
LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS

PAULO TABUADA AND GEORGE J. PAPPAS

Abstract. The control of complex systems poses new challenges that fall beyond the traditional methods
of control theory. One of these challenges is given by the need to control, coordinate and synchronize the

operation of several interacting submodules within a system. The desired objectives are no longer captured

by usual control specifications such as stabilization or output regulation. Instead, we consider specifications
given by Linear Temporal Logic (LTL) formulas. We show that existence of controllers for discrete-time

controllable linear systems and LTL specifications can be decided and that such controllers can be effectively

computed. The closed-loop system is of hybrid nature, combining the original continuous dynamics with the
automatically synthesized switching logic required to enforce the specification.

1. Introduction

1.1. Motivation. In recent years there has been an increasing interest in extending the application do-
main of systems and control theory from monolithic continuous plants to complex systems consisting of
several concurrently interacting submodules. Examples range from multi-modal software control systems
in the aerospace [DS97, LL00, TH04] and automotive industry [CJG02, SH05] to advanced robotic sys-
tems [KBr04, MSP05, DCG+05]. This change in perspective is accompanied by a shift in control objectives.
One is no longer interested in the stabilization or output regulation of individual continuous plants, but rather
wishes to regulate the global system behavior1 through the local control of each individual submodule or
component. Typical specifications for this class of control problems include coordination and synchronization
of individual modules, sequencing of tasks, reconfigurability and adaptability of components, etc. In order to
address this emerging class of control problems we need to formally specify the desired system behavior:

How can we formally and succinctly specify the desired behavior of concurrently interacting systems?

The specification mechanism should also lead to controller design methods. These controllers will enforce a
hybrid behavior on the controlled system since system evolution is influenced both by the continuous dynamics
and by the discrete interaction (communication) between submodules. While many ad-hoc approaches have
been reported in the literature for the design of such hybrid systems, any formal guarantee of operation can
only be obtained through formal verification which is noticeably a hard2 problem [HKPV98]. This suggests
that one should aim at design methods that satisfy the specification by construction:

How can we design (hybrid) controllers ensuring satisfaction of specifications by construction, thereby avoiding
or substantially reducing the need for formal verification?

Another dimension of this problem, that should not be neglected, is its computational aspect. As the number
of modules increases, the possibilities of interaction between modules also increase thus rendering analysis of
global behavior an extremely difficult task. This intrinsic complexity of concurrently interacting systems can
only be addressed by computational synthesis methods, reducing error-prone human analysis or synthesis to
the strictly necessary minimum. Only fully automated methods have the potential to scale and successfully
address control problems for systems consisting of large numbers of interacting components:

The first author was partially supported by the National Science Foundation CAREER award 0446716 while the second author

was partially supported by the National Science Foundation EHS 0311123 award.
1We use the term behavior in a rather informal way to refer to the set of system’s trajectories that can be observed.
2Verification of simple specifications such as reachability is unfortunately undecidable for a large majority of systems of interest.

1

2 PAULO TABUADA AND GEORGE J. PAPPAS

How can we render the design of controllers completely automated, from specification to implementation?

Motivated by the above described problems, we present in this paper an approach for the control of linear
systems with objectives expressed in Linear Temporal Logic (LTL). There are two main reasons to describe
control objectives in temporal logic. Firstly, temporal logic provides a formal specification mechanism allowing
one to quantitatively define the desired behavior of a systems by prescribing the interaction between submod-
ules. Secondly, temporal logic makes it possible to succinctly express complex objectives due to its similarity
to natural language. In particular, temporal logic is well suited to express the novel class of specifications
required by the control of concurrently interacting systems. These two reasons also justify the successful use
of temporal logic as a specification language in the concurrency and computer aided verification communi-
ties [MP92, CPG99, McM93]. In the next section we show through simple examples how control specifications
can be easily expressed in LTL.

The approach presented in this paper is also an important contribution towards the synthesis of correct by
design systems. Temporal logic enables the use of powerful automata theoretic techniques lying at the heart
of computational algorithms for control design. Transferring control design from the continuous to the finite
world of automata (or transition systems) is in fact one of the major contributions of this paper. This transfer
is also accompanied by the relevant refinement techniques allowing the transformation of finite automata
models of the closed-loop dynamics into hybrid models where software controllers supervise continuous plants.
In addition to presenting a fully automated design method, the resulting closed-loop systems satisfy the
LTL specifications by construction, therefore resulting in correct designs for which no further validation or
verification is necessary.

1.2. Problem formulation. Temporal logic allows one to succinctly describe many interesting temporal
properties of systems. LTL formulas are built from predicates through the usual propositional connectives
(∨,∧,⇒,¬) and two temporal operators: ◦ and U. Informally, ◦ is read as “next” and a LTL formula ◦ϕ is
satisfied when formula ϕ is satisfied at the next time instant. The operator U is read as “until” and formula
φUϕ is satisfied when formula φ is satisfied until formula ϕ is satisfied. From the ”until” operator, two
commonly used operators can be defined: 2 and �. The first is read as “always”, requiring that ϕ holds for
all future time in order for 2ϕ to be satisfied. The operator � is read as “eventually” and �ϕ requires ϕ to
hold at some time in the future. This set of operators permits the construction of formulas expressing many
interesting control specifications which we now illustrate by simple examples.

Periodic synchronization: Consider two mobile robots performing a collaborative task. Each robot is
sensing different information that should be shared with the other robot at least every three units of time.
We consider robots described by discrete-time linear control systems:

x1(t + 1) = A1x1(t) + B1u1(t) x2(t + 1) = A2x2(t) + B2u2(t)

Vector x1 ∈ R2 models the position of robot 1 while vector x2 ∈ R2 models the position of robot 2. We model
the exchange of information between the robots by the requirement that inter robot distance is reduced to
less than δ > 0 for communication to occur. This distance constraint is captured by the predicate:

communicate := d(x1, x2) ≤ δ

for some metric d. The desired inter robot communication specification can now be modeled in LTL as:

ϕ = 2 �3 communicate

where �3 is an abbreviation for “eventually within 3 units of time” and is defined by �3p = p∨◦p∨◦◦p∨◦◦◦p.
Satisfaction of formula ϕ requires that at each time step �3communicate holds, that is, communication will
always occur within the next 3 time units.

Path planning and obstacle avoidance: Consider now a robot navigating in a environment cluttered
with obstacles. Let Obsi be a predicate modeling the location of obstacle i ∈ I and let Goal be a predicate
modeling the destination location. Requiring the robot to reach the destination while avoiding the obstacles
can be captured by �Goal ∧2¬

(∨
i∈I Obsi

)
.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 3

Fault tolerance and recovery: Fault tolerance and recovery can also be specified in LTL. Let ϕ1 be a LTL
formula specifying the normal operation of the system, ϕ2 a LTL formula describing the occurrence of a fault
and ϕ3 a LTL formula prescribing the desired fault recovery procedure. The formula 2

(
ϕ1∨

(
ϕ1U (ϕ2∧◦ϕ3)

))
states that the system should always operate correctly (ϕ1) or it should operate correctly until ϕ2∧◦ϕ3 holds.
If this last formula is true, then the fault described by ϕ2 occurs at some time t and is followed by the fault
recovery procedure, defined by ϕ3, at time t + 1.

The previous examples represent only a small fraction of the interesting properties that can be specified
through the use of LTL. The goal of this paper, synthesizing controllers enforcing LTL specifications, can thus
be described as follows:

Problem 1.1. Let Σ be a discrete-time linear control system and ϕ a LTL formula describing the desired
behavior for Σ. Design a controller for Σ such that the closed-loop system satisfies ϕ.

The solution to the above problem will require an interesting combination of computer science and control
theoretic concepts and methods briefly described in the next section.

1.3. Approach and main contributions. The synthesis of controllers enforcing LTL specifications relies
on the possibility of extracting finite models from continuous control systems. These finite abstractions will be
equivalent (in a precise sense to be defined) to the continuous models therefore enabling the solution of control
problems posed for continuous linear systems through discrete algorithmic techniques. Resulting discrete
models for the closed-loop system are then refined, resulting in controllers for the original continuous system
whose hybrid closed-loop behavior will satisfy the desired specification. The overall approach is pictured in
Figure 1 and organized as follows.

Figure 1. Intermediate steps in controller design.

4 PAULO TABUADA AND GEORGE J. PAPPAS

In Section 2 we present one of the paper’s main contribution. We show that any discrete-time controllable
linear system admits finite abstractions (bisimulations) with respect to a certain class of observation functions
defined by the system dynamics. The existence of such finite abstractions is one of the essential factors enabling
the development of algorithms for system analysis and design. In this paper we will use finite abstractions of
linear control systems to algorithmically synthesize controllers for LTL specifications. This will be done by
constructing a finite supervisor for the discrete abstraction enforcing the LTL specification. Since supervisory
synthesis is based on operational models such as finite state machines, Büchi automata or Petri-Nets, in
Section 3 we introduce LTL and discuss the conversion of LTL formulas into Büchi automata. Supervisory
synthesis is the subject of Section 4 where it is recalled that existence of finite supervisors enforcing infinite
languages defined by Büchi automata can be decided and that such supervisors can be effectively computed.
In Section 5 we refine the closed-loop behavior obtained by composing the finite abstraction with the discrete
supervisor obtaining a hybrid closed-loop behavior enforcing the specification. The other main contribution of
the paper is the possibility to synthesize this hybrid controller in a completely automated way. This result is
formulated and proved also in Section 5. We conclude the paper at Section 6 with a discussion of the presented
results.

The proposed methodology makes extensive use of both control and computer science concepts, notions and
results. Since many of these notions may be unfamiliar to some readers we have decided to focus on the main
aspects of the approach, thereby leaving for a later opportunity a more careful discussion of the algorithmic
complexity issues as well as the many existing techniques to reduce complexity. We are also not explicitly
addressing the centralized/decentralized nature of the resulting controllers, which although important, is a
very difficult problem as many important decentralization questions are undecidable [Tri04]. For the same
reasons we have decided to omit large examples and illustrate the introduced notions and algorithms with
small, yet pedagogical examples.

1.4. Related literature. The analysis and synthesis of systems based on temporal logic specifications is by
now current practice in the concurrency and computer aided verification communities [MP92, CPG99, McM93].
Although this approach was initially devised for purely discrete systems, the seminal work of Alur and Dill on
timed automata [AD94] showed that certain classes of hybrid systems could also be addressed. Subsequent
extensions lead to results for multi-rate automata [ACH+95] and rectangular hybrid automata [PV94, HM00]
which lies on the decidability boundary [HKPV98]. These results were based on the construction of finite
abstractions on which algorithms with guaranteed termination can be used for analysis and synthesis. Different
classes of dynamics for which finite abstractions exist were introduced in [LPS00] by combining tools from logic
and linear dynamical systems. See also [AHLP00] for a survey of these methods. Nonlinear dynamics were
considered in [Bro99] where bisimulations based on foliations transverse to the nonlinear flow were introduced.
In [SKA01] invariants are also exploited for a supervisory control approach to the control of hybrid systems. A
different kind of dynamics, simple planar differential inclusions, was considered in [ASY01] where it was shown
that qualitative analysis of system trajectories is decidable by making use of unique topological properties of
the plane. Different approaches based on approximation techniques to obtain finite abstractions include the
work in [CK01] for verification and [CKN98] for synthesis of supervisor controllers. Recently, a different
abstraction technique based on quantifier elimination was introduced in [TK02]. This methodology allows one
to obtain a sequence of finer finite abstractions that are sufficient to verify reachability related questions.

From the different mentioned approaches only the work described in [Bro99] address the problem of con-
structing (exact) finite abstractions of control systems. For linear systems, controllability can be exploited
to compute the foliations required by the method in [Bro99] leading to finite abstractions of the vector field
obtained by fixing the control inputs. Although at the technical level we do not make use of foliations, our
construction can be seen as providing a way of integrating in the same finite object the different abstractions
of [Bro99] obtained for different control inputs. However, our construction considers discrete-time systems,
while the results in [Bro99] were developed for continuous time.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 5

The construction of finite abstractions is also related to the study of reachability of quantized systems [BMP02,
PLPB02, CP01]. For quantized systems, the original continuous dynamics is unchanged, but the set of available
inputs is restricted to a finite set. This approach also provides an abstraction of the original control system,
that can be regarded as a subsystem of the original one. Our approach differs from quantization based
reachability in that we do not restrict the set of available inputs. Nevertheless, both approaches emphasize
the advantages of having finite representations. Other related work includes the study of stabilization of linear
systems with quantized observations [EM01, BL00].

Synthesis of controllers from temporal logic specifications had already been advocated in [AM95] where the
authors postulate a discrete abstraction for the walking mechanism to be controlled. In [MD01], temporal
logic is used to motivate the development of the synthesis procedures as well as to prove several facts regarding
the proposed algorithms. Different automated synthesis procedures is reported in [HvS01], where it shown
that synthesis of reachability specifications for hybrid systems with linear dynamics on convex polytopes can
be performed by simply working with the polytopes vertices. Closer to our approach is the work reported
in [VSS+01], where it is shown that under certain controllability assumptions the controlled invariance problem
for linear systems is decidable. Although our decidability results are also based on a controllability assumption,
the problems being addressed are fundamentally different. We refine a given partition of the state space until
a bisimulation is obtained while in [VSS+01] a set is refined until controlled invariance is achieved. The goal of
the refinement algorithms is therefore distinct, although termination is ensured in both cases by controllability.

Other related work, based on supervisory control of discrete event systems [RW89, KG95, CL99], includes
synthesis for CTL∗ specifications [JK01] and real-time logic [Ost89]. However, synthesis from temporal logic
specifications in the computer science community can be traced back to [EC82, MW84]. More recent work in-
cludes controller synthesis for branching time specifications [MT02a], decentralized control [MT02b, CMT99],
control of synchronous systems [dAHM00, dAHM01] and synthesis for several different problems in timed au-
tomata including game theoretic approaches [FTM02], scheduling [AM02], optimal control [BFH+01, ATP01]
and synthesis from external specifications [DM02]. Although many of these works provide valuable inspiration,
the proposed synthesis methodologies are only applicable to purely discrete systems or systems modeled by
timed automata.

2. Finite quotients of controllable linear systems

In this section we show that finite abstractions of controllable linear systems exist and are effectively com-
putable. These results will make a fundamental use of several computer science notions that we now review.

2.1. Transition systems and bisimulations. Given a function f : A → B and a set C ⊆ A, we shall
use the notation f(C) to denote the subset of B defined by ∪c∈C{f(c)} while f−1(D) denotes the set {a ∈
A | f(a) ∈ D} for some D ⊆ B. A partition P of the set A is a collection of sets P = {Pi}i∈I satisfying
∪i∈IPi = A and Pi ∩ Pj 6= ∅ for i 6= j. Each partition induces a projection map πP : A → P sending each
a ∈ A to the unique set πP(a) = P ∈ P containing a. Conversely, every surjective map π : A → B defines
a partition of A defined by the collection of sets {π−1(b)}b∈B . An equivalence relation R ⊆ A × A on a set
A induces a partition P = {Pi}i∈I defined by a, b ∈ Pi iff (a, b) ∈ R. The elements Pi of the partition P
are the equivalence classes of R. Conversely, given a partition P on A we can define an equivalence relation
R ⊆ A×A having the elements of P as equivalence classes. For this reason we will interchangeably work with
partitions or equivalence relations according to what will be more useful. We say that partition P ′ refines or
that it is a refinement of partition P when for every P ′ ∈ P ′ there exists a P ∈ P such that P ′ ⊆ P . Given
a refinement P ′ of a partition P we can define a projection map πP′P : P ′ → P taking every P ′ ∈ P to the
unique element πP′P(P ′) = P ∈ P such that P ′ ⊆ P .

We recall some formal language notions. Given a set S we denote by S∗ the set of all finite strings obtained
by concatenating elements in S. An element of S∗ is therefore given by s1s2 . . . sn with si ∈ S for i = 1, . . . , n.
By Sω we denote the set of all infinite strings obtained by concatenating elements in S. An element of Sω is

6 PAULO TABUADA AND GEORGE J. PAPPAS

an infinite string s1s2s3 . . . with si ∈ S, i ∈ N. Given a string s belonging to S∗ or Sω we denote by s(i) the
ith element of s. The length of a string s ∈ S∗ is denoted by |s|. A subset of S∗ is called a language while a
subset of Sω is called an ω-language.

We also review the notion of transition systems that will be extensively used as an abstract model for control
and computation.

Definition 2.1. A transition system with observations is a tuple T = (Q, Q0,−→, O,Υ) where:

• Q is a (possibly infinite) set of states,
• Q0 ⊆ Q is a set of initial states,
• −→⊆ Q×Q is a transition relation,
• O is a (possibly infinite) set of observations,
• Υ : Q → O is a map assigning to each q ∈ Q an observation Υ(q) ∈ O.

A string s ∈ Q∗ ∪Qω is a run of T if (s(i), s(i + 1)) ∈−→, i = 1, . . . , |s| − 1 for s ∈ Q∗ or i ∈ N for s ∈ Qω. A
run of T is initialized when s(1) ∈ Q0.

The introduced notion of transition system differs from other notions encountered in the literature in that
observations are not associated with transitions but rather with states. These two models can easily be seen
equivalent given the well known equivalence between Moore and Mealy machines [HU79]. The presented
model is, however, more natural since observations of control systems depend on the states and this structure
is inherited by the several transition systems used in this paper to capture the dynamics of control systems.

We say that T is finite when Q,O are finite, and infinite otherwise. We will usually denote by q −→ q′ a
pair (q, q′) belonging to −→. As we will only consider transition systems with observations, we shall refer to
them simply as transition systems. Since the observation map Υ : Q → O extends to a unique map of strings
Υ : Q∗ ∪Qω → O∗ ∪Oω defined by:

Υ(s) = Υ
(
s(1)

)
Υ

(
s(2)

)
Υ

(
s(3)

)
. . .

we shall abuse notation and use the same symbol Υ for both the observation map as well as for its induced
string map. Given a state q ∈ Q, we denote by Pre(q) the set of states in Q that can reach q in one step, that
is:

Pre(q) = {q′ ∈ Q | q′ −→ q}
We extend Pre to sets Q′ ⊆ Q in the usual way:

Pre(Q′) =
⋃

q′∈Q′

Pre(q′)

Discrete-time linear control systems can be naturally embedded in the class of transition systems. Given a
discrete-time linear control system Σ:

x(t + 1) = Ax(t) + Bu(t), x ∈ Rn, u ∈ Rm, t ∈ N

there is an associated transition system TΣ:

TΣ = (Rn, Rn,−→, O,Υ)

with −→⊆ Rn × Rn defined by x −→ x′ iff there exists a u ∈ Rm such that x′ = Ax + Bu. To complete
the definition of TΣ we must also provide an observation set O and observation map Υ. The nature of the
observation space and map depend on the problem being solved and are left unspecified for now. The described
embedding is control abstract since the input value required to perform transition x −→ x′ is not explicitly
captured by the transition system. However, this information can be recovered from the pair (x, x′) by solving
x′ = Ax + Bu for the input u. Since transition systems capture both control systems and software systems,
we can synthesize controllers consisting of continuous and discrete (components) within the same framework.

Transition systems define different types of languages:

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 7

Definition 2.2. Let T = (Q, Q0,−→, O,Υ) be a transition system. The language generated by T , denoted
by L(T), is defined as:

L(T) =
{
r ∈ O∗ | r = Υ(s) for some finite initialized run s of T

}
The ω-language generated by T is similarly defined:

Lω(T) =
{
r ∈ Oω | r = Υ(s) for some infinite initialized run s of T

}
The structural notion of bisimulation relates properties of different transition systems.

Definition 2.3. Let Ti = (Qi, Q
0
i ,−→i, O,Υi) with i = 1, 2 be transition systems and R ⊆ Q1×Q2 a relation.

Relation R is said to be a bisimulation relation between T1 and T2 if the following hold for any (q1, q2) ∈ R:

(1) Υ1(q1) = Υ2(q2);
(2) q1 ∈ Q0

1 implies q2 ∈ Q0
2 and q2 ∈ Q0

2 implies q1 ∈ Q0
1;

(3) q1 −→1 q′1 implies the existence of q′2 ∈ Q2 satisfying q2 −→2 q′2 and (q′1, q
′
2) ∈ R;

(4) q2 −→2 q′2 implies the existence of q′1 ∈ Q1 satisfying q1 −→1 q′1 and (q′1, q
′
2) ∈ R.

We shall use the notation T1
∼= T2 to denote the existence of a bisimulation relation between T1 and T2.

Bisimilar transition systems share many properties including generated languages.

Proposition 2.4 (Adapted from [Mil89]). Let T1 and T2 be transition systems and assume that T1
∼= T2.

Then, the following equalities hold:

(2.1) L(T1) = L(T2) Lω(T1) = Lω(T2)

In addition to preserve language equivalence, bisimulations also preserve properties expressible in several
temporal logics such as LTL, CTL, CTL∗ or µ-calculus [BCG88].

In this paper we shall construct finite bisimulations which are of a special form.

Definition 2.5. The quotient of a transition system T = (Q,Q0,−→, O,Υ) with respect to an equivalence
relation R ⊆ Q×Q is the transition system T/R = (Q/R, Q0

/R,−→/R, O,Υ/R) defined by:

• Q/R = {S ⊆ Q | S is an equivalence class of R};
• Q0

/R = πR(Q0);
• S −→/R S′ in T/R if there exists q ∈ S and q′ ∈ S′ such that q −→ q′ in T ;
• Υ/R(S) = Υ(q) for some q ∈ S.

Note that Υ/R is well defined since (q1, q2) ∈ R implies Υ(q1) = Υ(q2). Furthermore, if R is a bisimulation
relation between T and T it follows that the graph of the projection πR : Q → Q/R, defined by {(q, S) ∈
Q×QR | S = πR(q)}, is a bisimulation relation between T and T/R. T/R is therefore called a bisimilar quotient
of T with respect to R.

2.2. Finite bisimulations of controllable linear systems. In this section we show how finite bisimulations
of controllable linear systems can be obtained. We make the following assumptions:

A.I Control system Σ is controllable.

A.II The columns of matrix B are linearly independent.

Assumption A.II results in no loss of generality since we can always remove linearly dependent columns from
matrix B without destroying essential properties of Σ. Assumption A.I is essential for the existence of finite
bisimulations. It has several important consequences, the first of which being the following decomposition of
the state space.

8 PAULO TABUADA AND GEORGE J. PAPPAS

Proposition 2.6 ([Bru70, Kal72]). Let Σ be a discrete-time linear control system satisfying Assumptions A.I
and A.II. Then, there exists a sequence of positive integers µ1, µ2, . . . , µm, called controllability indices of Σ,
such that:

span{b1, . . . , bm, Ab1, . . . , Abm, A2b1, . . . , A
2bm, . . . , An−1b1, . . . , A

n−1bm}
= span{b1, Ab1, A

2b1, . . . , A
µ1−1b1, b2, Ab2, A

2b2, . . . , A
µ2−1b2, . . . , bm, Abm, A2bm, . . . , Aµm−1bm}

and Aµibi is linearly dependent of the vectors b1, Ab1, . . . , bi, Abi, . . . , A
µi−1bi.

Using the controllability indices we can introduce the subspace V ∼= Rn−m of Rn defined by:

(2.2) V = span{b1, Ab1, . . . , A
µ1−2b1, b2, Ab2, . . . , A

µ2−2b2, . . . , bm, Abm, . . . , Aµm−2bm}

Subspace V naturally induces an observation map Υ for Σ defined as the natural projection from the state
space Rn to the quotient space Rn/V ∼= Rm:

(2.3) Υ : Rn → Rn/V

Observation map Υ takes a vector x ∈ Rn into its equivalence class in Rn/V which we can identify with a
point y ∈ Rm. Observation map Υ uniquely determines transition system TΣ associated with Σ. We now state
this fact for later use.

Definition 2.7. Let Σ be a discrete-time linear control system satisfying Assumptions A.I and A.II. Tran-
sition system TΣ associated with Σ is defined by TΣ = (Rn, Rn,−→, Rm,Υ) with x −→ x′ iff there exists
u ∈ Rm satisfying x′ = Ax + Bu and Υ defined by (2.3).

This choice of observation map is crucial in proving the first major contribution of this paper.

Theorem 2.8. Let Σ be a discrete-time linear control system satisfying Assumptions A.I and A.II. For any
finite partition P of the observation space of TΣ there exists a finite refinement P ′ of the state space partition
Υ−1(P) such that the quotients of TP

Σ = (Rn, Rn,−→,P, πP ◦Υ) and TP′

Σ = (Rn, Rn,−→,P ′, πP′) with respect
to P ′ and denoted by TP

∆ and TP′

∆ , respectively, are finite bisimilar quotients.

In order to prove Theorem 2.8 we state and prove a preparatory result ensuring that existence of finite
bisimulations is not destroyed by changes of coordinates or invertible feedback.

Proposition 2.9. Let Σ be a discrete-time linear control system satisfying Assumptions A.I and A.II and let
Σ′ be the discrete-time linear control system obtained from Σ through an invertible linear change of coordinates
x 7→ Hx and an invertible linear feedback (x, u) 7→ Fx + Gu. For any finite partition P of the observation
space of TΣ, there exists a finite refinement Q of the state space partition Υ−1(P) making the quotient of TΣ

with respect to Q a finite bisimilar quotient iff there exists a finite refinement Q′ of the state space partition
Υ′−1(H(P)) making the quotient of TΣ′ with respect to Q′ a finite bisimilar quotient.

Proof. Assume that Q exists and let Q′ be the finite partition H(Q) of the state space of TΣ′ (note that H(Q)
is a partition since H is an invertible matrix). It is clear that Q′ refines Υ′−1(H(P)). To show that Q′ is
a bisimulation relation between TΣ′ and TΣ′ consider (z1, w1) ∈ Q′ and assume that z1 −→ z2 in TΣ′ . By
definition of Q′ and invertibility of H, there exists (x1, y1) ∈ Q such that (Hx1,Hy1) = (z1, w1) and x1 −→ x2

in TΣ with Hx2 = z2. It then follows from the fact that Q is a bisimulation relation between TΣ and TΣ

that y1 −→ y2 in TΣ with (x2, y2) ∈ Q. Let u be the input triggering the transition y1 −→ y2. Then, input
Fy1 + Gu triggers a transition Hy1 = w1 −→ w2 = Hy2 in T ′

Σ and (z2, w2) ∈ Q′ since (z2, w2) = (Hx2,Hy2)
and (x2, y2) ∈ Q. This proves condition (3) in Definition 2.3 and condition (4) is proved using the same
argument. Condition (2) is trivially satisfied since the set of initial states is Rn and H is invertible while
condition (1) follows from the equality Υ = Υ′ ◦H. �

We now return to the proof of Theorem 2.8.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 9

Proof of Theorem 2.8. In view of Proposition 2.9 we can assume, without loss of generality, that Σ is in
Brunovsky normal form since any controllable linear system can be transformed into this form by a change of
coordinates and an invertible feedback [Bru70, Kal72]. Recall that the Brunovsky normal form of a controllable
linear system with controllability indices µ1, . . . , µm is given by:

(2.4)

x1(t + 1) = x2(t) xµ1+1(t + 1) = xµ1+2(t) . . . xµ1+...+µm−1+1(t + 1) = xµ1+...+µm−1+2(t)
x2(t + 1) = x3(t) xµ1+2(t + 1) = xµ1+3(t) . . . xµ1+...+µm−1+2(t + 1) = xµ1+...+µm−1+3(t)

...
...

...
xµ1(t + 1) = u1(t) xµ1+µ2(t + 1) = u2(t) . . . xµ1+...+µm(t + 1) = um(t)

A simple computation shows that for a control system in Brunovsky normal form Υ is of the form:

(2.5) Υ = φ ◦ π

where π : Rn → Rm is the projection map π(x) = (x1, xµ1+1, . . . , xµ1+...+µm−1+1) and φ is an arbitrary linear
isomorphism. We will now introduce some notation to simplify the proof. We will use x(t + i, u(t), u(t +
1), . . . , u(t + i− 1)) to denote x(t + i) and to emphasize that x(t + i, u(t), u(t + 1), . . . , u(t + i− 1)) is obtained
from x(t) by applying the sequence of inputs u(t), u(t + 1), . . . , u(t + i − 1). We will also denote by µ the
largest controllability index.

We now note that it follows from equality (2.5) that input uk(t+j) will not affect Υ
(
x(t+i, u(t), . . . , u(t+i−1))

)
when µk > i− j. In other words:

(2.6) µk > i− j ⇒ ∂

∂uk(t + j)
Υ

(
x(t + i), u(t), . . . , u(t + i− 1)

)
= 0

To illustrate this remark consider a control system defined by x1(t + 1) = x2(t) and x2(t + 1) = u(t) with
observation map Υ(x) = x1. Since the controllability index corresponding to input u is 2 we see that for j = 0:

(i = 0)
∂

∂u(t)
Υ(x(t)) =

∂

∂u(t)
x1(t) = 0

(i = 1)
∂

∂u(t)
Υ

(
x(t + 1, u(t))

)
=

∂

∂u(t)
x2(t) = 0

This remark will be used several times in the proof.

Consider now the equivalence relation Rk ⊆ Rn × Rn recursively defined as follows:

(x(t), y(t)) ∈ R0 iff πP ◦Υ(x(t)) = πP ◦Υ(y(t))

(x(t), y(t)) ∈ Rk+1 iff ∀u(t) ∈ Rm ∃v(t) ∈ Rm ∧ ∀v(t) ∈ Rm ∃u(t) ∈ Rm
(
x(t + 1, u(t)), y(t + 1, v(t))

)
∈ Rk

We claim that Rµ−1 is an auto-bisimulation relation. Since condition (1) in Definition 2.3 follows from the
chosen observation function for TP

Σ and TP′

Σ and condition (2) follows from the equality Q0 = Rn, in order to
prove the claim we only need to show that for any (x(t), y(t)) ∈ Rµ−1:

(1) if x(t) −→ x(t + 1, u(t)), then there exists y(t + 1, v(t)) satisfying y(t) −→ y(t + 1, v(t)) and
(
x(t +

1, u(t)), y(t + 1, v(t))
)
∈ Rµ−1;

(2) if y(t) −→ y(t + 1, v(t)), then there exists x(t + 1, u(t)) satisfying x(t) −→ x(t + 1, u(t)) and
(
x(t +

1, u(t)), y(t + 1, v(t))
)
∈ Rµ−1.

We shall show only (1) since the same argument is valid for (2). We will prove (1) by showing that (x(t), y(t)) ∈
Rµ−1 implies (x(t), y(t)) ∈ Rµ since (1) would then follow from the definition of Rk.

Consider then (x(t), y(t)) ∈ Rµ−1 and let x(t) −→ x(t + 1, u(t)). It follows from (x(t), y(t)) ∈ Rµ−1 and the
definition of Rk, the existence of y(t) −→ y(t+1, v(t)) satisfying

(
x(t+1, u(t)), y(t+1, v(t))

)
∈ Rµ−2. Making

use of (2.6) for j = 0 we see that if we modify v(t) to v(t) by changing the components vk(t) of v(t) such
that µ− 1 < µk we will still have

(
x(t + 1, u(t)), y(t + 1, v(t))

)
∈ Rµ−2 since Rµ−2 is based on the equalities

10 PAULO TABUADA AND GEORGE J. PAPPAS

πP ◦Υ
(
x(t+ i, u(t), . . . , u(t+ i−1))

)
= πP ◦Υ

(
y(t+ i, v(t), . . . , v(t+ i−1))

)
for 1 ≤ i ≤ µ−1. We thus define

v(t) as:

vk(t) = uk(t) if µ− 1 < µk

vk(t) = vk(t) if µ− 1 ≥ µk

At this point we have
(
x(t+1, u(t)), y(t+1, v(t))

)
∈ Rµ−2 and we consider x(t+1, u(t)) −→ x(t+2, u(t), u(t+1)).

It follows from
(
x(t+1, u(t)), y(t+1, v(t))

)
∈ Rµ−2 and the definition of Rk, the existence of y(t+1, v(t)) −→

y(t+2, v(t), v(t+1)) satisfying
(
x(t+2, u(t), u(t+1)), y(t+2, v(t), v(t+1))

)
∈ Rµ−3. Making use of (2.6) for

j = 1 we see that if we modify v(t + 1) to v(t + 1) by changing the components vk(t + 1) of v(t + 1) such that
µ− 2 < µk we will still have

(
x(t + 2, u(t), u(t + 1)), y(t + 2, v(t), v(t + 1))

)
∈ Rµ−3 since Rµ−3 is based on the

equalities πP ◦Υ
(
x(t + i, u(t), . . . , u(t + i− 1))

)
= πP ◦Υ

(
y(t + i, v(t), . . . , v(t + i− 1))

)
for 2 ≤ i ≤ µ− 1. We

thus define v(t + 1) as:

vk(t + 1) = uk(t + 1) if µ− 2 < µk

vk(t + 1) = vk(t + 1) if µ− 2 ≥ µk

If we keep on modifying v to v according to the above described process we will obtain:(
x(t + µ− 1, u(t), . . . , u(t + µ− 2)), y(t + µ− 1, v(t), . . . , v(t + µ− 2))

)
∈ R0

Consider now x(t + µ− 1, u(t), . . . , u(t + µ− 2)) −→ x(t + µ, u(t), . . . , u(t + µ− 1)) and let v(t + µ− 1) be an
arbitrary element of Rm. It then follows that y(t+µ−1, v(t), . . . , v(t+µ−2)) −→ y(t+µ, v(t), . . . , v(t+µ−1))
and furthermore:

π(x(t + µ, u(t), . . . , u(t + µ− 1))) = (u1(t + µ− µ1), . . . , um(t + µ− µm))
= (v1(t + µ− µ1), . . . , vm(t + µ− µm))
= π(y(t + µ, v(t), . . . , v(t + µ− 1))

in virtue of the way we defined v for 0 ≤ i ≤ µ− 2. We thus conclude from (2.5) that:(
x(t + µ, u(t), . . . , u(t + µ− 1)), y(t + µ, v(t), . . . , v(t + µ− 1))

)
∈ R0

which in turn implies (x(t), y(t)) ∈ Rµ and concludes the proof of the claim.

To conclude the proof of the theorem we must show that Rµ−1 has a finite number of equivalence classes.
However, this follows at once from the observation that Rµ−1 represents bisimilarity restricted to µ− 1 steps
and defined with respect to a finite observation space.

�

The possibility of synthesizing controllers enforcing LTL specifications hinges on Theorem 2.8 as it guarantees
that the behavior of TΣ admits a finite representation in the form of a bisimilar quotient. This bisimulation is
based on a finite partition of the observation space of TΣ used to describe the control objectives through a LTL
formula. We thus see that the observation space and map of TΣ, naturally defined by the system dynamics
under Assumption II, are essential ingredients of Theorem 2.8.

Since existence of finite bisimulations has been established, the following well known bisimulation algorithm
can be used to compute the coarsest possible bisimulation [BFH90, KS90] provided that every set operation
is effectively computable3. The algorithm starts with a transition system TΣ and the initial partition Υ−1(P)
of Rn and terminates with the coarsest partition P ′ such that T/P′ is a bisimilar quotient of T .

3We use the expression effectively computable to denote the existence of an algorithm for a Touring machine implementing
the desired set operation.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 11

Algorithm 2.10 (Bisimulation Algorithm).

set: P ′ = Υ−1(P)

while: ∃P, P ′ ∈ P ′ such that ∅ 6= P ∩ Pre(P ′) 6= P

set: P1 = P ∩ Pre(P ′), P2 = P ∩ Pre(P ′)

refine: P ′ =
(
P ′\{P}

)
∪ {P1, P2}

end while

As we are considering linear control systems it is natural to consider partitions of the observation space Rm

defined by semi-linear sets. To ensure computability we restrict all the coefficients to live in Q:

Definition 2.11. The class of semi-linear subsets of Rm consists of finite unions, intersections and comple-
ments of the following elementary sets:{

x ∈ Rm | fT x + c ∼ 0, f ∈ Qm, c ∈ Q, ∼∈ {=, >}
}

Computability of the finite bisimulation is now a consequence of effective computability of intersections, unions
and complements of semi-linear sets and the fact that Pre of a semi-linear set can be computed by quantifier
elimination [BCR98], resulting in a semi-linear set. We thus have the following corollary to Theorem 2.8:

Corollary 2.12. Let Σ be a discrete-time linear control system satisfying Assumptions A.I and A.II and
defined by matrices A and B with rational entries. For any finite partition P of the observation space of TΣ

defined by semi-linear sets, the quotients of TP
Σ = (Rn, Rn,−→,P, πP ◦Υ) and TP′

Σ = (Rn, Rn,−→,P ′, πP′)
with respect to partition P ′, whose existence is asserted by Theorem 2.8, are finite bisimilar quotients which
are effectively computable.

Example 2.13. We now illustrate Theorem 2.8 on a variation of the periodic synchronization example dis-
cussed in the introduction. Consider two identical vehicles moving on the same lane as shown in Figure 2.

Z

Figure 2. Identical vehicles following the same lane.

For our purposes it will be sufficient to consider the translational dynamics along the lane. Each vehicle is
modeled as a discrete-time double integrator:

zi(t + 1) = vi(t)
vi(t + 1) = ui(t)

where i ∈ {1, 2} and zi represents the translational position of car i. Since we will only be interested in
controlling the spacing between the vehicles, we introduce new variables:

y1 = z2 − z1 y2 = v2 − v1 u = u2 − u1

12 PAULO TABUADA AND GEORGE J. PAPPAS

leading to the following model:

y1(t + 1) = y2(t)
y2(t + 1) = u(t)(2.7)

governing inter vehicle spacing measured by y1. Observation map Υ : R2 → R satisfies ΥB = 0 and if we
model Υ by the row matrix [a b] we obtain:

0 = ΥB =
[
a b

] [
0
1

]
= b

To make the discussion concrete we take a = 1 leading to Υy = y1 and note that other choices for a would
equality work. The requirement that vehicles should come together (in order to communicate) at least every
3 seconds can be modeled by:

ϕ = 2 �3
(
p1 ∧ p2

)
(2.8)

p1 = y1 + 1/2 > 0
p2 = −y1 + 1/2 > 0

Note that predicates p1 and p2 represent regions on the observation space R ∼= R2/V = R2/span{B}. The
formula p1 ∧ p2 is satisfied when the distance between vehicles is smaller than 1 and 2 �3

(
p1 ∧ p2

)
ensures

that such distance constraint is satisfied every 3 time steps.

If we denote by S1 the set defined by p1 ∧ p2 and by S2 its complement, that is:

S1 =
{

(y1, y2) ∈ R2
∣∣∣ − 1

2
< y1 <

1
2

}
S2 =

{
(y1, y2) ∈ R2

∣∣∣ y1 ≤ −1
2
∨ y1 ≥

1
2

}
we can use the bisimulation algorithm with the initial partition Π = {S1, S2}. Following Algorithm 2.10 we
compute:

Pre(S1) =
{

(y1, y2) ∈ R2
∣∣∣ − 1

2
< y2 <

1
2

}
S2 ∩ Pre(S1) =

{
(y1, y2) ∈ R2

∣∣∣ (
y1 ≤ −1

2
∨ y1 ≥

1
2

)
∧ −1

2
< y2 <

1
2

}
Since S2 ∩ Pre(S1) 6= ∅ and S2 ∩ Pre(S1) 6= S2 we split S2 into the sets S21 and S22 defined by:

S21 = S2 ∩ Pre(S1) =
{

(y1, y2) ∈ R2
∣∣∣ (

y1 ≤ −1
2
∨ y1 ≥

1
2

)
∧ −1

2
< y2 <

1
2

}
S22 = S2 ∩ Pre(S1) =

{
(y1, y2) ∈ R2

∣∣∣ (
y1 ≤ −1

2
∨ y1 ≥

1
2

)
∧

(
y2 ≤ −1

2
∨ y2 ≥

1
2

)}
At this point the refined partition is given by Π = {S1, S21, S22}. Choosing now S1 and S21 from Π we
compute:

Pre(S21) =
{

(y1, y2) ∈ R2
∣∣∣ y2 ≤ −1

2
∨ y2 ≥

1
2

}
S1 ∩ Pre(S21) =

{
(y1, y2) ∈ R2

∣∣∣ − 1
2

< y1 <
1
2
∧

(
y2 ≤ −1

2
∨ y2 ≥

1
2

)}
Again we verify that S1 ∩ Pre(S21) 6= ∅ and S1 ∩ Pre(S21) 6= S1 which leads to the splitting of S1 into S11

and S12 defined by:

S11 = S1 ∩ Pre(S21) =
{

(y1, y2) ∈ R2
∣∣∣ − 1

2
< y1 <

1
2
∧

(
y2 ≤ −1

2
∨ y2 ≥

1
2

)}
S12 = S1 ∩ Pre(S21) =

{
(y1, y2) ∈ R2

∣∣∣ − 1
2

< y1 <
1
2
∧

(
− 1

2
< y2 <

1
2

)}

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 13

This splitting leads to the new partition Π = {S11, S12, S21, S22} which already defines a bisimulation since:

S11 ∩ Pre(S11) = ∅ S12 ∩ Pre(S11) = S12 S21 ∩ Pre(S11) = S21 S22 ∩ Pre(S11) = ∅
S11 ∩ Pre(S12) = ∅ S12 ∩ Pre(S12) = S12 S21 ∩ Pre(S12) = S21 S22 ∩ Pre(S12) = ∅
S11 ∩ Pre(S21) = S11 S12 ∩ Pre(S21) = ∅ S21 ∩ Pre(S21) = ∅ S22 ∩ Pre(S21) = S21

S11 ∩ Pre(S22) = S11 S12 ∩ Pre(S22) = ∅ S21 ∩ Pre(S22) = ∅ S22 ∩ Pre(S22) = S21

This finite bisimulation has four discrete states and is graphically represented in Figure 3 where initial states
are grey colored and observations are represented outside the circles denoting the states.

S11 S12

S21 S22

S11 S12

S21 S22

S11 S12

S21 S22

S1 S1

S2 S2

Figure 3. Finite bisimilar quotient TP′

∆ on the left and TP
∆ on the right.

Example 2.14. Consider now a linear control system described by the following matrices:

A =

 2 0 −1
−1 −7 11
0 4 6

 B =

1 2
1 1
1 1

It is not difficult to see that controllability holds and the controllability indices are given by µ1 = 2 and µ2 = 1.
Vector space V is therefore spanned by the first column of B. Adopting the following matrix representation
for the observation map Υ : R3 → R2:

Υx =
[
a1 a2 a3

b1 b2 b3

]x1

x2

x3

it follows that equality Υb1 = 0 leads to a1 + a2 + a3 = 0 and b1 + b2 + b3 = 0. One possible choice for map
Υ satisfying these equations is:

Υx =
[
0 1 −1
1 1 −2

]x1

x2

x3

Starting with the following observation space partition:

S1 = {(y1, y2) ∈ R2 | y1 > 0 ∧ y2 > 0} S2 = {(y1, y2) ∈ R2 | y1 > 0 ∧ y2 ≤ 0}
S3 = {(y1, y2) ∈ R2 | y1 ≤ 0 ∧ y2 > 0} S4 = {(y1, y2) ∈ R2 | y1 ≤ 0 ∧ y2 ≤ 0}

we obtain a finite bisimulation with 8 states defined by TP
∆ = (Q,Q0,−→, O,Υ∆) where:

Q = {q1, q2, q3, q4, q5, q6, q7, q8} Q0 = Q O =
{
S1, S2, S3, S4

}
−→ =

{
(q1, q1), (q1, q2), (q1, q3), (q1, q4), (q3, q1), (q3, q2), (q3, q3), (q3, q4)

}
∪

{
(q2, q5), (q2, q6), (q2, q7), (q2, q8), (q4, q5), (q4, q6), (q4, q7), (q4, q8)

}
∪

{
(q5, q1), (q5, q2), (q5, q3), (q5, q4), (q7, q1), (q7, q2), (q7, q3), (q7, q4)

}
∪

{
(q6, q5), (q6, q6), (q6, q7), (q6, q8), (q8, q5), (q8, q6), (q8, q7), (q8, q8)

}

14 PAULO TABUADA AND GEORGE J. PAPPAS

Υ∆(q1) = S1 Υ∆(q2) = S1 Υ∆(q3) = S2 Υ∆(q4) = S2

Υ∆(q5) = S3 Υ∆(q6) = S3 Υ∆(q7) = S4 Υ∆(q8) = S4

The sets associated with each discrete state were computed using Algorithm 2.10 and are given by:

q1 :
{
(x1, x2, x3) ∈ R3 | x2 − x3 > 0 ∧ −x1 − 11x2 + 5x3 > 0 ∧ x1 + x2 − 2x3 > 0

}
q2 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 > 0 ∧ −x1 − 11x2 + 5x3 ≤ 0 ∧ x1 + x2 − 2x3 > 0

}
q3 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 > 0 ∧ −x1 − 11x2 + 5x3 > 0 ∧ x1 + x2 − 2x3 ≤ 0

}
q4 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 > 0 ∧ −x1 − 11x2 + 5x3 ≤ 0 ∧ x1 + x2 − 2x3 ≤ 0

}
q5 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 ≤ 0 ∧ −x1 − 11x2 + 5x3 > 0 ∧ x1 + x2 − 2x3 > 0

}
q6 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 ≤ 0 ∧ −x1 − 11x2 + 5x3 ≤ 0 ∧ x1 + x2 − 2x3 > 0

}
q7 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 ≤ 0 ∧ −x1 − 11x2 + 5x3 > 0 ∧ x1 + x2 − 2x3 ≤ 0

}
q8 :

{
(x1, x2, x3) ∈ R3 | x2 − x3 ≤ 0 ∧ −x1 − 11x2 + 5x3 ≤ 0 ∧ x1 + x2 − 2x3 ≤ 0

}
To illustrate the computation of these sets we consider q1. Starting from partition P = {S1, S2, S3, S4} we
obtain the state space partition Υ−1(P) = {Υ−1(S1),Υ−1(S2),Υ−1(S3),Υ−1(S4)}. If we denote by P the set
Υ−1(S1), we have:

P = {x ∈ R3 | x2 − x3 > 0 ∧ x1 + x2 − 2x3 > 0}
Pre(P) = {x ∈ R3 | ∃u ∈ R2 x1 − 2x3 − 15x2 + u2 > 0 ∧ −x1 − 11x2 + 5x3 > 0}

= {x ∈ R3 | − x1 − 11x2 + 5x3 > 0}
Pre(P) ∩ P = {x ∈ R3 | x2 − x3 > 0 ∧ x1 + x2 − 2x3 > 0 ∧ −x1 − 11x2 + 5x3 > 0} = q1

3. LTL formulas and Büchi automata

Linear Time Temporal logic is a very powerful specification mechanism since it allows one to express complex
requirements through simple formulas. Even though the use of temporal logic is now widely used for verification
of software systems [CPG99, MP92], we argue that temporal logic is equally relevant to synthesis problems.
In this section we define LTL syntax and semantics, provide simple examples to illustrate the definitions, and
discuss the translation of LTL formulas into Büchi automata.

3.1. LTL syntax and semantics. We start with a finite set P of predicates from which more complex
formulas can be built. Even though P can be an arbitrary finite set we shall keep in mind the particular
case where P is the observation space of TP

Σ . LTL formulas are then obtained through the following recursive
definition.

• true, false and p are LTL formulas for all p ∈ P;
• if ϕ1 and ϕ2 are LTL formulas, then ϕ1 ∧ ϕ2 and ¬ϕ1 are LTL formulas;
• if ϕ1 and ϕ2 are LTL formulas, then ◦ϕ1 and ϕ1Uϕ2 are LTL formulas.

As usual, disjunction ϕ1 ∨ ϕ2 and implication ϕ1 ⇒ ϕ2 are defined as the abbreviations of ¬(ϕ ∧ ϕ2) and
¬ϕ1 ∨ ϕ2, respectively. The operator ◦ is read as “next”, with the meaning that the formula it precedes will
be true in the next time step. The second operator U is read as “until” and the formula ϕ1Uϕ2 specifies that
ϕ1 must hold until ϕ2 holds. From the U operator we can define other commonly used operators:

�ϕ = trueUϕ(3.1)
2ϕ = ¬ � ¬ϕ(3.2)

Formula 2ϕ is read as “always ϕ” and requires ϕ to be true for all future time, while formula �ϕ reads
“eventually ϕ” and states that ϕ will become true at some point in the future. A unique interpretation of LTL

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 15

formulas is obtained by defining LTL semantics. LTL formulas are interpreted over sequences of predicate4

values s ∈ Pω. We say that string s satisfies formula ϕ at time t, denoted by s(t) |= ϕ, if formula ϕ holds at
time t along trajectory s. The satisfaction relation is defined as follows:

For any p ∈ P, LTL formulas ϕ1, ϕ2, and t ∈ N:

• s(t) |= p iff p = s(t),
• s(t) |= ¬ p iff p 6= s(t),
• s(t) |= ϕ1 ∧ ϕ2 iff s(t) |= ϕ1 and s(t) |= ϕ2,
• s(t) |= ◦ϕ1 iff s(t + 1) |= ϕ1,
• s(t) |= ϕ1 Uϕ2 iff ∃t′ ≥ t such that for all k, t ≤ k ≤ t′ s(k) |= ϕ1 and s(t′) |= ϕ2.

Finally we say that a sequence s satisfies formula ϕ iff s(0) |= ϕ.

Example 3.1. As a first example consider the formula 2p for p ∈ P. This formula defines an invariance
property by requiring p to hold for all t ∈ N. Such specification is useful, for example, in one wants to restrict
the activity of a certain control system to a set of operating conditions defined by the predicate p. The
semantics of 2p can be obtained from the semantics of U using the definition of 2 given in (3.2) or given
directly as s |= 2ϕ iff s(i) |= ϕ for all i ∈ N. It then follows that the unique string s ∈ Pω satisfying 2p is:

ppppppppppp . . .

When each predicate p ∈ P is an element of a finite partition of the observation space O of TΣ, requirement
2p specifies that trajectories of Σ should start in the set defined by p and stay in that set forever.

Example 3.2. Consider now the formula p1Up2. According to the above introduced semantics, every string
satisfying this formula is of the form:

p2????????????? . . .

p1p2??????????? . . .

p1p1p2????????? . . .

p1p1p1p2??????? . . .

p1p1p1p1p2????? . . .

...

where we have used the symbol ? to denote an occurrence of any predicate in P. The first string satisfies p1Up2

by satisfying p2, after which formula p1Up2 no longer imposes any constraint on the string. The remaining
strings satisfy p1Up2 by initially satisfying p1 until they satisfy p2 at some later time. Once p2 is satisfied,
any predicate in P is allowed to occur in the string since p1Up2 is already true. Operator U is very useful to
capture temporal ordering of control requirements. One can specify, for example, that the temperature and
humidity in a building should stay within certain bounds (as specified by predicates on the observation space)
until the end of working hours, or that an aircraft should stay at a certain altitude until the descent phase is
initiated, etc.

Example 3.3. More complex (and useful) formulas usually involve nesting of temporal operators. One such
example is obtained by combining the 2 operator with the formula p1Up2 resulting in the formula p1U2p2.
Intuitively this formula requires p2 to hold for all time, or that p1 holds until at some later time p2 holds for

4LTL formulas are usually interpreted over sequences of sets of predicate values. Since in this paper we identify P with a
finite partition of the observation space O of some transition system, it follows that for each t ∈ N only one predicate is satisfied
thus justifying our choice for LTL semantics.

16 PAULO TABUADA AND GEORGE J. PAPPAS

all future time. A string satisfying p1U2p2 is necessarily of the form:

p2p2p2p2p2 . . .

p1p2p2p2p2 . . .

p1p1p2p2p2 . . .

p1p1p1p2p2 . . .

...

Formula p1U2p2 can be used to model convergence towards the operating conditions described by p2 through
a particular subset of the state space described by p1.

Different combinations of 2 and U result in formulas with different meaning. For example any string satisfying
the formula 2(p1Up2) must satisfy p1Up2 at every time step, which implies that at every time step either p2

holds or p1 holds until p2 holds at some future time. Examples of strings satisfying 2(p1Up2) are given below:

p2p2p2p2p2p2p2p2p2p2p2p2p2 . . .

p2p1p2p1p2p1p2p1p2p1p2p1p2 . . .

p1p1p1p2p1p1p2p1p1p2p1p1p2 . . .

p1p1p1p1p1p1p1p1p1p1p2p2p2 . . .

Example 3.4. We now return to Example 2.13. The only predicate appearing in formula (2.8), is an element
of the observation space of TΣ. According to LTL semantics and the abbreviation �3ϕ = ϕ∨◦ϕ∨◦◦ϕ∨◦◦◦ϕ,
some of the infinite strings satisfying (2.8) are given by:

S1S1S1S1S1S1S1 . . .

S1S2S1S2S1S2S1 . . .

S1S1S2S1S1S2S1 . . .

S1S2S2S1S2S2S1 . . .

The reader should verify for himself that in every of the above strings, every length 4 sub-string contains S1.
This shows that the above strings satisfy the specification formula since 2 �3 S1 requires that at every time
step t, �3S1 holds, meaning that S1 should hold at t or that it should hold at t + 1, t + 2 or t + 3. This simple
example also shows how tedious and error prone it is to list all the possible strings satisfying the very simple
formula (2.8).

When a LTL formula is interpreted over observed sequences in Lω(TP
Σ) each predicate corresponds to a subset

of Rm and the specification defines how trajectories of Σ interact with these sets. This is a convenient and
formal way of expressing control requirements for discrete-time linear systems. If every string in Lω(TP

Σ)
satisfies formula ϕ we simply say that TP

Σ satisfies ϕ which is denoted by TP
Σ |= ϕ. We shall use a similar

notation for TP′

Σ even though predicates in ϕ do not correspond to sets in P ′. We shall use the notation
TP′

Σ |= ϕ when for every r ∈ Lω(TP′

Σ), πP′P(r) |= ϕ. In general it is not the case that TP′

Σ |= ϕ and a
controller Tc needs to be constructed to ensure satisfaction of ϕ by the closed-loop system. Such a controller
is built from TP′

∆ and a Büchi automaton describing the specification. It is therefore necessary to translate
the LTL specification formula ϕ into a Büchi automaton.

3.2. Büchi automata. The strings satisfying a given LTL formula can also be compactly described in terms
of a finite operational model. Such model is slightly more complex than a transition system since LTL formulas
specify both the finite and infinite behavior of strings. Consider for example the formula �p = trueU p for
p ∈ P. This formula requires p to hold at some time in the future. Given a string s ∈ Pω, we cannot decide
if s |= �p by looking at a finite prefix of s since p can always appear at a later point in time. This shows
that we need to equip transition systems with an additional mechanism describing the behavior of strings ”at
infinity”. These new transition systems are called Büchi automata.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 17

Definition 3.5. A Büchi automaton is a tuple A = (TA, F) = ((Q,Q0,−→, O,Υ), F), where TA is a finite
transition system and F ⊆ Q is a set of final states. A string s ∈ Qω is a run of A if s(1) ∈ Q0, s(i) −→ s(i+1)
for i ∈ N and there exist infinitely many i ∈ N such that s(i) ∈ F .

Since every Büchi automaton A carries an underlying transition system structure TA, it also defines generated
languages and ω-languages. In addition, final states allows one to introduce the notion of accepted language:

Definition 3.6. Let A = (Q,Q0,−→, O,Υ, F) be a Büchi automaton. The language accepted by A, denoted
by Lω(A), is defined as:

Lω(A) =
{
r ∈ Oω | r = Υ(s) for some initialized run s of A

}
Büchi automata accept languages which are more general than the languages generated by transition systems.
Since given a transition system T we can always construct a Büchi automaton A with F = Q, leading to
Lω(A) = Lω(TA) = Lω(T), we can regard transition systems as a subclass of Büchi automata. The relevance
of Büchi automata comes from the fact that for any LTL formula ϕ it is possible to construct a Büchi
automaton Aϕ accepting every string satisfying formula ϕ. This fact was first shown by Büchi [B6̈2] in the
context of decidability of first and second order monadic theories of one successor. Although decidability of
the translation between LTL formulas and Büchi automata was settled by Büchi’s work, the complexity of
such translations has been improved through the years by different authors. The resulting automata are, in
the worst case, exponential in the length of the translated formula. However, current practice in computer
aided verification shows that such worst case complexity is seldom achieved. Since this translation is well
documented in the literature we point the interested reader to the survey [Wol00] and to the algorithms
described in [SB00, GPVW96] for more details. We now return to the periodic synchronization example
converting the specification formula into a Büchi automaton.

Example 3.7. Recall the specification formula discussed in Example 2.13 that we repeat here for convenience:

ϕ = 2 �3
(
p1 ∧ p2

)
Specification formula ϕ can be translated into the transition system5 Tϕ represented in Figure 4 where p1 ∧ p2

has been abbreviated by S1, and ¬(p1 ∧ p2) by S2.

S1S2S2
q2 q3 q4

S2
q1

Figure 4. Transition system Tϕ corresponding to specification formula ϕ.

Note that starting from any state of Tϕ state q4 will be necessarily reached in at most 3 steps. Since the
observation associated with q4 is S1 this implies that at any time step, S1 will hold no later than 3 time steps
implying that any string generated by Tϕ satisfies ϕ.

We shall not discuss further Büchi automata as we will not have the oportunity of using them in this paper.
However, they are essential for the construction of a discrete controller or supervisor Tc for TP′

∆ enforcing ϕ
as discussed in the next section.

5In this case the final states of Büchi automaton Aϕ are all of its states and we can equivalently represent Aϕ by its underlying

transition system.

18 PAULO TABUADA AND GEORGE J. PAPPAS

4. Supervisory synthesis

The existence of finite bisimulations for linear systems, discussed in Section 2, enables the design of controllers
enforcing LTL specifications at the purely discrete level. Such control problems on infinite behaviors have
been studied in the discrete event systems community [RW89, KG95, CL99] and in this section we review
the results and concepts required for our purposes. We start by introducing a notion of parallel composition
between transition systems modeling interaction between components. This interaction can be understood
as a form of control where a supervisor is designed to modify (restrict) the behavior of another (transition)
system by interconnection.

Definition 4.1. Let T1 = (Q1, Q
0
1,−→1, O,Υ1) and T2 = (Q2, Q

0
2,−→2, O,Υ2) be two transition systems

with the same observation space O. The parallel composition of T1 and T2 (with observation synchronization)
is denoted by:

T1 ‖O T2 = (Q‖, Q
0
‖,−→‖, O,Υ‖)

where:

• Q‖ =
{
(q1, q2) ∈ Q1 ×Q2 | Υ1(q1) = Υ2(q2)

}
;

• Q0
‖ =

{
(q1, q2) ∈ Q0

1 ×Q0
2 | Υ1(q1) = Υ2(q2)

}
;

• (q1, q2) −→‖ (q′1, q
′
2) for (q1, q2), (q′1, q

′
2) ∈ Q‖ iff q1 −→1 q′1 and q2 −→2 q′2;

• Υ‖(q1, q2) = Υ1(q1) = Υ2(q2).

The presented definition of parallel composition is not the usual synchronous product used in the supervisory
control literature since we have defined transition systems with observations on the states rather than on the
transitions. Nevertheless, the language of transition system T1 ‖O T2 can still be expressed in terms of the
languages of T1 and T2.

Proposition 4.2. Let T1 and T2 be transition systems with the same observation space O. The following
equalities are always satisfied:

L(T1 ‖O T2) = L(T1) ∩ L(T2) Lω(T1 ‖O T2) = Lω(T1) ∩ Lω(T2)

The previous proposition shows that a controller Tc can restrict the behavior of TΣ through language intersec-
tion in order to eliminate strings s ∈ Lω(TΣ) which do not satisfy the specification formula ϕ. Furthermore, as
asserted in the next result, a controller for TP′

Σ can be obtained by working with the finite transition system
TP′

∆ .

Proposition 4.3. Let Σ be a controllable linear system, let ϕ be a LTL formula with predicates denoting sets
in a finite partition P of the observation space of TΣ and let P ′ be the finite refinement of state space partition
Υ−1(P) whose existence is asserted by Theorem 2.8. There exists a controller Tc satisfying Tc ‖O TP′

Σ |= ϕ iff
there exists a controller Tc satisfying Tc ‖O TP′

∆ |= ϕ.

Proof. It follows at once from the properties of bisimulation, see for example [Mil89], that for any transition
system Tc, TP′

Σ
∼= TP′

∆ implies Tc ‖O TP′

Σ
∼= Tc ‖O TP′

∆ . The result now follows from Proposition 2.4. �

At this point the reader may be wondering why the previous result is concerned with the existence of a
controller for TP′

Σ and not for TP
Σ . Since a controller modifies the behavior of the system to be controlled

by parallel composition with observation synchronization, working with TP′

Σ is preferable as the observation
space of TP′

Σ offers more detailed information regarding the dynamics of TΣ than the observation space of TP
Σ .

Recalling that for any LTL formula ϕ we can always construct a Büchi automaton Aϕ recognizing every string
satisfying ϕ and recalling that from TP′

∆ we can construct a Büchi automaton AP′

∆ satisfying Lω(AP′

∆) =
Lω(TP′

∆), the problem of constructing a controller enforcing ϕ can be conceptually reduced to the following
steps:

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 19

S12S11
p2 p1

S12
p1

S21
p3

S11 S12

S21 S22

S11 S12

S21 S22

S11 S12

S21 S22

S11 S12

S21 S22

S12

S12S11S21

p1

p2 p1p3

Figure 5. Parallel composition of TP′

∆ with two different controllers for the problem described
in Example 2.13.

(1) Construct TP′

Σ from Σ and P;
(2) Construct TP′

∆ from TP′

Σ ;
(3) Construct AP′

∆ from TP′

∆ ;
(4) Construct Aϕ from ϕ;
(5) Construct a Büchi automaton controller Ac satisfying πP′P

(
Lω(Ac) ∩ Lω(AP′

∆)
)
⊆ Lω(Aϕ).

The first four steps have already been described in this paper and the fifth step has been extensively studied in
the discrete event systems literature [Ram89, KGM92, TW94, KG95]. For the purposes of this paper we will
simply assume the existence of Ac defined in (5). Note that if no such Ac exists, then Proposition 4.3 asserts
that no controller for TP′

Σ (and consequently for TP
Σ) exists. Furthermore, we will also assume that Ac can

be modeled by a transition system, that is, there exists a transition system Tc satisfying Lω(Tc)∩Lω(AP′

∆) =
Lω(Ac) ∩ Lω(AP′

∆). As discussed in [KG95], a finite supervisor that is implementable6 necessarily has finite
memory and therefore can only restrict the infinite behavior of AP′

∆ based on finite length observations.
Therefore, for any implementable Büchi automaton controller Ac enforcing ϕ there exists a finite transition
system Tc satisfying Lω(Tc ‖ TP′

∆) = Lω(Tc) ∩ Lω(TP′

∆) = Lω(Ac) ∩ Lω(AP′

∆). We refer the reader to [Ram89,
KGM92, TW94, KG95] for more details on the existence and computation of Tc and return to Example 2.13.

Example 4.4. Figure 5 shows two different controllers enforcing LTL formula (2.8) on the transition system
displayed in Figure 3. We can see that both controllers enforce LTL formula (2.8) on T∆ since on the first
case the language of the parallel composition consists of strings of the form S1S1S1S1 . . ., while in the second
case it consists of strings in which occurrence of S2 (if any) is immediately followed by an occurrence of S1.

6We use the expression implementable to denote software, hardware or software and hardware implementations.

20 PAULO TABUADA AND GEORGE J. PAPPAS

5. Refining the closed-loop

In the previous section we outlined how a finite controller Tc for TP′

∆ enforcing a desired LTL specification
can be obtained. In this section we will see that we can also extract from Tc the continuous inputs required
to enforce the specification on Σ. The explicit modeling of the control inputs available to Σ will result in a
hybrid closed-loop behavior. This motivates the introduction of discrete-time linear hybrid systems and their
corresponding transition systems.

Definition 5.1. A discrete-time linear hybrid system H = (X, X0, {Aq, Bq}q∈Q, δ, U) consists of the following
elements:

• The state space X =
∐

q∈Q Rnq where Q is a finite set of states and nq ∈ N for each q ∈ Q;
• A set of initial states X0 ⊆ X,
• The continuous dynamics {Aq, Bq}q∈Q where for each q ∈ Q, (Aq, Bq) ∈ Rnq×nq × Rnq×mq defines

a discrete-time linear control system x(t + 1) = Aqx(t) + Bqu(t) with inputs restricted to the set
U(q(t), x(t)) ⊆ Rmq ;

• The discrete dynamics δ : Q×Rnq → 2Q which assigns to each discrete q ∈ Q and continuous x ∈ Rnq

state the discrete successor states δ(q(t), x(t)) ⊆ Q.

Similarly to the purely continuous case, hybrid systems can also be embedded into the class of transition
systems. Assuming the continuous dynamics to be controllable we can define transition system:

TH =
(
X, X0,−→H , O,Υ

)
associated with a discrete-time linear hybrid system H = (X, X0, {Aq, Bq}q∈Q, δ, U) by (q, x) −→H (q′, x′) iff
x′ = Aqx + Bqu, q′ ∈ δ(q, x) and u ∈ U(q, x). The observation set and map are defined by O =

∐
q∈Q Oq and

Υ(q, x) = Υq(x) where Oq and Υq are the observation set and map associated with the control systems defined
by (Aq, Bq) for each q ∈ Q. The importance of embedding linear hybrid systems into the class of transition
systems resides in the possibility of formally defining a notion of correct implementation.

Definition 5.2. Let Σ be a controllable linear system, let ϕ be a LTL formula with predicates denoting sets in
a finite partition P of the observation space of TΣ and let Tc be a controller enforcing ϕ on the finite bisimilar
quotient TP′

∆ , that is, Tc ‖O TP′

Σ |= ϕ. Linear hybrid system H is said to be a correct implementation of the
closed-loop behavior Tc ‖O TP′

Σ if Tc ‖O TP′

Σ
∼= TH .

A hybrid implementation H = (X, X0, {Aq, Bq}q∈Q, δ, U) of a desired closed-loop behavior Tc ‖O TP′

Σ can be
immediately obtained from Tc ‖O TP′

Σ = (Q‖, Q
0
‖,−→‖, O,Υ‖) by defining:

X = Q‖(5.1)

X0 = Q0
‖(5.2)

Aq = A(5.3)
Bq = B(5.4)

δ(q, x) = {q′ ∈ Q | q −→‖ q′}(5.5)

U(q, x) =
{
u ∈ Rm | πP′(Ax + Bu) ∈ Υ‖(δ(q, x))

}
(5.6)

The construction of H represents the last step required for the solution of Problem 1.1 as we now summarize
in the following result.

Theorem 5.3. Let Σ be a controllable linear system satisfying Assumptions A.I and A.II and defined by
matrices A and B with rational entries. For any LTL formula ϕ with predicates denoting semi-linear sets on the
observation space of TΣ, it is decidable to determine the existence of a controller7 Tc satisfying Tc ‖O TP′

Σ |= ϕ.

7Note that depending on the formula ϕ, for example if it defines safety of liveness properties, one may have to impose additional
constraints on Tc.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 21

Furthermore, when such a controller exists it admits the hybrid implementation defined by (5.1) through (5.6)
which is effectively computable.

Proof. By Corollary 2.12 we can effectively compute TP′

∆ . Since we can also effectively compute Aϕ from ϕ,
it follows from standard results in supervisory control [Ram89, KGM92, TW94, KG95] that it is decidable to
determine the existence of a controller Tc for TP′

∆ and also that Tc is effectively computable. The result now
follows from the fact that steps (5.1) through (5.6) are effectively computable since the sets denoted by ϕ are
semi-linear. �

It is important to emphasize that the resulting hybrid controller implicitly defined by H can be obtained in
a totally automated fashion. The closed-loop system is still a control system in the sense that at every state
different future evolutions are possible under the action of different input values. This is natural since the
closed-loop model can now be further controlled to satisfy additional objectives or optimized to extremize
certain performance criteria. Another important characteristic of the presented method is the automatic
synthesis of both the switching logic (implemented by software) and the continuous aspects of control. In fact,
a software implementation of the controller implicitly defined by H can be automatically generated from H
by translating each discrete state of H into code reading the state x from sensors, computing u based on q
and x and sending u to the actuators. This fact is especially important since verification of hybrid systems
is currently limited to systems with very simple continuous dynamics such as timed automata. The proposed
approach thus results in systems that satisfy the specification by design while enlarging the class of system
that can be shown to operate correctly.

Example 5.4. We now illustrate the construction of the hybrid implementation of the closed-loop systems
displayed in Figure 5. We focus on the construction of U which is the only nontrivial element in the definition
of H. The first closed-loop system in Figure 5 consists of a single discrete state and the corresponding set U
is defined by:

U(p1, x) =
{

u ∈ R | πP′(Ax + Bu) ∈ {p1}
}

=
{

u ∈ R | − 1
2

< u <
1
2

}
The resulting hybrid implementation is represented in Figure 6. The second supervisor has three discrete

S12

U=]-1/2,1/2[

x(t+1)=Ax(t)+Bu(t)

p1

Figure 6. Hybrid implementation of the closed-loop behavior enforced by the first supervisor
represented in Figure 5.

states for which we need to compute the input set U . For discrete state p1 we have:

U(p1, x) =
{

u ∈ R | πP′(Ax + Bu) ∈ {p1, p2}
}

=
{

u ∈ R | − 1
2

< u <
1
2
∨

(
u ≤ −1

2
∨ u ≥ 1

2

)}
= R

while for states p2 and p3 the set U is given by:

U(p2, x) =
{

u ∈ R | − 1
2

< u <
1
2

}
U(p3, x) =

{
u ∈ R | − 1

2
< u <

1
2

}
The resulting hybrid implementation is represented in Figure 7.

22 PAULO TABUADA AND GEORGE J. PAPPAS

p1p2p3

x(t+1)=Ax(t)+Bu(t) x(t+1)=Ax(t)+Bu(t) x(t+1)=Ax(t)+Bu(t)

U=]-∞,∞[U=]-1/2,1/2[U=]-1/2,1/2[

S21 S11 S12

Figure 7. Hybrid implementation of the closed-loop behavior enforced by the second super-
visor represented in Figure 5.

6. Discussion

This paper presented an approach for the fully automated synthesis of controllers enforcing LTL specifications
for linear systems. The resulting controllers are of hybrid nature combining the continuous dynamics of the
original control system with the switching logic required to implement the desired specification. We can thus
see these hybrid models as abstract descriptions of the embedded software required for its implementation.
Since the resulting closed-loop system is guaranteed to satisfy the specification by construction, the presented
synthesis technique enlarges the class of embedded systems for which formal guarantees of operation can be
given.

The proposed approach can be further improved in terms of complexity. Compositional design techniques
where different controllers are designed for different aspects of the specification and later combined into a
controller for the overall specification allow one to overcome the complexity of translating LTL formulas into
Büchi automata. Similarly, design with coarser finite abstractions of TP′

Σ than TP′

∆ sidesteps the complexity
involved in the construction of TP′

∆ . The authors are currently investigating these issues as well as synthesis
for other temporal logics such as CTL and µ-calculus.

References

[ACH+95] R. Alur, C.Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho, X. Nicollin, A.Olivero, J. Sifakis, and S. Yovine.
Hybrid automata: An algorithmic approach to specification and verification of hybrid systems. Theoretical Computer

Science, 138:3–34, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, 1994.
[AHLP00] Rajeev Alur, Thomas A. Henzinger, Gerardo Lafferriere, and George J. Pappas. Discrete abstractions of hybrid

systems. Proceedings of the IEEE, 88:971–984, 2000.

[AM95] M. Antoniotti and B. Mishra. ?Discrete-Event Models + Temporal Logic = Supervisory Controller: Automatic Syn-
thesis of Locomotion Controllers. In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 1441–1446, 1995.

[AM02] Yasmina Abdeddaim and Oded Maler. Preemptive job-shop scheduling using stopwatch automata. In Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2002, volume 2280 of Lecture Notes in Computer
Science, pages 113–126. Springer, 2002.

[ASY01] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the reachability problem for planar differential inclu-
sions. In M. D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control,

volume 2034 of Lecture Notes in Computer Science, pages 89–104. Springer-Verlag, 2001.
[ATP01] R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata. In M. D. Di Benedetto and

A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in
Computer Science, pages 49–62. Springer-Verlag, 2001.

[B6̈2] J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Internat. Congr. Logic, Method
and Philos. Sci., pages 1–12, Stanford, 1962. Stanford University Press.

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propositional temporal logic.
Theoretical Computer Science, 59:115–131, 1988.

[BCR98] J. Bochnak, M. Coste, and M-F. Roy. Real Algebraic Geometry. Springer-Verlag, 1998.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 23

[BFH90] A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation. In R.P. Kurshan and E.M.Clarke,

editors, CAV90: Computer Aided Verification, volume 531 of Lecture Notes in Computer Science, pages 197–203.

Springer Verlag, 1990.
[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Pettersson, Judi Romijn, and Frits W.

Vaandrager. Minimum-cost reachability for priced timed automata. In M. D. Di Benedetto and A. Sangiovanni-

Vincentelli, editors, Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in Computer Science,
pages 147–161. Springer-Verlag, 2001.

[BL00] R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic

Control, 45(7):1279–1289, July 2000.
[BMP02] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control systems. IEEE Transaction on Auto-

matic Control, 47(4):546–563, April 2002.

[Bro99] Mireille Broucke. A geometric approach to bisimulation and verification of hybrid systems. In Fritz W. Vaandrager
and Jan H. van Schuppen, editors, Hybrid Systems: Computation and Control, volume 1569 of Lecture Notes in

Computer Science, pages 61–75. Springer-Verlag, 1999.
[Bru70] P. Brunovsky. A classification of linear controllable systems. Kybernetika, 6(3):173–188, 1970.

[CJG02] J.A. Cook, Sun Jing, and J.W. Grizzle. Opportunities in automotive powertrain control applications. In Proceedings

of the 2002 International Conference on Control Applications, pages xlii–li, 2002.
[CK01] A. Chotinan and B.H. Krogh. Verification of infinite state dynamical systems using approximate quotient transition

systems. IEEE Transactions on Automatic Control, 46(9):1401–1410, 2001.

[CKN98] J.E.R. Cury, B.H. Krogh, and T. Ninomi. Synthesis of supervisory controllers for hybrid systems based on approxi-
mating automata. IEEE Transactions on Automatic Control : Special Issue on Hybrid Systems, 43(4):564–568, April

1998.

[CL99] C. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer Academic Publishers, Boston, MA,
1999.

[CMT99] I. Castellani, M. Mukund, and P.S. Thiagarajan. Synthesizing distributed transition systems from global specifications.

In Proceedings of Foundations of Software Technology and Theoretical Computer Science, FSTTCS 1999, volume
1739 of Lecture Notes in Computer Science, pages 219–231. Springer, 1999.

[CP01] Y. Chitour and B. Piccoli. Controllability for discrete systems with a finite control set. Mathematics of Control,
Signals and Systems, 14(2):173–193, 2001.

[CPG99] Edmund M. M. Clarke, Doron Peled, and Orna Grumberg. Model Checking. MIT Press, 1999.

[dAHM00] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. The control of synchronous systems. In Catuscia
Palamidessi, editor, CONCUR 2000 - Concurrency Theory, 11th International Conference, volume 1877 of Lecture

Notes in Computer Science, pages 458–473. Springer, 2000.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. The control of synchronous systems, Part ii. In
Kim Guldstrand Larsen and Mogens Nielsen, editors, CONCUR 2001 - Concurrency Theory, 12th International

Conference, volume 2154 of Lecture Notes in Computer Science, pages 566–582. Springer, 2001.

[DCG+05] P. Dario, M.C. Carrozza, E. Guglielmelli, C. Laschi, A. Menciassi, S. Micera, and F. Vecchi. Robotics as a future and
emerging technology: biomimetics, cybernetics, and neuro-robotics in european project. IEEE Robotics & Automation

Magazine, 12(2):29–45, 2005.

[DM02] Deepak D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In Helmut Alt and Afonso
Ferreira, editors, Proceedings of the 19th Annual Symposium on Theoretical Aspects of Computer Science, STACS

2002, volume 2285 of Lecture Notes in Computer Science, pages 571–582. Springer, 2002.

[DS97] B. Dutertre and V. Stavridou. Formal requirements analysis of an avionics control system. IEEE Transactions on
Software Engineering, 23(5):267 – 278, 1997.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize synchronization skeletons. Science
of Computer Programming, 2:241–266, 1982.

[EM01] N. Elia and S. K. Mitter. Stabilization of linear systems with limited information. IEEE Transactions of Automatic
Control, 46(9):1384–1400, September 2001.

[FTM02] Marco Faella, Salvatore La Torre, and Aniello Murano. Dense real-time games. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science, pages 167–176, Copenhagen, July 2002. IEEE Computer Society

Press.
[GPVW96] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear

temporal logic. In Piotr Dembinski and Marek Sredniawa, editors, Protocol Specification, Testing and Verification
XV, Proceedings of the 15th IFIP Workshop, IFIP Conference Proceedings, pages 3–18, Warsaw, June 1996. Chapman
& Hall.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about hybrid automata?

Journal of Computer and System Sciences, 57:94–124, 1998.
[HM00] T.A. Henzinger and R. Majumdar. Symbolic model checking for rectangular hybrid systems. In S. Graf, editor, TACAS

2000: Tools and algorithms for the construction and analysis of systems, Lecture Notes in Computer Science, New-
York, 2000. Springer-Verlag.

24 PAULO TABUADA AND GEORGE J. PAPPAS

[HU79] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-

Wesley Publishing Company, USA, 1979.

[HvS01] L.C.G.J.M. Habets and J. H. van Schuppen. Control of piecewise-linear hybrid systems on simplices and rectangles.
In M. D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control, volume

2034 of Lecture Notes in Computer Sience, pages 261–274. Springer-Verlag, 2001.

[JK01] S. Jiang and R. Kumar. Supervisory control of discrete event systems with CTL* temporal logic specifications. In
Proceedings of the of the 40th IEEE Conference on Decision and Control, Orlando, FL, December 2001.

[Kal72] R. E. Kalman. Kronecker invariants and feedback. In L. Weiss, editor, Ordinary Differential Equations, pages 459–471.

Academic Press, New York, 1972.
[KBr04] J. Khurshid and H. Bing-rong. Military robots - a glimpse from today and tomorrow. In Proceedings of the 8th

Control, Automation, Robotics and Vision Conference, pages 771–777, 2004.

[KG95] R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems. Kluwer Academic Publishers,
1995.

[KGM92] R. Kumar, V. Garg, and S.I. Markus. On supervisory control of sequential behaviors. IEEE Transactions on Auto-
matic Control, 37(12):1978–1985, Dec. 1992.

[KS90] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite-state processes, and three problems of equivalence. Infor-

mation and Computation, 86:43–68, 1990.
[LL00] M. Lansdaal and L. Lewis. Boeing’s 777 systems integration lab. IEEE Instrumentation & Measurement Magazine,

3(3):13 – 18, 2000.

[LPS00] Gerardo Lafferriere, George J. Pappas, and Shankar Sastry. O-minimal hybrid systems. Mathematics of Control,
Signals and Systems, 13(1):1–21, March 2000.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MD01] T. Moor and J. M. Davoren. Robust controller synthesis for hybrid systems using modal logic. In M. D. Di Benedetto
and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes

in Computer Science. Springer-Verlag, 2001.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MP92] Z. Manna and A. Pnueli. The temporal Logic of Reactive and Concurrent Systems: Specification. Springer-Verlag,

Berlin, 1992.
[MSP05] C.J. Morris, S.A. Stauth, and B.A. Parviz. Self-assembly for microscale and nanoscale packaging: Steps toward

self-packaging. IEEE Transactions on Advanced Packaging, 28:600 – 611, 2005.

[MT02a] P. Madhusudan and P.S. Thiagarajan. Branching time controllers for discrete event systems. Theoretical Computer
Science, 274:117–149, March 2002.

[MT02b] P. Madhusudan and P.S. Thiagarajan. A decidable class of asynchronous distributed controllers. In Lubos Brim,

Mojmı́r Kret́ınský, and Antońın Kucera, editors, Proceedings of the 13th International Conference on Concurrency
Theory, CONCUR 2002, volume 2421 of Lecture Notes in Computer Science, pages 145–160. Springer, 2002.

[MW84] Z. Manna and P. Wolper. Synthesis of communication processes from temporal logic specifications. ACM Transactions

on Programming Languages and Systems, 6:68–93, 1984.
[Ost89] Jonathan S. Ostroff. Temporal logic for real-time systems. John-Wiley and Sons, 1989.

[PLPB02] Stefania Pancanti, Laura Leonardi, Lucia Pallottino, and Antonio Bicchi. Optimal control of quantized linear systems.

In Claire Tomlin and Mark R. Greenstreet, editors, Hybrid Systems: Computation and Control, Lecture Notes in
Computer Sience, pages 351–363. Springer-Verlag, 2002.

[PV94] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular inclusions. In Computer Aided Verification,
pages 95–104, 1994.

[Ram89] P.J. Ramadge. Some tractable supervisory control problems for discrete event systems modeled by Buchi automata.

IEEE Transactions on Automatic Control, 34(1):10–19, 1989.
[RW89] P. J. Ramadage and W. M. Wonham. The control of discrete event systems. Proceedings of IEEE, 77(1):81–98, 1989.

[SB00] F. Somenzi and R. Bloem. Efficient büchi automata from ltl formulae. In E. Allen Emerson and A. Prasad Sistla,
editors, Computer Aided Verification, 12th International Conference, volume 1855 of Lecture Notes in Computer
Science, pages 248–263. Springer-Verlag, 2000.

[SH05] Z. Sun and K. Hebbale. Challenges and opportunities in automotive transmission control. In Proceedings of the 2005

American Control Conference., pages 3284 – 3289, 2005.
[SKA01] J.A. Stiver, X.D. Koutsoukos, and P.J. Antsaklis. An invariant based approach to the design of hybrid control systems.

International Journal of Robust and Nonlinear Control, 11(5):453–478, 2001.
[TH04] J. Teutsch and E. Hoffman. Aircraft in the future ATM system - exploiting the 4D aircraft trajectory. In Proceedings

of the 23rd Digital Avionics Systems Conference, 2004. DASC 04., volume 1, pages 3.B.2–1 – 3.B.2.22, 2004.
[TK02] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid automata. In Claire Tomlin and Mark R.

Greenstreet, editors, Hybrid Systems: Computation and Control, volume 2289 of Lecture Notes in Computer Science,
pages 465–478. Springer-Verlag, 2002.

[Tri04] S. Tripakis. Undecidable problems in decentralized observation and control for regular languages. Information Pro-
cessing Letters, 90(1):21–28, 2004.

LINEAR TIME LOGIC CONTROL OF DISCRETE-TIME LINEAR SYSTEMS 25

[TW94] J.G. Thistle and W. M. Wonham. Supervision of infinite behavior of discrete-event systems. SIAM Journal on Control

and Optimization, 32(4):1098–1113, July 1994.

[VSS+01] R. Vidal, S. Schaffert, O. Shakernia, J. Lygeros, and S. Sastry. Decidable and semi-decidable controller synthesis for
classes of discrete time hybrid systems. In Proceedings of the 40th IEEE Conference on Decision and Control, pages

1243–1248, Orlando, Deember 2001.

[Wol00] Pierre Wolper. Constructing automata from temporal logic formulas: A tutorial. In E. Brinksma, H. Hermanns, and
J. P. Katoen, editors, Lectures on Formal Methods and Performance Analysis, volume 2090 of Lecture Notes in

Computer Science. Springer-Verlag, 2000.

Department of Electrical Engineering, 268 Fitzpatrick Hall, University of Notre Dame, Notre Dame, IN 46556

E-mail address: ptabuada@nd.edu

Department of Electrical and Systems Engineering, 200 South 33rd Street, University of Pennsylvania, Philadel-
phia, PA 19104

E-mail address: pappasg@ee.upenn.edu

