setup
used throughout the paper we will consider such games on a certain class of
transition systems, which we will call game structures.

Definition 1. A game structure is a tuple (Q,Q0, A, - ) where:

1. Q is a finite set of states;
2. Q0 ⊆ Q is a set of initial states;
3. A is a finite set of actions partitioned in two components Ac and Ae satisfying

Ac ∪ Ae = A and Ac ∩ Ae = ∅. Intuitively, the set Ac represents the set of
controller actions while Ae represents the set of environment actions;

4. - ⊆ Q×A×Q is a transition relation.
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A game structure is said to be deterministic if (q1, a, q2) ∈ - and
(q1, a, q3) ∈ - implies q2 = q3.

We will frequently resort to the more intuitive notation q1
a- q2 to rep-

resent (q1, a, q2) ∈ - . We will also restrict our attention to deterministic
games where the actions of each player uniquely determine the next state. This is
a natural assumption when the nondeterminism in the controller (environment)
actions is due to environmental (controller) effects. However, the specification
and the controller are allowed to be nondeterministic.
Note that the adopted game model does not require explicit alternation be-

tween controller and environment moves, neither does preclude it. However, con-
troller and environment do not play simultaneously. This is simply a technical
artifact, since we can consider their actions simultaneous if no information about
the opponent move can be used at the time of play. Other game formulations
consider game structures where simultaneous play is built in the transition re-
lation as is the case in [13]. These game models, from now on called simul-
taneous, have a similar structure to the introduced game structures, except
that A = Ac + Ae is replaced by A = Ac × Ae. Simultaneous game models
X ′ = (Q′, Q′0, A

′
c × A′e, - ) can be embedded in our framework resulting in

games NS(X ′) = X = (Q,Q0, A, - ) defined by:

1. Q = Q′ ∪Q′ ×A′c;
2. Q0 = Q′0;
3. A = Ac +Ae, Ac = A′c and Ae = A′e;

4. q1
ac- q2 in X with ac ∈ Ac iff q2 = (q1, ac) and there is a state q3 ∈ Q

and an action ae ∈ Ae such that q1
ac,ae- q3 in X ′;

5. q2
ae- q3 in X with ae ∈ Ae iff q2 = (q1, ac), ac ∈ Ac and q1

ac,ae- q3 in
X ′;

We shall not elaborate on the properties of such embedding as it will only be
used to relate the notions of alternating simulation and bisimulation introduced
in [13] with the ones proposed in this paper. Before introducing such notions,
we introduce morphisms between games so as to define the category where we
shall develop our study of the control synthesis problem.

Definition 2. A morphism f : X → Y between two game structures X =
(QX , Q0X , AX , - ) and Y = (QY , Q0Y , AY , - ) is given by a pair of
maps f = (fQ, fA) with fQ : QX → QY a totally defined map and fA : AX → AY

a partially defined map satisfying:

1. fQ(Q0X) ⊆ Q0Y ;
2. fA(AcX) ⊆ AcY and fA(AeX) ⊆ AeY ;

3. q1
a- q2 in X implies fQ(q1)

fA(a)- fQ(q2) in Y if fA(a) is defined and
fQ(q1) = fQ(q2) if fA(a) is not defined.

It is not difficult to see that game structures with the above defined mor-
phisms constitute a category. We shall denote such category by G. Furthermore,
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since our game models are in particular transition systems, the category G is, in
many respects, similar to the category of transition systems introduced in [10]
thus sharing many of its properties.

3 Bisimulation and Open Maps

In this section we quickly review the open maps framework introduced by Joyal
and co-workers [9]. We consider a category M of machines with morphisms

X
f- Y describing how machine Y simulates machine X. In this framework,

the notion of bisimulation is introduced by resorting to the notion of computation
path. We thus consider a subcategory P ofM of path objects whose morphisms
describe how paths objects can be extended.
To illustrate this approach we take G as the category of machines and for P

we consider the full subcategory of G consisting of objects of the form:

q1
a1- q2

a2- q3
a3- . . .

an−1- qn (1)

with q1 as initial state and qi 6= qj for i 6= j. We also define the control length of
an object M of P, denoted by lc(M), as the number of (not necessarily distinct)
controller actions in (1). Similarly, the environment length of M , denoted by
le(M), is given by the number of environment actions in (1). Given two path

objectsM and N , a morphismM
o- N sends the initial state q1 ofM into the

initial state q′1 of N , the immediate successor of q1 into the immediate successor
of q′1 and so on. We thus see that o only exists when lc(N)+le(N) ≥ lc(M)+le(M)
in which case N can be seen as an extension of M . A game path in a game X

is now defined as a morphism from a path object M into X, that is M
m- X.

Intuitively, morphism M
m- X describes a possible evolution of the game

modeled by X. A morphism X
f- Y between games can now be seen as

describing how Y simulates the game evolution or path M
m- X by the game

evolution path M
f◦m- Y .

Bisimulation is described through a special path lifting property:

Definition 3. A morphism X
f- Y is said to be P-open if given the left

commutative diagram in (2), where M and N are path objects, there exists a

diagonal morphism N
r- X making the right diagram in (2) commutative,

that is, m = r ◦ o and n = f ◦ r.

M
m - X M

m - X

¡
¡
¡
¡

r
µ

N

o

? n - Y

f

?
N

o

? n - Y

f

?

(2)



Open Maps, Alternating Simulations and Control Synthesis 471

In the categoryG with the above defined path category, the notion of P-open
morphism admits the following characterization:

Proposition 1 (Adapted from [9]). A morphism X
f- Y is P-open iff for

all reachable states q1 of X:

if fQ(q1)
a′- q′2 in Y , then q1

a- q2 in X, fA(a
′) = a and fQ(q

′
2) = q2.

We now consider the fiber subcategories GA and PA defined by the objects
of G and P having the same action set A and morphisms f satisfying fA = 1A.
In these subcategories we recover Park [21] and Milner’s [22] notion of strong
bisimulation through a span of PA-open maps:

Theorem 1 ([9]). Let X and Y be objects in GA. X is bisimilar to Y iff there

exists a span X ¾
f

Z
g- Y with f a P-open morphism and g a P-open

morphism.

In this setting, a deterministic game model X in GA can be characterized by
the existence of at most one morphism from a path object in PA to X.

4 Alternating Simulation and Open Maps

To introduce alternating simulations we follow a similar route as the one outlined
in the previous section by considering two path categories, one for each player:

Definition 4. The controller (environment) path category Pc (Pe)consists of

the objects of P and morphisms M
o- N satisfying lc(N) ≥ lc(M) and

le(N) = le(M) (lc(N) = lc(M) and le(N) ≥ le(M)).

Note that when lc(N) ≥ lc(M) and le(N) = le(M), path N extends path
M only by controller moves and when le(N) ≥ le(M) and lc(N) = lc(M),
path N extends path M only by environment moves. Similarly to our discussion
in Section 3 we have the following characterization of Pe-open and Pc-open
morphisms which is a straightforward generalization of Proposition 1:

Proposition 2. Let X
f- Y be a morphism in G. Then, f is Pc-open (Pe-

open) iff for any reachable state q1 in X, fQ(q1)
a′- q′2 in Y implies q1

a- q2

in X, fA(a) = a′ and fQ(q2) = q′2 with a ∈ AcX (a ∈ AeX).

The above result immediately suggests the following definition of controller
and environment simulations:

Definition 5. Let X and Y be objects in G. Game X c-simulates (e-simulates)

game Y if there exists a span X ¾
g

Z
h- Y with g a Pe-open (Pc-open)

morphism and h a Pc-open (Pe-open) morphism.

The previous definition captures Alur and co-workers notion of alternating
simulation [13] when two player simultaneous games are considered. For later
use we recall such notion in this context:
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Definition 6 (Adapted from [13]). Let X = (QX , Q0X , AX , - ) and
Y = (QY , Q0Y , AY , - ) be simultaneous games. A relation H ⊆ QX × QY

is a c-simulation from X to Y if for all states (q1x, q1y) ∈ H we have:
for every controller action acX ∈ AcX available at q1x there exists a controller

action acY ∈ AcY available at q1y such that for every environment action aeY ∈
AeY available at q1y there is an environment action aeX ∈ AeX available at q1x

satisfying q1x
acX ,aeX- q2x in X, q1y

acY ,aeY- q2y in Y and (q2x, q2y) ∈ H .

Environment simulations or e-simulations are obtained from controller simu-
lations or c-simulations by reversing the role of the controller and environment.
The precise equivalence between Definition 5 and Definition 6 is characterized
in the following result:

Theorem 2. Let X and Y be two simultaneous game models and NS(X) and
NS(Y ) the corresponding objects in G. Then, NS(X) c-simulates (e-simulates)
NS(Y ), in the sense of Definition 5, iff X c-simulates (e-simulates) Y in the
sense of Definition 6.

It is now clear that the notion of alternating simulation can be naturally de-
scribed within the open maps framework. An interesting question not addressed
in this paper is the study of alternating simulation notions induced by Defini-
tion 5 in other classes of concurrency models as well as the corresponding logic
characterizations. Alternating simulation will play a fundamental role in the
control synthesis problem described in the next section.

5 Control Synthesis

Co-fibrations and Parallel Composition. The control synthesis problem
requires, in addition to bisimulations and alternating simulations, a notion of
parallel composition. As detailed in [10], the usual notions of parallel composition
can not be described by a single categorical construct. Instead, they are obtained
by a sequence of product, restriction and relabeling operations. In this paper,
we consider only the usual composition by synchronization on common events,
although through a simpler alternative description resorting to co-fibrations. To
motivate the notion of co-fibration, we revisit our game category G.
Every game model X contains a set of actions and every morphism f contains

a map fA transforming actions into actions. This suggests a “projection” functor
V fromG to the category of sets and partial maps between sets. Such functor has
the obvious definition V (X) = V (Q,Q0, A, - ) = A and V (f) = V (fQ, fA) =
fA. For a given set A, we denote by GA the fiber category consisting of the
objects X of G satisfying V (X) = A and morphisms f satisfying V (f) = 1A.

Consider now a morphism X
f- Y in G and let V (X) = AX and V (Y ) = AY .

We can construct an object X#, V (X#) = V (Y ), from X and fA by replacing

every q1
a- q2 in X with q1

fA(a)- q2. This new object allows to factor f as

X
f#

- X# f- Y , where f# = (1Q, fA) and f = (fQ, 1AY
). Furthermore,
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for any other morphism X
g- Z with V (g) = V (f) there exists a unique

morphism X# g- Z such that g ◦ f# = f ′ as is pictorially represented in (3).

Y
′

¡
¡
¡
¡

f ′
µ

X
f#

- X
#

f ′

6

AX

fA- AY

V

?

(3)

Such unique factorization properties are abstracted into the notion of co-
fibration that we now introduce following [23].

Definition 7. Let F : D→ E be a functor and α : J → I a morphism of E. A
morphism f# : X → Y of D is pre-cocartesian over α if:

1. F (f#) = α;
2. if g : X → Z is a morphism of E such that F (g) = α, there exists a unique

morphism in the fiber DI h : Y → Z such that g = h ◦ f#

Pre-cocartesian morphisms are used to define co-fibrations as follows:

Definition 8. A functor F : D→ E is said to be a co-fibration if:

1. for every morphism α : J → I of E and every object X in the fiber over J ,
there exists in D a pre-cocartesian morphism f# : X → Y over α;

2. the composition of two pre-cocartesian morphisms is again pre-cocartesian.

At this point the reader may find useful to return to diagram (3) and the dis-
cussion preceding it. Once again looking at G, we see that every pre-cocartesian

morphism f# is P-open, since every 1Q(q1)
a′- q2 in X# was obtained from

a transition q1
a- q2 in X with a′ = fA(a) which implies P-openness of f by

Proposition 2. Based on this observation, we will make the following assumption
which will hold throughout the paper:

A.I The game category G is equipped with a functor V : G → L which is a
co-fibration. Furthermore, the co-fibration respects open maps in the sense that
every pre-cocartesian morphism in G is P-open.
We now turn to another important ingredient, parallel composition. We shall

abstract the usual notion of parallel composition by synchronization on common
events to our framework through the following assumption:

A.II The parallel composition operator restricts to a fiber product, that is,
for objects X and Y in the fiber GA, X ‖ Y = X ×A Y . Furthermore, X ‖ Y

comes equipped with morphisms X ¾
x

X ‖ Y
y- Y .

We now recall the definition of composition by synchronization on common
events with the purpose of illustrating the above assumption.
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Definition 9. Let X and Y be objects in G. The parallel composition of X and
Y by synchronization on common events is the object X ‖ Y = (QX×QY , Q0X×

Q0Y , (AcX ∪AcY )+ (AeX ∪AeY ), - ) defined by (q1x, q1y)
a- (q2x, q2y) in

X ‖ Y if:

1. q1x
a- q2x in X, q1y

a- q2y in Y and a ∈ AcX ∩AcY or a ∈ AeX ∩AeY .

2. q1x
a- q2x in X, q1y = q2y and a ∈ AcX , a /∈ AcY or a ∈ AeX , a /∈ AeY .

3. q1y
a- q2y in Y , q1x = q2x and a ∈ AcY , a /∈ AcX or a ∈ AeY , a /∈ AeX .

This notion of parallel composition comes equipped with projection mor-

phisms X ¾
x

X ‖ Y
y- Y defined by xQ(qx, qy) = qx, xA(a) = a if a ∈ AX

and xA(a) undefined in a /∈ AX . Morphism y is similarly defined. Furthermore,
when AX = A = AY , X ‖ Y coincides with the categorical product X ×A Y on
the fiber category GA. Recall that the categorical product X ×A Y is the object

of GA equipped with morphisms X ¾
πX

X ×A Y
πY- Y and satisfying the

following property: for every X ¾
f

Z
g- Y in GA, there is one and only

one morphism h : Z → X ×A Y such that πX ◦ h = f and πY ◦ h = g.
AssumptionsA.I andA.II provide a general setup allowing to study the con-

trol synthesis problem across several different categories of game or computation
models. In addition to the working example of transition systems, in Section 6
we will apply the developed results to timed transition systems.

Existence and Synthesis of Controllers (Bisimulation).We now consider
the control synthesis problem for bisimulation equivalence, that is, given a plant
P and a specification S we seek to determine if a controller C rendering C ‖ P
bisimilar to S exists. More specifically we have:

Definition 10. Let P , S and C be objects in G. Object C is a bisimulation
controller for plant P , enforcing specification S, if the following holds:

1. Morphism p : C ‖ P → P is Pe-open;

2. There exists a span S ¾
s

Z
cp- C ‖ P with s a P-open morphism and

cp a P-open morphism, that is, S bisimulates C ‖ P .

The first condition requires controller C not to restrict environment moves
as these cannot be influenced by the controller. The second condition asks for
bisimulation equivalence between the controlled game C ‖ P and the specifi-
cation, a natural requirement in a branching time framework. Necessary and
sufficient conditions for the existence of such controller can be formulated in
terms of certain P-open and Pe-open morphisms:

Theorem 3. Let P be a deterministic object in G and S an arbitrary object in
G. There exists a bisimulation controller C for plant P enforcing specification

S iff there is a span S ¾
γ

Z
δ- P with γ a P-open morphism and δ a

Pe-open morphism. Furthermore, when a bisimulation controller C exists, we
can take C = Z# which has the same set of actions as P .
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The previous result shows that existence of a bisimulation controller is equiv-
alent to the requirement that P must simulate a bisimilar version Z of S while
ensuring that every environment move in P is also possible in Z. This is a nat-
ural requirement as the controller C will restrict P to the image under δ of Z.

Existence and Synthesis of Controllers (e-Simulation). We now restrict
attention to safety environment properties and liveness control specifications.
These requirements are modeled by requiring the specification to e-simulate the
controlled game. A controller enforcing the specification through an e-simulation
restricts the effect of disturbances to accommodate safety properties while being
as live as required by the specification. Formally, we define e-simulation con-
trollers as follows:

Definition 11. Let P , S and C be objects in G. Object C is a e-simulation
controller for plant P , enforcing specification S, if the following holds:

1. Morphism p : C ‖ P → P is Pe-open.

2. There exists a span S ¾
s

Z
cp- C ‖ P with s a Pc-open morphism and

cp a Pe-open morphism, that is, S e-simulates C ‖ P .

This kind of specification appears to be new since the Ramadge-Wonham
framework only considers language equality, which corresponds to bisimulation
in the branching time setting, or language inclusion which corresponds to simu-
lation in the branching time setting. Simulation requirements are in fact weaker
than e-simulation requirements and are discussed below.

Theorem 4. Let P be a deterministic object in G and S an arbitrary object in
G. There exists an e-simulation controller C for plant P enforcing specification

S iff there is a span: S ¾
γ

Z
δ- P with γ a Pc-open morphism and δ a

Pe-open morphism. Furthermore, when an e-simulation controller C exists, we
can take C = Z# which has the same set of actions as P .

It is interesting to note that, with respect to Theorem 3, only the assump-

tions of the left leg of span S ¾
γ

Z
δ- P have been weakened. The same

observation holds with respect to the results of the next section where a weaker
version of the control synthesis problem is considered.

Existence and Synthesis of Controllers (Simulation). We now further
weaken the control synthesis problem by only requiring the specification to simu-
late the controlled game. To illustrate the difference with respect an e-simulation
requirement, we consider the specification, plant, controller and controlled sys-
tem displayed in Figure 1. Controller C enforces the specification S by preventing
the occurrence of action c2 at the initial state. By looking at the controlled game
C ‖ P we see that there is an obvious inclusion morphism from C ‖ P to S show-
ing that S simulates the controlled game. However, C fails to be an e-simulation
controller since it violates the liveness requirement to perform action c2 at the
initial state. Simulation requirements are therefore weaker than e-simulation re-
quirements and constitute a natural specification when e-simulation controllers
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Fig. 1. Pictorial representation of the plant P , specification S, controller C and corre-

sponding controlled system C ‖ P

cannot be obtained. Nevertheless, requiring the specification only to simulate
the controlled game may result in a trivial control synthesis problem since a
controller preventing the occurrence of any controller action may constitute a
solution. To rule out such trivial controllers we follow the Ramadge-Wonham
approach by imposing a mild liveness restriction on the controller. We will re-
quire the possible controller to enforce the specification without creating blocking
states on the controlled game. Such nonblocking assumption is formalized in our
context through the notion of maximal paths.

Definition 12. Let X be an object in G and o : O → X a path in X. Path
o is said to be maximal for X if given any other path o′ : O′ → X such that
o′◦m = o, there is one and only one morphism m′ : O′ → O satisfying o◦m′ = o′.

A morphism X
f- Y is said to preserve maximal paths if for every maximal

path O
o- X, O

f◦o- Y is also a maximal path.

Given the above definitions we consider a controller C nonblocking, when the
morphism p : C ‖ P → P preserves maximal paths. This definition captures the
supervisory control notion of nonblocking controller as shown in the next result.

Proposition 3. Let C and P be objects in G. Morphism p : C ‖ P → P

preserves maximal paths iff for any reachable state q1 in C ‖ P , pQ(q1)
a′- q′2

in P implies q1
a- q2 in C ‖ P .

We are now ready to formulate the simulation version of the control synthesis
problem:

Definition 13. Let P , S and C be objects in G. Object C is a simulation con-
troller for plant P , enforcing specification S, if the following holds:

1. Morphism p : C ‖ P → P is Pe-open and preserves maximal paths.

2. There exists a span S ¾
s

Z
cp- C ‖ P with cp a P-open morphism, that

is, S simulates C ‖ P .

Theorem 5. Let P be a deterministic object in G and S an arbitrary object in
G. There exists a simulation controller C for plant P enforcing specification S

iff there is a span S ¾
γ

Z
δ- P with δ a Pe-open morphism preserving

maximal paths. Furthermore, when a simulation controller C exists, we can take
C = Z# which has the same set of actions as P .
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Once again, only the assumptions on the left leg of span S ¾
γ

Z
δ- P

have been reduced to the requirement that γ is simply a morphism. On the
other hand the new nonblocking requirement is now reflected on the maximal
path preservation assumption. The simplicity of Theorems 3, 4 and 5 and their
applicability to a large class of concurrency models illustrates the merit of the
open maps approach. To further emphasize applicability, we describe in the next
section how the developed results can be used with timed transition systems.

6 Timed Transition Systems

In this section we briefly outline how the presented results can also be used for
timed transition systems control synthesis problems. Timed transition systems
are transition systems enriched with timing information. They correspond to
timed automata [24] without acceptance conditions or accepting states. By par-
titioning the action set into controller and environment actions we can also talk
about timed games on timed game structures:

Definition 14. A timed game structure is a tuple (Q,Q0, A,T, - ) where:

1. Q is a finite set of states;
2. Q0 ⊆ Q is a finite set of initial states;
3. A is a finite set of actions partitioned in two components Ac and Ae satisfying

Ac ∪ Ae = A and Ac ∩ Ae = ∅. Intuitively, the set Ac represents the set of
controller actions while Ae represents the set of environment actions;

4. T is a finite set of clocks;
5. - ⊆ Q × A × Ω × 2T × Q is a transition relation where Ω is a clock

constraint generated by the grammar Ω ::= c ∼ t1|t1 + c ∼ t2|Ω ∧ Ω with
∼∈ {≤, <,≥, >}, c ∈ R and t1, t2 clock variables.

We will resort to the more intuitive notation q1
a

ω,ρ
- q2 to represent (q1, a, ω,

ρ, q2) ∈ - . Intuitively, the set of clocks records the passage of time which is
then used to determine if and when a transition can be taken. Timing conditions
on transitions are captured by clock constraints ω ∈ Ω. If we are using l clocks,
then a clock constraint can be identified with a subset of (R+

0 )
l, denoted by

[ω]T, representing the clock values satisfying the constraint. Given a function
g : T1 → T2 between two sets of clocks and a constraint ω on the clocks in
T2, we denote by [ω ◦ g]T1

the constraint induced by ω on the clocks in T1. By
associating the discrete state q1 ∈ Q with the current value t1 ∈ R

l of the clocks
in T, we obtain a configuration (q1, t1). Sequences of configurations describe how
the states of a given timed transition system evolve over time. Such sequences:

(q0, t0)
a1

τ1

- (q1, t1)
a2

τ2

- (q2, t2)
a3

τ3

- . . .
an

τn

- (qn, tn)

can take place when for each i, there exists a transition qi−1
ai

ωi,ρi

- qi in the timed

game structure, the transition time satisfies the clock constraint1 ti−1 + (τi −

1 We denote by 1 the element of (R+
0 )

l in which every component is equal to 1.
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τi−1)1 ∈ [ωi]T and the jth clock time (ti)j is updated by (ti)j = (ti−1)j+τi−τi−1

if j /∈ ρi or (ti)j = 0 if j ∈ ρi. To completely describe our category of timed
game structures, we define morphisms following [25].

Definition 15. A morphism f : X → Y between two timed game structures
X = (QX , Q0X , AX ,TX , - ) and Y = (QY , Q0Y , AY ,TY , - ) is given by
a pair of maps f = (fQ, fT) with fQ : QX → QY and fT : TY → TX satisfying:

1. fQ(Q0X) ⊆ Q0Y ;

2. q1x
a

ωx,ρx

- q2x in X implies fQ(q1x)
a

ωy,ρy

- fQ(q2x) in Y with ρy = f−1
T
(ρx) =

{c ∈ TY | fT(c) ∈ ρx} and [ωx ◦ fT]TY
⊆ [ωy]TY

.

Note that we are only considering timed game structures with the same label-
ing set A and morphisms relating actions through the identity map on actions.
This means that we are in fact working on the fiber subcategory over A. This
also means that assumption A.I is automatically satisfied since pre-cocartesian
morphisms are simply identity morphisms given the fact that V (f) = 1A for
every morphism f . Assumption A.II is also satisfied as we will consider the
categorical product between timed game structures as our notion of parallel
composition [25]. The path subcategory P required to define bisimulation is now
introduced through the use of timed words.

Definition 16. A timed word α over an alphabet A is an element of (A×R≥0)
∗,

that is, a finite sequence:

α = (a1, τ1)(a2, τ2)(a3, τ3) . . . (an, τn)

satisfying ai ∈ A, τi ∈ R≥0 and τi+1 > τi for 1 ≤ i ≤ n.

As detailed in [25], timed words can be embedded into TG as the following
objects:

0
a1

ω1,ρ1

- 1
a2

ω2,ρ2

- 2
a3

ω3,ρ3

- . . .
an

ωn,ρn

- n (4)

where ωi and ρi are appropriately chosen to create a full and faithful functor from
the category of timed words and morphisms describing timed word extensions
into TG. We refer the interested readers to [25] for the details of such embed-
ding and consider P as the category of objects of the form (4) with morphisms
describing how such objects can be extended. We also define the controller (envi-
ronment) length of an object M in P, denoted by lc(M) (le(M)) as the number
of not necessarily distinct controller (environment) actions appearing inM . Con-
troller and environment lengths allow to define Pc and Pe as the subcategories
of P, where morphisms o : M → N satisfy le(M) = le(N) and lc(N) ≥ lc(N)
when M and N are objects of Pc and lc(M) = lc(N) and le(N) ≥ le(N) when
M and N are objects of Pe. Similarly to the un-timed case we only consider
deterministic timed game structures.
With respect to definitions 10, 11 and 13, we now have the following charac-

terization for the different control synthesis problems on timed game structures.

Theorem 6. Let P and S be objects in TG.
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1. There exists a bisimulation controller C for plant P enforcing specification

S iff there is a span S ¾
γ

Z
δ- P with γ a P-open morphism and δ a

Pe-open morphism.
2. There exists an e-simulation controller C for plant P enforcing specification

S iff there is a span S ¾
γ

Z
δ- P with γ a Pc-open morphism and δ a

Pe-open morphism.
3. There exists a simulation controller C for plant P enforcing specification S

iff there is a span S ¾
γ

Z
δ- P with δ a Pe-open morphism preserving

maximal paths.

Furthermore, when a bisimulation (e-simulation or simulation) controller C
exists, we can take C = Z.

7 Future and Ongoing Work

We have only considered the control synthesis problem for deterministic systems.
Determinism is a natural assumption when nondeterminism in the effect of con-
troller (environment) actions is captured by the environment (controller) actions.
However, nondeterminism may also exist due to other causes such as abstraction.
It is therefore natural to extend the presented results to the nondeterministic
case, especially since some of the proofs use determinism in a essential way.
Other unexplored avenues include the instantiation of the developed results for
other classes of systems such as Petri nets for which purely linear algebraic tech-
niques [26] exist for controller synthesis. A different direction being currently
investigated is the extension of the presented work to accommodate different
notions of parallel composition.
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