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Symbolic Control of Linear Systems Based on
Symbolic Subsystems
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Abstract—This paper describes an approach to the control of
continuous systems through the use of symbolic models describing
the system behavior only at a finite number of points in the state
space. These symbolic models can be seen as abstract representa-
tions of the continuous dynamics enabling the use of algorithmic
controller design methods. We identify a class of linear control
systems for which the loss of information incurred by working
with symbolic subsystems can be compensated by feedback. We
also show how to transform symbolic controllers designed for a
symbolic subsystem into controllers for the original system. The
resulting controllers combine symbolic controller dynamics with
continuous feedback control laws and can thus be seen as hybrid
systems. Furthermore, if the symbolic controller already accounts
for software/hardware requirements, the hybrid controller is
guaranteed to enforce the desired specifications by construction
thereby reducing the need for formal verification.

Index Terms—Bisimulation, simulation, symbolic control, sym-
bolic subsystems.

I. INTRODUCTION

A. Motivation

RESEARCH in systems and control theory is steadily
shifting attention from single monolithic systems to

large-scale complex systems often built from simpler subsys-
tems. This change reflects the problems faced by practicing
engineers when analyzing and designing nowadays complex
control systems such as power networks, ad hoc networks of
sensor/actuators, transportation systems, biological systems,
enterprise systems, etc. From a systems theoretic point of view,
there is a common question arising in the analysis and control
of these applications:

How do we manage the intrinsic complexity of such sys-
tems?

One approach to tame the complexity of these applications,
advocated by many researchers over the years, is the use of
abstraction to model, analyze and control systems at different
levels of detail. This requires the construction of different
models capturing different aspects of the system being ana-
lyzed/designed, and the construction of relations between these
models explaining how the results of analysis/design for one
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model can be used in another model. Analysis/design could
then be performed on simpler models thereby reducing the
complexity of these tasks.

In this paper, we take important steps along this direction by
focusing on the control of continuous time systems based on
symbolic models. In particular, we are interested in finite state
models capturing the essential properties of linear control sys-
tems. The finite state nature of these models is important for
two main reasons. First, finite state models are especially well
suited for automated analysis and design which is becoming in-
creasingly important given the size of nowadays complex con-
trol systems. The use of such models thus opens new algorithmic
perspectives for analysis and design. Second, finite state models
offer a common language to describe an abstract view of con-
tinuous dynamics as well as the software implementation of
control algorithms. It is, therefore, possible to formally reason
about the behavior of the interconnection between continuous
dynamics and software which has been one of the main thrusts
behind the research area of hybrid systems. With the objective
of strengthening this connection between continuous models of
dynamics and finite state models of software we will focus, in
this paper, on a particular symbolic model for control systems:
symbolic subsystems.

B. Contributions

The success of a “symbolic systems theory” based on sym-
bolic models of continuous systems relies on a satisfactory an-
swer to the following fundamental questions.

1) Which classes of control systems admit symbolic models?
2) Can these symbolic models be efficiently computed?
3) How can we transfer properties to and from symbolic

models?
The objective of this paper is precisely to identify a class of
control systems admitting symbolic models in which the loss of
information incurred in the passage from an infinite to a finite
number of states can be compensated by feedback. In particular,
we will show that the following hold.

1) The dynamics of a stabilizable linear system can be recov-
ered from its restriction to a finite number of states, hence-
forth called “subsystem”, up to a certain resolution.

2) Symbolic controllers designed for a subsystem can be
transformed into controllers for the original system en-
forcing specifications up to a certain resolution.

These are rewarding results since we can easily compute restric-
tions of linear control systems to a finite number of states re-
sulting in finite models that can be integrated with finite models
of software and hardware. Furthermore, control designs based
on these models can then be converted into controllers for the
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original system. This approach, by integrating continuous dy-
namics with software and hardware at design time, results in
controllers modeled by hybrid systems which formally describe
embedded control software that is correct by construction.

On the technical side, this paper is strongly influenced by [27]
and draws inspiration from other symbolic control models such
as quantized control systems [6], [37] and maneuver automata
[16]. The arguments used in this paper can be seen as refined ver-
sions of the ideas described in [27]. However, contrary to [27]
we do not require the existence of trajectory tracking controllers
neither do we impose conditions for switching between different
controllers. Quantized control systems [6], [37] can also be seen
as symbolic models of continuous systems leading to simpler
control designs. These control designs are based on the obser-
vation that for certain classes of systems the dynamics assumes
an especially simple form when restricted to a lattice structure
describing the reachable set. In our approach, we focus on the
finite structure of subsystems rather than on the lattice theoretic
properties of reachable sets. Also, one of the main objectives of
this paper is to show that symbolic subsystems can be used to
design controllers that act on the whole continuous state space
rather than on the subset of points over which the subsystem
is defined. The symbolic models we use throughout this paper
describe the behavior of the original system for certain choices
of input trajectories as is also the case for maneuver automata.
However, we impose no conditions on the choice of input tra-
jectories and this distinguishes our work from [16], where the
choice of trajectories is based on the existence of certain sym-
metries.

Finally, this work contains two different ingredients that dis-
tinguishes it from previous work by the author on finite bisim-
ulations based control [43], [48]–[51].

• We consider subsystems instead of quotient systems for
symbolic models and in particular our constructions will
not be based of partitions of the state–space but will rather
require coverings of the state–space.

• The symbolic models discussed in this paper are not bisim-
ulations. Even though symbolic subsystems may not cap-
ture all the behavior of the original system, we can still
synthesize controllers based on very simple and, therefore,
very efficiently computable symbolic subsystems.

C. Related Work

Symbolic models of continuous/discrete dynamics, usually in
the form of finite bisimulations, have been traditionally associ-
ated with problems of verification. Starting with Alur and Dill’s
work on timed automata [2], a fair amount of work was done
to push the boundaries of the class of systems admitting finite
bisimulations. This work culminated with [1], [18], [19], and
[38] introducing the decidable classes of multi-rate and rectan-
gular hybrid automata. On the purely continuous side, we men-
tion the work of Lafferriere et al. [28] which used -minimality
to ensure existence of symbolic models. See also [7] for a sim-
pler and more insightful proof of the same results. The afore-
mentioned efforts suggest that finite bisimulations only exist
under quite restrictive conditions and this observation led sev-
eral researchers to investigate approximate notions [9] as well

as semialgorithms [20], [46]. Especially related to the work de-
scribed in this paper is the recent notion of approximate bisimu-
lation introduced in [17]. Further comments on the relation be-
tween this notion and the symbolic models introduced in this
paper are postponed until Section VIII.

The approach advocated in this paper is quite different from
the above mentioned ones since one is interested in developing
symbolic models for control rather than for verification. This
different perspective justifies why this paper focuses on control
systems rather than on dynamical systems. Initial approaches
to the development of symbolic models of control systems
seem to have been based on the use of integrals of motion [8],
[41]. Integrals or constants of motion are a quite natural way of
defining state space partitions compatible with the continuous
dynamics. The results in this paper, however, apply to a class of
systems for which constants of motion do not necessarily exist
and can therefore be seen as complementary to existing work,
especially to [8]. A different but related line of research consists
on the study of bisimulations of purely continuous [35], [52],
[53] or hybrid systems [21], [39]. Even though these works do
not consider the construction of symbolic models, they repre-
sent another approach to complexity reduction through the use
of bisimulation based abstractions. Other symbolic approaches
to complexity reduction include the use of finite state machines
to combine maneuvers in motion planning problems [16],
motion description languages [23] and a study on the interplay
between feedback and specification complexity of control tasks
[15].

Finally, we would like to emphasize that the idea of using
symbolic models for the control of continuous systems is not
new and motivated much research in the area of hybrid sys-
tems [4], [12], [14], [24], [29], [32], [34], [40], [42], [47], [54].
Even though the use of symbolic models was advocated by these
and many other researchers, the applicability of the proposed
methods has always remained an open problem due to the lack
of results ensuring existence of symbolic models for control sys-
tems. The results of this paper partially address this issue by
identifying a class of systems for which symbolic models exists
and can be easily computed.

D. Organization

This paper starts by introducing some notation in Section II
and by reviewing a mathematical model describing continuous
dynamics, software and hardware in Section III. We then intro-
duce the notions of simulation and bisimulation in Section IV
allowing us to transfer analysis and design problems from the
original system to simpler symbolic models as described in Sec-
tion V. In Section VI, we show how feedback can be used to con-
trol the original system at states not described by the symbolic
subsystem. This use of feedback is further refined in Section VII
leading to hybrid systems models for controllers acting on the
original continuous system. This paper ends in Section IX with
a critical discussion of the presented results.

II. NOTATION

We shall denote by , , and the Natural, Real, and non-
negative Real numbers, respectively. For any function

and , will denote the
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restriction of to while will denote the subset of
defined by . We will identify a relation

with the function defined by iff
. We will say that a relation is surjective when

for every there exists a such that . If
denotes the canonical projection on the second

factor then surjectivity of is equivalent to . Given
a relation , will denote the inverse relation
defined by . A continuous
function , , is said to belong to class if it
is strictly increasing and . It is said to belong to class

if and as . A continuous function
is said to belong to class if, for each

fixed , the map belongs to class with respect to and,
for each fixed , the map is decreasing with respect to
and as .

Given a point , will denote the usual Euclidean
norm while will denote for any given
function , .

We now recall some formal language notions. Given a set
we denote by the set of all finite strings obtained by concate-
nating elements in . An element of is, therefore, given by

with for . Given a string be-
longing to we denote by the th element of . The length
of a string is denoted by and a subset of is called
a language. Given a map we will use the same letter
to denote the extension of to defined by

III. TRANSITION SYSTEMS

A. Transition Systems

Transition systems are the symbolic models considered in this
paper. Because of their simplicity, transition systems model very
general classes of dynamics including control systems, soft-
ware systems and even hardware systems. In fact, much of the
work on formal analysis and verification of software systems
has some version of transition systems as its underlying model
[11].

Definition 3.1: A transition system is quintuple
consisting of

• a set of states ;
• a set of initial states ;
• a transition relation ;
• an observation set ;
• an observation function .

We will follow standard practice and denote an element
by . We will say that a transition system

is finite when is finite. Transition systems capture dy-
namics through the transition relation. For any states , ,

simply means that it is possible to evolve or jump
from state to state . Note that we cannot model as
a function since, in general, there may be several states ,

Fig. 1. Graphical representation of transition system defined by (1)–(5).

such that and . Transition systems
can be graphically represented by a directed graph having
as vertex set and as the set of edges. Transition system
defined by

(1)

(2)

(3)

(4)

and

(5)

has the graphical representation displayed in Fig. 1 where initial
states are distinguished by having a sourceless incoming arrow.

Remark 3.2: The introduced notion of transition system dif-
fers from other notions encountered in the literature in that ob-
servations are not associated with transitions but rather with
states. These two models can easily be seen equivalent given the
well known equivalence between Moore and Mealy machines
[22]. The presented model is, however, more natural since obser-
vations of control systems depend on the states and this structure
is inherited by the several transition systems used in this paper
to capture the dynamics of control systems.

Transition systems define languages which we could regard
as the analogue of control systems’ trajectories.

Definition 3.3: Let be a transition system. A run of is a
string satisfying

1) ;
2) for .

A string is said to be an observed run of if there exists
a run of such that . The language of ,
denoted by , is defined as the set of all observed runs of .

Control systems can also be seen as transition systems. Before
discussing how we can embed the class of control systems into
the class of transition systems we introduce the class of control
systems considered in this paper.

Definition 3.4: A linear control system is a triple
consisting of

• a matrix ;
• a matrix ;
• a family of admissible input trajectories .
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A curve , defined on a open set containing
the origin, is a trajectory of control system if there exists an
admissible input trajectory satisfying:

(6)

for almost all .
We will frequently refer to trajectories of
defined on closed intervals with the understanding of the ex-

istence of a trajectory satisfying Definition 3.4
with and . The results presented in this
paper are independent of the chosen class of admissible input
trajectories provided that for each the solution of (6)
exists and is unique. Examples of admissible input trajectories
include the class of piece-wise constant, piece-wise continuous
and piece-wise smooth curves.

We now introduce the promised embedding of linear control
systems in the class of transition systems.

Definition 3.5: Let be a linear control system. The tran-
sition system induced by , denoted by

, is defined by
• ;
• ;
• if there exists a trajectory of

satisfying and ;
• ;
• .

IV. SIMULATION AND BISIMULATION RELATIONS

The objective of this paper is to transfer control design prob-
lems from a continuous model to a symbolic model. This
transfer is only possible if the symbolic model captures proper-
ties of that are relevant for design. While the standard notion
of equivalence between transition systems is bisimulation [31],
[36] we shall work with a one-sided version termed simulation.

Definition 4.1: Let with ,
2 be transition systems and let be a relation.
Relation is said to be a simulation relation from to if
the following holds.

1) implies .
2) and implies .
3) and in implies the existence of

satisfying in and .
The existence of a simulation relation from to is denoted
by . Relation is said to be a bisimulation relation
between and if is a simulation relation from to
and is a simulation relation from to . The existence of
a bisimulation relation between and is denoted by

and and are said to be bisimilar.
The symbolic models of linear control systems we will

consider in this paper are related to through a simulation
relation which is in fact the graph of an inclusion.

Definition 4.2: Let with
be transition systems. Transition system is said to be

a subsystem of if and the relation defined by the
graph of the natural inclusion sending to

is a simulation relation from to . Transition

Fig. 2. Symbolic subsystem T of T with� described by (7). Transitions are
labeled with the corresponding input trajectory.

system is said to be a symbolic subsystem if it is a finite
subsystem.

Although there are many different ways to construct a sym-
bolic subsystem of we now illustrate one such possibility
based on quantization of inputs as extensively studied in [6] and
[37]. For simplicity of presentation, let us consider the double
integrator as our control system which is described by the fol-
lowing equations:

(7)
We now chose a subset of admissible trajectories defined by

. Each is defined on the interval
by

(8)

Since all the elements of have unit duration we can compute
the discrete time model of for a sampling period of unit dura-
tion. The resulting discrete-time linear system is given by

(9)
If we start at the origin, for example, an apply inputs (8) to (7)
we can compute with the help of (9) the symbolic subsystems

and represented in Figs. 2 and 3, respectively. These sym-
bolic subsystems and represent a very coarse description
of the dynamics of which, nevertheless, can be used to syn-
thesize controllers for . For example, the sequence of inputs

where denotes infinite repetition, controls from the origin
to a closed orbit. However, how can we control the behavior of

if the initial condition does not belong to the set of states of
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Fig. 3. Symbolic subsystem T of T with � described by (7). Each state is
represented as a point in labeled by the corresponding coordinates.

or ? And what kind of control can we expect when using
a coarse model such as or ? Answers to these questions
will be provided in the remaining paper independently of the
process used to obtain subsystems. Other possibilities to com-
pute symbolic subsystems include numerical methods or the use
of feedback controllers leading to known motion patterns.

V. SYMBOLIC CONTROL BASED ON SYMBOLIC SUBSYSTEMS

We start by reviewing the notion of parallel composition that
models synchronization of transition systems on the common
observation set.

Definition 5.1: The parallel composition of transition sys-
tems with , 2 is denoted by

and defined as the transition system
consisting of

• ;
• ;
• for if

in and in ;
• .

The language of the parallel composition can be ex-
pressed in terms of the languages of and by

. Since composing with has the effect of
restricting the language of we can think of as a controller
for which prevents the strings in from hap-
pening. In the next proposition we summarize several properties
of simulations, bisimulations and parallel composition that will
be required in the remaining paper.

Proposition 5.2: For transition systems , , and the
following holds:

1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) .
The results developed in this section are based on the fol-

lowing observation.

Once a linear control system is embedded in the class
of transition systems as , controller synthesis for can
be identified with controller synthesis for .

At a transition system level there are essentially two different
types of control problems to be considered: Linear time control
and branching time control.

Problem 5.3: (Linear Time Control): Given a transition
system and a language specification

, synthesize a controller such that
or .

Problem 5.4: (Branching Time Control): Given a transition
system and transition system speci-
fication , synthesize a controller

such that or .
Both control problems can be made more realistic by adding

additional requirements and constraints such as nonblocking
controllers, partial observability, maximal permissivity, etc.
Nevertheless, the previously described problems are sufficient
to illustrate the merit of a symbolic approach to the control of
continuous systems. The following result explains how we can
transfer the design of controllers solving Problems 5.3 and 5.4
from to a symbolic subsystem .

Theorem 5.5: Let be the transition system induced by a
linear control system and assume that transition system
satisfies . Then, for any specification transition system

with language the following holds.
1) If there exists a controller such that ,

then controller satisfies .
2) If there exists a controller such that ,

then controller satisfies .
Furthermore, if also holds, then the following hold.

3) If there exists a controller such that , then
controller satisfies .

4) If there exists a controller such that , then
controller satisfies .
Proof: We follow the enumeration of the theorem and start

by proving 1). By assumption, we have and it follows
by Proposition 5.2:

(10)

Language is now given by

by definition of (11)

by definition of (12)

by (13)

by definition of (14)

Since by assumption, we conclude
as desired. The proof of (2) is similar.

We now prove (3).

by definition of (15)

since (16)

since (17)

The proof of (4) is similar to the proof of (3).
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Theorem 5.5 shows that existence of a controller for im-
mediately leads to a controller for . Furthermore, when is
finite existing supervisory control [10], [25], [30] and controller
synthesis [5], [13], [26], [33], [44], [45] techniques can be im-
mediately used for the construction of . In addition to provide
a new computational approach to controller synthesis problems
for continuous control systems, Theorem 5.5 also shows that it is
now possible to design controllers based on specifications that,
traditionally, have not been considered for continuous systems
such as regular languages, transitions systems, temporal logics,
etc. Furthermore, by combining symbolic model with a tran-
sition system model of existing software and hardware it is pos-
sible to synthesize controllers enforcing control specifications
(describing the desired behavior of the continuous dynamics)
and software specifications (describing the desired behavior of
the control code). The resulting controller can then be refined
to a hybrid system model of control software that is correct by
construction. The construction of such hybrid controllers is dis-
cussed in Section VII-B.

Remark 5.6: There is a natural tradeoff between the com-
plexity (the size) of the symbolic subsystem and the solutions
to Problems 5.3 and 5.4 that can be found by working with .
Simpler subsystems reduce the complexity of controller syn-
thesis but they also lead to more restrictive controllers in the
sense of preventing behaviors that are allowed by the specifica-
tion. Ideally, one would like to work with subsystems that would
be bisimulations so that no essential information is lost in re-
placing with . This problem of completeness will not be
addressed in this paper and is further discussed in Section IX.

Remark 5.7: It may appear that assumption has not
been used in the proof of (3) and (4). This is not the case since

combined with leads to .
is therefore a stronger assumption than .

VI. CONSTRUCTING SURJECTIVE SIMULATION RELATIONS

We have seen in the previous section that it is possible to syn-
thesize controllers for by working with the simpler symbolic
model . However, such designs result in controllers that can
only be applied at states of that are also states of . To see
this, note that is a state of only if

and is a state of only if
. Since and ,

only if which shows
that is a controller that only works for states of that are
also states of . In order to extend symbolic controllers to con-
trollers that can be used at any state of we need to extend
the simulation relation defined by the graph of the inclusion

to a surjective simulation relation .
If such extension exists, then for any point we can ob-
tain a point which is -related to and apply an input
at based on the input defined by at . In this section we
will show that such extension is possible under a stabilizability
assumption on and by restricting attention to a bounded re-
gion of the state space. Recall that a linear control system is
stabilizable if there exists a linear feedback making

stable, and is asymptotically stabilizable if

makes asymptotically stable. Corre-
sponding to the linear feedback we have a quadratic Lyapunov
function , for a symmetric positive–definite matrix

, satisfying

(18)

in the case of stability or

(19)

with for the case of asymptotically stability. It will also
be useful to denote by the set:

The linear feedback and the corresponding Lyapunov
function can now be used to construct surjective simulation
relations.

Theorem 6.1: Let be the
transition system associated with a linear control system . If

is stabilizable, then for any
1) stabilizing feedback and corresponding Lyapunov

function ;
2) symbolic subsystem of ;
3) bounded set containing ;

there exists a real number such that
1) ;
2) , defined by when , is

a simulation relation from to satisfying ;
3) ;

where with
when .

Proof: Since is bounded and is radially unbounded
there exists a real number such that covers ,
that is

(20)

Furthermore, holds by construction of and so do
requirements 1) and 2) in Definition 4.1. We now prove that re-
quirement 3) also holds. Assume that in and recall
that this implies the existence of an input trajectory

whose corresponding state trajectory
satisfies and . Consider now any point

such that . By definition of it follows that
. If is the trajectory

satisfying

with then we claim that satisfies
. This claim is proved by showing that , with ,
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is a Lyapunov function for the linear dynamical system defined
by

(21)

However, this follows at once from (18).
We now show, with the help of , that holds.

Consider the relation defined by
if and . We claim that defines a bisimu-
lation relation between and . Let us show first that
is a simulation relation from to . Since requirements
1) and 2) in Definition 4.1 follow immediately from the con-
struction of we focus on 3). Let in
and note that by definition of , implies .
Since, by definition of parallel composition
in implies in , it follows the existence of

satisfying and in . We
now show that is a simulation relation from to .
Once again we focus on requirement 3) since requirements 1)
and 2) follow trivially from the definition of . Let in

and consider any such that . By definition
of , this implies and . Since is Lyapunov
function for dynamical system (21) we have in with

and, thus, in . It then follows from the
definition of parallel composition that in

and, furthermore which concludes the
proof.

Intuitively, Theorem 6.1 shows that we can use a stabilizing
controller to robustify controller . This is done by using the
input trajectory associated with a transition in to
compute a new input trajectory

(22)

to be applied at points satisfying . Input
trajectory (22) controls points that are close to (points sat-
isfying ) to points that are close to (points
satisfying ).

We now revisit the double integrator example with the pur-
pose of illustrating Theorem 6.1. Let be the transition system
displayed on Fig. 3 and let to be the closed ball of radius
3/2 centered at the origin which is guaranteed to contain all the
points of . If we now use as a Lyapunov function
associated with the feedback we can take
which results in each set
being a closed ball of radius 1 centered at . In Fig. 4, we can
see how this choice results in a covering for .

By analyzing Fig. 4, we also see that Theorem 6.1 is not en-
tirely satisfactory since we are only able to exert very coarse
control in the sense that we cannot distinguish between points

, if and for some .
In fact, the parameter provides a measure of such coarseness.
This difficulty can be addressed in two different ways. We can
construct a more detailed symbolic subsystem which would
lead to a lower value for resulting in less uncertainty in the

Fig. 4. Covering of K by L. The set K is delimited by the dashed circle while
the sets V = fx 2 jV (x�q) � � = 1g are delimited by the solid circles.

position of the state. Alternatively, we can use feedback to re-
duce the uncertainty associated with the location of the state as
discussed in the next section.

VII. FROM SYMBOLIC CONTROLLERS TO HYBRID

CONTROLLERS

A. Reducing Uncertainty

In this section, we strengthen the stabilizability assumption
on to asymptotic stabilizability. Based on this assumption we
will be able to use feedback to reduce the coarseness of the
exerted control.

Recall that asymptotic stabilizability of implies the exis-
tence of a linear feedback and of a Lyapunov function

satisfying (19). Integrating (19), we obtain

which shows that the uncertainty in the location of the state is
reduced by the factor every time that a control
command of duration is executed. This suggests that
we should use a symbolic model describing the number of
implemented control commands in addition to its effect on the
states. For simplicity of presentation we will assume throughout
this section that any in has been obtained through an
input trajectory of length and we will denote by the number

.
Definition 7.1: Let be the transition system induced by a

linear control system . For any subsystem
of , denotes the transition system defined by

where
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Fig. 5. Initial conditions (1/4,1/4), (�1=5;�1=2) and (�1/6,0) corresponding
to observation {((0,0),0)} and controlled to observation {((0,0),7)}. Control is
enforced by the sequence of input trajectories u u u u u u u .

if in and , and
.

Intuitively, a state of counts the number of tran-
sitions required to reach from some state in . Since each
transition results in a better estimate for the state location we can
now synthesize controllers guaranteeing not only logic but also
quantitative specifications. We thus have the following “graded”
version of Theorem 6.1.

Theorem 7.2: Let be the
transition system associated with a linear control system . If

is asymptotically stabilizable, then for any
1) asymptotically stabilizing feedback and corre-

sponding Lyapunov function ;
2) symbolic subsystem of ;
3) bounded set containing ;

there exists a real number such that
1)
2) , defined by when

, is a simulation relation from to
satisfying ;

3) ,
where
with when .

Consider again the double integrator and the following con-
trol Lyapunov function:

satisfying for the linear feedback .
As symbolic subsystem we consider again the transi-
tion system represented on Fig. 3. The sequence of in-
puts guarantees that any state con-
tained in the set and corresponding to observation

will be controlled to some point in
the set and corresponding to observation

. The result of this sequence of inputs
can be seen on Fig. 5 for three different initial conditions. By
inspecting we see that there are other sequences of inputs
controlling observation ((0,0),0) to observation ((0,0),7). The

Fig. 6. Initial conditions (1/4,1/4), (�1=5;�1=2) and (�1/6,0) corresponding
to observation {((0,0),0)} and controlled to observation {((0,0),7)}. Control is
enforced by the sequence of input trajectories u u u u u u u .

Fig. 7. Symbolic controllers for T .

result of one such sequence, , is displayed
on Fig. 6 for the same initial conditions. These examples illus-
trate how the loss of resolution incurred in the passage from
to symbolic subsystem can be compensated by feedback.

Even though the problem of transferring states corresponding
to observation {((0,0),0)} to states corresponding to observa-
tion {((0,0),7)} can be solved by inspection of , more complex
specifications require a more systematic approach based on su-
pervisory control techniques. Adopting such techniques would
lead to the symbolic controllers displayed in Fig. 7 where
enforces the sequence of inputs and the
sequence .

In practical applications, it is enough to consider a truncated
version of where is replaced by since
other sources of disturbances prevent the uncertainty in the lo-
cation of the state to be reduced below for some . This
truncated version of is symbolic and thus permits again the
use of supervisory control techniques for control design. A dif-
ferent alternative is to encode requirements on the state uncer-
tainty not on the states but rather at the level of the specifica-
tion. This allows one to use a symbolic subsystem of the kind
described in Section IV to synthesize supervisors enforcing also
quantitative specifications regarding the state uncertainty.

B. Controllers as Hybrid Systems

Symbolic controllers and are abstract representations
that do not specify which control signals should be sent to the
continuous plant in order to enforce the desired behavior. These
more detailed controllers can be immediately obtained by as-
sociating to an abstract transition the feedback con-
trol law implementing it on . For example, since transition
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in corresponds to input , we can enrich or label
the transition with the feedback law

where is the trajectory corresponding to input and satis-
fying . By repeating this process for every transi-
tion we obtain a hybrid system model of the desired controller. If
we denote by the hybrid controller obtained from symbolic
controller through this process and if represents the
closed-loop system, then can be seen as an implementation
of the abstract controller in the sense that
where is the transition system capturing the behavior of
the closed-loop system .

It is important to emphasize that the process of transforming
symbolic controllers into hybrid controllers results in con-
trollers that are, in general, of a true hybrid nature in the sense
that they cannot be described by a continuous-state feedback
map. This is already the case for controllers and albeit
their simplicity. If one considers states and of we see
that they have the same continuous state observations (0,0),
even though the actions to be performed are different. Discrete
states are therefore essential to determine the input signals and
we cannot reduce the controller to a mapping from states in

to inputs in .

VIII. NONLINEAR CONTROL SYSTEMS

Even though we have focused on linear systems throughout
the paper, Theorems 6.1 and 7.2 carry over to nonlinear control
systems. This generalization relies on the observation that the
essential ingredient in constructing surjective simulation rela-
tions is a certain stability property on the trajectories of con-
trol systems. This property, termed incremental stability, fol-
lows from stability in the linear case but it has to be separately
assumed in the nonlinear case. Following [3], we say that a non-
linear control system is incrementally input-to-
state stable if there exists a function and a function
such that for any , for any , and for any input
trajectories , we have

u u

(23)
where

u
and

u
denote the state trajectories

corresponding to initial conditions and , and input tra-
jectories and , respectively. From (23), we see that by
choosing we guarantee that the error between tra-
jectories starting at different initial conditions, measured by

u u
, will decrease over time according to

. We can thus use the input trajectory inducing
a transition in to control any initial condition

close to to a state that is close
to . Incremental input-to-state stability also admits
a Lyapunov characterization, at least when the set of inputs
is compact, which can then be used to define the surjective
simulation relation from to . We refer the interested reader

to [3] for more details on incremental stability and its Lyapunov
characterizations. It is perhaps in this nonlinear setting that the
proposed controller design methods acquire its full significance
since it is not possible to explicitly construct exact discrete
time models of nonlinear control systems. Nevertheless, we can
still construct a symbolic subsystem by resorting to numerical
simulation. Taking into account the numerical accuracy of
the symbolic model it is possible to synthesize controllers
efficiently while providing concrete guarantees of performance
for nonlinear systems.

When a control system is incrementally input-to-state
stable, trajectories starting at close initial conditions will
remain close provided that the same input is used. It is there-
fore possible to regard as being approximately bisimilar
to in the sense of [17]. This observation highlights incre-
mental input-to-state stability or approximate bisimulation as a
common underlying tool that can be used for the control of con-
tinuous systems based on symbolic subsystems, as described in
this paper, or for verification of continuous dynamical systems
as in [17].

IX. DISCUSSION

In this paper, we have shown that symbolic subsystems can be
used as abstract models of stabilizable linear systems for con-
trol design. The loss of information incurred in the passage from
a model with an infinite number of states to a model with a fi-
nite number of states can be compensated by feedback. We have
shown how to construct feedback control laws providing such
compensation which combined with symbolic supervisors de-
signed for symbolic subsystems result in hybrid systems models
for controllers. Furthermore, since we can combine symbolic
subsystems with finite models of software and hardware, the
synthesis of symbolic supervisors can address in a integrated
fashion specifications stemming from the continuous dynamics,
from software and even from hardware. The proposed design
methodology is then guaranteed to produce hybrid controllers
which, if regarded as models for embedded control software,
require no further verification or validation as they satisfy the
desired specifications by construction.

We have also discussed how the proposed methodology car-
ries over to nonlinear control systems based on the notion of
incremental input-to-state stability. This nonlinear generaliza-
tion is quite important since, contrary to the linear case, it is
not possible to obtain exact discrete-time models of nonlinear
control systems. Nevertheless, symbolic subsystems can still be
obtained by resorting to numerical simulation or by using feed-
back controllers enforcing known motion patterns.

It remains to be investigated how existing results on the exis-
tence of finite bisimulations for discrete-time linear control sys-
tems can be related to the results presented in this paper. Of par-
ticular importance are methodologies for the choice of symbolic
subsystems. Even though the presented results are applicable to
any symbolic subsystem, criteria to obtain complete (describing
all the behavior of the original system up to a certain resolu-
tion) and yet small subsystems would be extremely important in
practice.
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