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EVENT-TRIGGERED REAL-TIME SCHEDULING
OF STABILIZING CONTROL TASKS

PAULO TABUADA

Abstract. In this note we revisit the problem of scheduling stabilizing control tasks on embedded processors.

We start from the paradigm that a real-time scheduler should be regarded as a feedback controller that decides

which task is executed at any given instant. This controller has for objective guaranteeing that software tasks
meet its deadlines and that stabilizing control tasks asymptotically stabilize the plant. According to this

feedback paradigm, the decision of executing control tasks should not be based on release times and deadlines

but rather on the state of the plant. We investigate the feasibility of a simple event-triggered scheduler based
on the state norm and provide some schedulability results.

1. Introduction

Small embedded microprocessors are quickly becoming an essential part of the most diverse applications. A
particularly interesting example are physically distributed sensor/actuator networks responsible for collecting
and processing information, and to react to this information through actuation. The embedded microprocessors
forming the computational core of these networks are required to execute a variety of tasks comprising the relay
of information packets in multi-hop communication schemes, monitoring physical quantities, and computation
of feedback control laws. Since we are dealing with resource limited microprocessors it becomes important
to assess to what extent we can increase the functionality of these embedded devices through novel real-time
scheduling algorithms based on event-triggered rather than time-triggered execution of control tasks.

We investigate in this note a very simple event-triggered scheduling algorithm that preempts running tasks to
execute the control task whenever a certain error becomes large when compared with the state norm. This
idea is an adaptation to the scheduling context of several techniques used to study problems of control under
communication constraints [NE00, BL00, EM01]. We take explicitly into account the execution time of the
control task and show that the proposed scheduling policy guarantees global asymptotical stability. We also
provide sufficient conditions for co-schedulability of the control task with other tasks competing for processor
time. The proposed approach is illustrated with simulation results.

Real-time scheduling of control tasks has received renewed interest from the academic community in the past
years [SLCB00, CE00, ACR+00, CEBA02, BA02, CLS03, LHLQ06]. Common to all these approaches is
the underlying principle that better control performance is achieved by providing more CPU time to control
tasks. This can be accomplished in two different ways: letting control tasks run for longer amounts of
time using anytime implementations or model predictive controllers; or by scheduling control tasks more
frequently. All these approaches assume the existence of a performance criterion for the control task such as
a cost function used to design an optimal linear quadratic regulator. Scheduling strategies are then obtained
through optimization algorithms seeking to determine schedules maximizing the performance criterion. The
work presented in this note does not resort to optimization and does not require a performance criterion.
Instead, the decision to execute the control task is determined by a feedback mechanism based on the state of
the plant.

Closer to the results presented in this note is the work described in [PPV+02, PPBSV05], where resource
allocation and feedback control are designed in an integrated fashion. Several concurrent controllers described
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by scalar gains and activation rates of the corresponding processes are designed so as to ensure stability of the
controlled processes as well as real-time schedulability. Close at the technical level, although addressing very
different problems, is the recent work on stabilization under communication constraints [NE00, BL00, EM01,
BPZ02, Lib03, NT04]. All these approaches are concerned with the stabilization of continuous systems under
reduced communication and the employed techniques share with some of the techniques described in this note
a common ancestor: the perturbation approach to stability analysis of control systems, described for example
in [Kha96]. Similar techniques have also been used in [LNT02] to show how sample-and-hold implementations
of stabilizing controllers guarantee stability under sufficiently fast time-triggered executions. Finally, we would
like to refer the reader to [AB02] where some advantages of event-driven control over time-driven control are
presented in a stochastic setting. A preliminary version of the results presented in this note was reported
in [TW06].

2. Notation and problem statement

2.1. Notation. We shall use the notation |x| to denote the Euclidean norm of an element x ∈ Rn. Given
matrices A and B, [A|B] denotes the matrix formed by the columns of matrix A followed by the columns of
matrix B. A function f : Rn → Rm is said to be Lipschitz continuous on compacts if for every compact set
S ⊂ Rn there exists a constant L > 0 such that:

|f(x)− f(y)| ≤ L|x− y|

for every x, y ∈ S. A continuous function α : [0, a[→ R+
0 , a > 0, is said to be of class K if it is strictly

increasing and α(0) = 0. It is said to be of class K∞ if a = ∞ and α(r) →∞ as r →∞.

2.2. Problem statement. We consider a control system:

(2.1) ẋ = f(x, u), x ∈ Rn, u ∈ Rm

for which a feedback controller:

(2.2) u = k(x)

has been designed rendering the closed loop system:

(2.3) ẋ = f(x, k(x+ e))

Input-to-State Stable (ISS) with respect to measurement errors e ∈ Rn. We shall not need the definition1 of
ISS in this note but rather the following characterization.

Definition 2.1. A smooth function V : Rn → R+
0 is said to be an ISS Lyapunov function for the closed loop

system (2.3) if there exist class K functions α, α, α and γ satisfying:

α(|x|) ≤ V (x) ≤ α(|x|)(2.4)
∂V
∂x f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|)(2.5)

Closed loop system (2.3) is said to be ISS with respect to measurement errors e ∈ Rn if there exists an ISS
Lyapunov function for (2.3).

The implementation of the feedback law (2.2) on an embedded processor is typically done by sampling the
state at time instants:

t0, t1, t2, t3, t4 . . .

computing u(ti) = k(x(ti)) and updating the actuator values at time instants:

t0 + ∆, t1 + ∆, t2 + ∆, t3 + ∆, t4 + ∆, . . .

1See, for example, [Son04] for an introduction to ISS and related notions.
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where ∆ ≥ 0 represents the time required to read the state from the sensors, compute the control law and
update the actuators. This means that to a sequence of measurements:

x(t0), x(t1), x(t2), x(t3), x(t4), . . .

there corresponds a sequence of actuation updates:

u(t0 + ∆), u(t1 + ∆), u(t2 + ∆), u(t3 + ∆), u(t4 + ∆), . . .

Between actuator updates the input value u is held constant according to:

(2.6) t ∈ [ti + ∆, ti+1 + ∆[ =⇒ u(t) = u(ti + ∆)

Furthermore, the sequence of times t0, t1, t2, t3, t4, . . . is typically periodic meaning that ti+1 − ti = T where
T > 0 is the period. We can thus regard the execution of the control task implementing the control law (2.2)
as being time-triggered. In this note we consider instead event-triggered executions where the sequence
t0, t1, t2, t3, t4 . . . of execution times is no longer periodic neither specified in advance but rather implicitly
defined by an execution rule based on the state of the plant. To introduce this execution rule we define the
measurement error e to be:

(2.7) t ∈ [ti + ∆, ti+1 + ∆[ =⇒ e(t) = x(ti)− x(t)

We can thus describe the evolution of (2.1) under the implementation (2.6) of control law (2.2) by:

ẋ = f(x, k(x+ e))

with e ∈ Rn as defined in (2.7).

Let us first consider the hypothetical case ∆ = 0 with the single purpose of explaining the execution rule.
From (2.5) we see that if we restrict the error to satisfy:

(2.8) γ(|e|) ≤ σα(|x|), σ > 0

the dynamics of V is bounded by:

∂V

∂x
f(x, k(x+ e)) ≤ (σ − 1)α(|x|)

thus guaranteeing that V decreases provided that σ < 1. Inequality (2.8) can be enforced by executing the
control task when:

(2.9) γ(|e|) ≥ σα(|x|)

since ∆ = 0 implies that if the control task is executed at time ti we will have e(ti) = x(ti) − x(ti) = 0 and
γ(|e(ti)|) = 0 thus enforcing (2.8). When ∆ > 0, the control task needs to be executed before the inequality
γ(|e|) ≥ σα(|x|) is satisfied in order to account for the delay ∆ between measuring the state and updating the
actuators.

Although the simple execution rule (2.9) guarantees global asymptotical stability by construction, there are
three important questions that need to be answered in order to assess the feasibility of this scheduling policy:

(1) Since the execution times are only implicitly defined, can we guarantee that they will not become
arbitrarily close resulting in an accumulation2 point?

(2) In the absence of accumulation points, can we compute an estimate of the time elapsed between
consecutive executions of the control task?

(3) How can we use the execution rule (2.9) when there are more tasks competing for processor time and
still guarantee that no deadlines are missed?

Answering the above questions is the objective of the following sections.

2In the context of hybrid systems this corresponds to another example of the infamous Zeno behavior [ATS06].
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3. Existence of a lower bound for inter-execution times

We start immediately with one of the main contributions of this note.

Theorem 3.1. Let ẋ = f(x, u) be a control system and let u = k(x) be a control law rendering the closed loop
system ISS with respect to measurement errors. If the following assumptions are satisfied:

(1) f : Rn × Rm → Rn is Lipschitz continuous on compacts;
(2) k : Rn → Rm is Lipschitz continuous on compacts;
(3) There exists an ISS Lyapunov function V for the closed loop system satisfying (2.5) with α−1 and γ

Lipschitz continuous on compacts,

then, for any compact set S ⊂ Rn containing the origin, there exists an ε > 0 such that for all ∆ ∈ [0, ε] there
exists a time τ ∈ R+ such that for any initial condition in S the inter-execution times {ti+1− ti}i∈N implicitly
defined by the execution rule (2.9) are lower bounded by τ , that is, ti+1 − ti ≥ τ for any i ∈ N.

Proof. Let R be the compact set defined by all the points x ∈ Rn satisfying V (x) ≤ µ where µ > 0 is large
enough so that S ⊂ R. Such µ always exists since by (2.4) V is proper or radially unbounded. Set R is forward
invariant for the closed loop system since the execution rule (2.9) guarantees V̇ ≤ 0. We now define another
compact set E by all the points e ∈ Rn satisfying |e| ≤ γ−1(σα(|x|)) for all x ∈ R. Since α−1 and γ are
Lipschitz continuous on compacts, then so is α−1(γ(|r|)/σ). Let P be the Lipschitz constant for the compact
set E so that |α−1(γ(|r|)/σ)− α−1(γ(|s|)/σ)| ≤ P |r − s|. If r = e and s = 0 we obtain α−1(γ(|e|)/σ) ≤ P |e|.
Note that by enforcing P |e| ≤ |x| we guarantee α−1(γ(|e|)/σ) ≤ |x| (which is (2.8)) so that if suffices to
show that the inter-execution times are bounded for the execution rule P |e| ≥ |x|. As a first step towards
showing boundedness we note that it follows from Lipschitz continuity on compacts of f(x, u) and k(x) that
f(x, k(x+ e)) is also Lipschitz continuous on compacts, that is:

|f(r, k(r + s))− f(r′, k(r′ + s′))| ≤ L|(r, s)− (r′, s′)|

by taking r = x, s = e and r′ = 0 = e′ we obtain:

(3.1) |f(x, k(x+ e))| ≤ L|(x, e)| ≤ L|x|+ L|e|

when (x, e) ∈ R × E. Note that R × E is forward invariant for the state as well as the error dynamics. We
can now bound the inter-event times by looking at the dynamics of |e|/|x|.

d

dt

|e|
|x|

=
d

dt

(eT e)1/2

(xTx)1/2

=
(eT e)−1/2eT ė(xTx)1/2 − (xTx)−1/2xT ẋ(eT e)1/2

xTx

= − eT ẋ

|e||x|
− xT ẋ

|x||x|
|e|
|x|

≤ |e||ẋ|
|e||x|

+
|x||ẋ|
|x||x|

|e|
|x|

=
(

1 +
|e|
|x|

)
|ẋ|
|x|

≤
(

1 +
|e|
|x|

)
L|x|+ L|e|

|x|
by (3.1)

= L

(
1 +

|e|
|x|

)(
1 +

|e|
|x|

)
(3.2)

If we denote |e|/|x| by y we have the estimate ẏ ≤ L(1 + y)2 and we conclude that y(t) ≤ φ(t, φ0) where
φ(t, φ0) is the solution of φ̇ = L(1 + φ)2 satisfying φ(t, φ0) = φ0.
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Assume now that ∆ = 0. Then, the inter-execution times are bounded by the time it takes for φ to evolve
from 0 to 1/P , that is, the inter-execution times are bounded by the solution τ ∈ R+ of φ(τ, 0) = 1/P . Since
φ(τ, 0) = τL/(τL− 1) we obtain τ = 1/(L+ LP ).

For ∆ > 0 we need a more detailed analysis. First, pick σ′ satisfying σ < σ′ < 1 (take for example σ′ = σ+(1−
σ)/2) and let P ′ be the Lipschitz constant for α−1(γ(|e|)/σ′). Let now ε1 ∈ R+ satisfy φ(ε1, 1/P ) = 1/P ′. Such
ε1 always exists since φ is continuous, φ̇ > 0 and 1/P < 1/P ′. Then, by executing the control task at time ti,
defined by P |e| = |x|, we guarantee that for t ∈ [ti, ti+ε1[ we have |e| ≤ |x|/P ′ and thus also γ(|e|) ≤ σ′α(|x|).
Since σ′ < 1 asymptotic stability is still guaranteed. The inter-execution times are now bounded by ∆ + τ
where τ is the time it takes for φ to evolve from |e(ti + ∆)|/|x(ti + ∆)| = |x(ti) − x(ti + ∆)|/|x(ti + ∆)|
to 1/P . We thus need to pick ∆ small enough so that |e(ti + ∆)|/|x(ti + ∆)| < 1/P since φ̇ > 0. It now
follows from continuity3 of |x(ti)− x(ti + ∆)|/|x(ti + ∆)| with respect to ∆ the existence of ε2 > 0 such that
for any 0 ≤ ∆ ≤ ε2 we have |x(ti) − x(ti + ∆)|/|x(ti + ∆)| < 1/P . The proof is now finished by taking
ε = min{ε1, ε2}. �

Theorem 3.1 shows that the simple execution rule (2.9) results in a sequence of inter-execution times for the
control task that is guaranteed to be lower bounded provided that ∆ is sufficiently small. The techniques
used in the proof rely of Lipschitz continuity and are necessarily conservative for general nonlinear systems.
However, for linear systems they provide reasonable estimates and we can even provide computable bounds
for ∆ as discussed in the next section.

4. The linear case

In this section we discuss the linear case in some detail since the arguments in the proof of Theorem can be
refined in order to provide a computational estimate for τ . We thus assume the control system to be of the
form:

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

with A and B matrices of appropriate dimensions. We also assume the existence of a linear feedback:

u = Kx

rendering the closed loop system globally asymptotically stable and where K is a matrix of appropriate
dimensions. Note that in the linear case any such K renders the closed loop system ISS with respect to
measurement errors. We thus have a Lyapunov function V : Rn → R+

0 satisfying:

a|x|2 ≤ V (x) ≤ a|x|2(4.1)
∂V
∂x (Ax+BKx+BKe) ≤ −a|x|2 + g|e||x|(4.2)

with a, a, a, g ∈ R+.

Corollary 4.1. Let ẋ = Ax+Bu be a linear control system, let u = Kx be a linear control law rendering the
closed loop system globally asymptotically stable and assume that ∆ = 0. For any initial condition in Rn the
inter-event times {ti+1 − ti}i∈N implicitly defined by the execution rule:

|e| ≥ σ|x|

are lower bounded by the time τ satisfying:

(4.3) φ(τ, 0) = σ

where φ(t, φ0) is the solution of:

(4.4) φ̇ = |A+BK|+
(
|A+BK|+ |BK|

)
φ+ |BK|φ2

3Note that x(ti + ∆) is never zero since the closed loop system converges asymptotically to zero and thus never reaches zero
in finite time.
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satisfying φ(0, φ0) = φ0. Furthermore, for ∆ > 0 and for any desired σ > 0, the execution rule:

|e| ≥ σ′|x|

with:

(4.5)
∆
∣∣∣[A+BK|BK]

∣∣∣(σ + 1)

1−∆
∣∣∣[A+BK|BK]

∣∣∣(σ + 1)
≤ σ′ ≤ φ(−∆, σ)

enforces for any i ∈ N and for any t ∈ [ti + ∆, ti+i + ∆[ the following inequality:

|e(t)| ≤ σ|x(t)|

with inter-execution times bounded by ∆ + τ where time τ satisfies:

(4.6) φ

(
τ,

∆
∣∣∣[A+BK|BK]

∣∣∣(σ + 1)

1−∆
∣∣∣[A+BK|BK]

∣∣∣(σ + 1)

)
= σ′

Proof. Estimate (4.4) follows directly from (3.2) by using |ẋ| ≤ |A+BK||x|+|BK||e|. Inequality σ′ ≤ φ(−∆, σ)
guarantees that if |e| = σ′|x| holds at time ti, triggering an execution of the control task, then the inequality
|e| ≤ σ|x| will hold for t ∈ [ti, ti+∆[. To conclude boundedness of inter-execution times we need to ensure that
|e(ti + ∆)|/|x(ti + ∆)| ≤ σ′ since if this inequality fails to hold, an execution of the control task is requested
before the termination of the previous execution. Let e′ denote the error defined by e′(t) = x(ti) − x(t) for
t ∈ [ti, ti+∆] and note that |e(ti+∆)|/|x(ti+∆)| is by definition equal to |e′(ti+∆)|/|x(ti+∆)|. To estimate
|e′(t)|/|x(t)| we compute d

dt |e
′(t)|/|x(t)| following the same argument as in the proof of Theorem 3.1 to obtain:

(4.7)
d

dt

|e′|
|x|

≤ L

(
1 +

|e′|
|x|

)(
1 +

|e|
|x|

)
with L =

∣∣[A + BK|BK]
∣∣. The evolution of |e′|/|x| is thus bounded by ψ(t) which is the solution satisfying

ψ(ti) = 0 of:

φ̇ = L(1 + φ)2 ψ̇ = L(1 + ψ)(1 + φ)

since, as shown in the proof of Theorem (3.1), |e|/|x| is bounded by φ(t). Since:

ψ(t) =
tL
(
|e(ti)|
|x(ti)| + 1

)
1− tL

(
|e(ti)|
|x(ti)| + 1

) =
tL(σ′ + 1)

1− tL(σ′ + 1)
≤ tL(σ + 1)

1− tL(σ + 1)

where the inequality follows from ∂ψ
∂σ′ > 0, we have:

ψ(∆) <
∆L(σ + 1)

1−∆L(σ + 1)

and thus assumption (4.5) guarantees that |e(ti + ∆)|/|x(ti + ∆)| < σ′. The inter-execution times are now
bounded by ∆ + τ where τ is the time necessary for φ to evolve from ∆L(σ + 1)/(1−∆L(σ + 1)) to σ′, that
is, the solution τ of φ(τ,∆L(σ + 1)/(1−∆L(σ + 1))) = σ′.

�

Note that for ∆ = 0 we can chose σ′ = σ in (4.5) and (4.6) becomes (4.3). Although the formulas in
Corollary 4.1 only provide estimates, they are sufficiently accurate to be useful in practical situations as
described in the next section.
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5. An academic example

We now illustrate the previous results on the linear control system:[
ẋ1

ẋ2

]
=
[

0 1
−2 3

] [
x1

x2

]
+
[
0
1

]
u(5.1)

stabilized by the following linear feedback:

(5.2) u = x1 − 4x2

Using V = xTPx as a Lyapunov function with P defined by:

(5.3) P =
[
1 1

4
1
4 1

]
we obtain ∂V

∂x (Ax+BKx) = −xTQx where:

(5.4) Q =
[

1
2

1
4

1
4

3
2

]
Taking the measurement error into account we have:

∂V

∂x

(
Ax+BKx+BKe

)
≤ −a|x|2 + g|e||x|

where:
a = λm(Q) > 0.44 g = |KTBTP + PBK| = 8

and λm(Q) is the smallest eigenvalue of Q. Since σg needs to be smaller that 0.44 we select σ = 0.05 and
obtain the execution rule |e| ≥ 0.05|x|. For ∆ = 0.005s and according to Corollary 4.1 we can select any σ′

satisfying:
0.0235 ≤ σ′ ≤ 0.0405

The theoretical value for the inter-execution time corresponding to σ′ = 0.04 is:

∆ + τ = 0.005s+ 0.0091s = 0.0141s

while simulation results for the initial conditions:

(x1(0), x2(0)) = (10 cos(
2π
30
κ), 10 sin(

2π
30
κ)) κ = 1, . . . , 30

provided a lower bound of 0.0237s.

In Figure 1 we can see how the error norm never reaches σ|x| even though it goes beyond σ′|x| which is used
as execution rule. Although for small values of time there is a large gap between the maximum value reached
by |e| and σ|x|, this gap decreases as the state approaches the origin.

For different values of σ′ we obtained the inter-execution time estimates reported in Table 1. We can see that
the estimated values, although conservative, do not overestimate the values obtained through simulation by
more than a factor of 3.

6. Co-schedulability of stabilizing control tasks

The lower bound for inter-execution times of the control task, presented in Theorem 3.1, can be used to analyze
schedulability of a set of tasks T = {Ti}i∈I . We shall assume a preemptive scheduler in which the control
task has the highest priority and thus cannot be preempted by any other task and is executed without delays
when γ(|e|) ≥ σα(|x|). Note that timing overheads associated with context switching can be captured in the
proposed framework by suitably enlarging ∆. We regard execution of the control task as a timing overhead
imposed on the tasks Ti by the scheduler in the sense that Ti may need to be interrupted to execute the
control task. When a set of control tasks T can be scheduled despite the overhead associated with the control



DR
AF
T

8 PAULO TABUADA

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Time (sec.)

 

 

|e(t)|

!’ |x(t)|

! |x(t)|

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Time (sec.)

 

 

|e(t)|

!’ |x(t)|

! |x(t)|

Figure 1. Evolution of |e|, σ′|x| and σ|x| for ∆ = 0.005, σ = 0.05 and σ′ = 0.04.

σ′ ∆ + τ (estimated) ∆ + τ (simulated) simulated/estimated

0.0250 0.0058s 0.0151s 2.60
0.0275 0.0072s 0.0166s 2.31
0.0300 0.0086s 0.0180s 2.09
0.0325 0.0100s 0.0194s 1.94
0.0350 0.0114s 0.0209s 1.83
0.0375 0.0127s 0.0223s 1.76
0.0400 0.0141s 0.0237s 1.68

Table 1. Simulated and estimated inter-execution times for several values of σ′.

task we say that T is co-schedulable with the control task. Co-schedulability is now ensured by the following
sufficient condition where dre denotes the smallest integer greater than r ∈ R.

Theorem 6.1. Let ẋ = f(x, u) be a control system, let u = k(x) be a control law rendering the closed loop
system ISS with respect to measurement errors and let T = {Ti}i∈I be a set of tasks with execution times
{∆i}i∈I . If the set of tasks T is schedulable with new execution times ∆′

i given by:

∆′
i = ∆i + d∆i/τe∆

then T is co-schedulable with the control task under the execution rule (2.9).

Proof. Since the time between executions of the control task is lower bounded by ∆ + τ , each task Ti can
be interrupted at most d∆i/τe times. Each interruption will delay the execution of Ti by ∆ units of time
resulting in a total execution time of ∆i + d∆i/τe∆. �

Co-schedulability is ensured by the existence of a schedule where the duration ∆i of each task Ti has been
inflated to ∆′

i in order to accommodate the timing overhead imposed by the control task. Theorem 6.1 is just
one example of the use of the event-triggered scheduling rule discussed in this note. Other possibilities are
discussed in the next section.
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7. Discussion

7.1. Real-time scheduling policies for non-preemptible tasks. The simple preemptive scheduling strat-
egy presented in Section 6 relied on the possibility to preempt all but the control task. In many situations
this assumption may not hold and more elaborate scheduling strategies are necessary. The results presented
in this note are also relevant in this more general context since the lower bound on the inter-execution times
can be used to construct a timed-automaton model for the control task. This model can then be composed
with models of the remaining tasks and a scheduler, regarded as a supervisor, can be synthesized by resorting
to control and/or game theoretic techniques for timed automata [AGS02, FMPY06].

7.2. ISS with respect to actuation errors and networked control systems. The results presented in
this note are based on the assumption that the controller to be implemented renders the closed loop system ISS
with respect to measurement errors. From a theoretical point of view it is not difficult to see that Theorem 3.1
still holds, mutatis mutantis, if ISS with respect to actuation errors is assumed in place of ISS with respect
to measurement errors. This is an assumption that can be made without loss of generality for control affine
systems. In this case, the execution rule would be based on the error e(t) = k(x(ti)) − k(x(t)) which makes
this approach uninteresting from the practical point of view as k(x(t)) needs to be computed to determine if
the control task computing k(x(t)) should be executed! Under the ISS with respect to measurement errors
assumption used in this note we only need to compute |x(ti)−x(t)| and |x(t)| to determine if the control task
should be executed and this can be done in hardware without requiring processor time. However, the ISS
with respect to actuation errors does make sense in a networked control setting where the shared resource to
be scheduled is not processor time but rather the transmission medium. Similar ideas have been more or less
explicitly explored in [YTS02, MA04, NT04].
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