0-7803-6495-3/01/$10.00 © 2001 AACC

Proceedings of the American Control Conference
Arlington, VA June 25-27, 2001

CONTROL ORIENTED FORMULATION FOR STRUCTRUCES INTERACTING
WITH MOVING LOADS"

Tsu-Chin Tsao, University of California, Los Angeles

Chin-An Tan, Wayne State University

Alexander Pesterev, Russian Academy Of Sciences

Bingen Yang, Univ. of Southern California

Lawrence A. Bergman, Univ. of llinois at Urbana-Champaign

ABSTRACT

This paper addresses the control oriented
formulation of structures interacting thorough moving
contact points. The example used for illustration is the
dynamic interactions of moving vehicles and bridges
structure. Such systems are time varying due to the moving
vehicles. The system representation can be partitioned into
time invariant part (bridge and vehicle dynamics) and time
varying part (moving contact points). Such system’s
approach  facilitates modularized analytical —model
development, analysis, simulation, and control system
design. Block diagram based simulation with integral
causality will be presented to demonstrate the utility of this
approach for parametric investigation of the system
dynamics. Further, it will be shown that such problem can
be put into the linear parameter varying (LPV) standard
feedback form to exploit the available theoretical and
numerical tools.

1. Introduction

Systems interacting with one another through time
varying interfaces occurs in such diverse situations as
moving vehicles over bridge or flexible foundations,
moving cutters in machining process, moving energy
sources in thermal processing, and etc. Such class of
problems typically include both lumped and distributed
parameter systems interacting through moving contacts.
Taking bridge-vehicle systems as an example, the dynamic
response of the entire system depends on the dynamic
properties of the traversing vehicles and bridge, vehicle
operating speeds, surface quality of the roadway, and so
forth. To control the magnitude of the bridge vibrations, it
is critically important to be able to accurately predict bridge
response to the action of crossing vehicles and the resulting
responses of the vehicles.

The dynamics of vehicles or loads interacting with
highway infrastructures (roads and bridges) has been
examined by researchers around the world. The vehicles
are commonly modeled by a multiple degrees-of-freedom
system incorporating the dynamics of the axles and
suspensions, which determine the fundamental frequencies

of the vehicles. When these frequencies are close to the
fundamental frequencies of the bridges, a “quasi-
resonance” of parametric excitation can occur and
accelerates the fatigue of bridge structures [1]. The
considerations of truck suspension interacting with
pavement or bridges have recently been studied [2-6]. In
general, three types of fundamental problems are reported
in the literature. These are the moving force, moving mass
and moving oscillator problems. The modeling of a vehicle
traveling along a bridge as a moving force [7] neglects the
inertia of the moving subsystem and no dynamic interaction
is considered. When the inertia of the moving subsystem is
small, the constraint or coupling force may be treated as a
moving force. This is called the moving force problem and
occurs in high-speed machining processes. When the
inertia of the subsystern cannot be neglected, a moving
mass model is employed [8, 9]. The inclusion of both the
subsystem inertia and interaction forces in the moving
oscillator problem is found in the recent study of vehicle-
bridge interactions [10-15]

Experimental tests have also been conducted to
verify the critical influence of vehicle dynamic loads on
pavement wear/damage and bridge structure life [16],
which concludes that pavement wear under steel
suspensions is at least 15 per cent faster than under air
suspensions and that the concentration of dynamic loads for
air suspensions is only about half the magnitude of that for
steel suspensions. However, the results on the vehicle-
bridge interactions were much less conclusive due to the
fact that there are more complex factors involved.

The objective of this work is to develop a system’s
approach to represent the multi-vehicle and bridge
dynamics as a multivariable system model and use it to
facilitate dynamic analyses and controls.

The rest of the paper is organized as follows. The
next section develops the system’s model for general
combined lumped and distributed parameter system with
moving interactions. The system’s block diagram and
discussions of incorporating external disturbances and
control system are given. Section 3 provides the system
model for a simplified case that applies to the bridge
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dynamics — proportionally damped non-gyroscopic system.
Section 4 presents a simulation example of multiple moving
vehicles, tuned with different suspension characteristics,
traversing a bridge, and is followed by the conclusions in
the last section.

2. System Model.

In this section, we first formulate the system’s
state equation for a spatially one-dimensional, linear non-
self-adjoint distributed continuum interacting point-wise
with muitiple lumped parameter systems. The main
approach uses modal expansion of the distributed parameter
system. We will form the system in a feedback form where
the interacting force and motion at the contact points are the
input and output variables of sub-systems.

Non-self-adjoint Continuum. The equation of motion of
the continuum is given by

2 9
LM TW(X,I) + LD —a—;W(X,Z) + LKW()C,Z) = f(X, 1),
Jt
xel0, L], =0,

@
where w(x,#) is the transverse displacement of the
continuum, L, , L, and L, are spatial operators defined
on functions satisfying necessary smoothness requirements
and boundary conditions, and f(x,f) is an externally applied
force. Both boundary and initial conditions for the
continuum ca be assumed to be homogenous without loss
of generality. In accordance with the notation of Figure 1,

let
the m point forces acting on the continuum be the

interaction forces W,(f) due to the moving vehicles located

at {.(z). Then,

m

fxn= ¥ W@ 6(x-¢@), @
i=1

where &() is the Dirac delta function and (f)

represents the actual position of the vehicles or axles along
the continuum axis. For the non-self-adjoint problem

described here the continuum response W(X,f) can be

expressed as a series in terms of the complex
eigenfunctions of the continuum [10-13]:
1
qn(l‘)=ﬂnqn(f)+/1—Qn(t),n=1,2,---,N ®3)
m —
0,0= 3 ¥, OW,® @
i=1
w(x, )= X Rel[g,(x)q,(®)] 5

n=1

where ¢, (#) is the generalized displacement and Q, (f) is
the generalized force corresponding to the n’th mode.
ln =0, + jn, are the complex eigenvalues of the

continuum. @ (x) = (I),f (x)+1i (I),f (x), and
w,(x)=wX(x)+iy!(x) are the right and left hand

eigenfunctions of the continuum representing solution of
the right and left eigen-problems, respectively, and the
overbar denotes complex conjugation.

For the purpose of formulating system’s equation in the
matrix form, we will use curly bracket to denote real
vectors and straight bracket to denote real matrices. We

denote by (9"}, (0"}, {w"}, (w'}, ("}, ('},
{QR 1, {Ql } the N-dimensional vectors composed of the

R 41 R I R _I AR 1
components @, @, W, V¥,. 4,9, O, ,and Q,,

respectively; and by [a] and [®] the diagonal matrices of
order N:

(o] = diag {a,,....c,], ] = diag [1,,..,1,]

Introducing the 2N-dimensional vectors

{¢}={{¢,}},{vf}={{W,}},{q}={{q,}},{Q}={{Q,}}
(0"} (') 1" (0"}

the 2Nx2N block matrix
- {[a] —[n]]’
[l [o]

Also introduce the m x 1 displacement vector {w/ and m x
1 force vector { W) at the m interface points

{wh={w({,(0).0), ..., w({, @D},
Wi=w®, ..W,0),

and 2N x m matrices

[DEEN=1{$(C, ()}, . {8(C,, (D} ],
W= {w (O} .. w(, O} ].

The continuum can now be represented as a state equation
with m x 1 input force vector {W(z)} and m x 1 output
displacement vector {wj:

{gOY=[Q1{gO}+IQTH{O®)} (6)
Q) =[P OHW @)} (7
(W)} =[P N (g} 8)
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Note that the system is time invariant, but it becomes time
varying when the input {W(r)} and output [w(t)] are
included.

Now consider the lumped parameter systems. Let
each vehicle dynamics be represented by a state space
model with a displacement input vector {u;} and the force
output vector {y;}:

{x} =LA H{x}+[B]{x}

9
{3} =1CHx )+ [D Hu, }

The lumped parameter systems are also time invariant.
They are connected to the distributed parameter system in
the following way. The input of one of the lumped
parameter systems u,(f) is the displacement of the
continuum at the contact point plus an external disturbance
r(t), which represents the road surface profile for the bridge
problem

u, () =w(C,(0),t)+r({,(1). (10)

The input of the continuum with respect to one of the
lumped parameter systems is the force output of the lumped
parameter system y{t) plus an external disturbance dj(?).

W (@)= y,() +d,(t) (1D)
By stacking up the m lumped parameter systems, we have

(X' O)F = {{x @) {x, @},
" 0} = () ©),ou,, ()},
IO =1y @y v, 0},
FrOY={ @)y, (O},

{d" ) ={d] ©),....d, ()},
[A,]=Dblock diag [A,,...,A ],
[B, ] = block diag [B,,..., B, ],
[C, ]= block diag [C,,...,C_];

The lumped system becomes

{x®)} =1A Hx()} +[B, }{u(®)}

(0} =[C, 1x(0)) + D, Hu)) 42
(D)) = (WD)} + () 13)
(W)} ={yO}+{d®)} (14)

To account for the moving vehicle dynamic
behaviors before and after leaving the continuum, the
contintum’s eigenfunctions can be defined over an
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extended domain, the function values are the same as the
original ones if the location is inside the original continuum
domain, and the function values are defined as zeros if the
locations are outside of the continuum,

System’s Block Diagram. The system of equations
developed above can be viewed as a feedback system
shown in Figure 2. This system block diagram
representation has the following features:

(i) System’s component models and their connections
follow integral causality, i.e. no differentiation. Thus
the system forms a simultaneous first order differential
equations (state equations) solved by numerical
integration schemes.

(ii) System’s component models have  clear
correspondence to physical components, i.e. vehicle,
bridge, road profile, and traffic conditions. This makes
it convenient to conduct parametric analysis.

(iii) System theory can be applied directly to the analysis
and control of the system. The bridge and vehicle
dynamics are time invariant. The only time varying part
is the memoryless blocks, which depend on the vehicle
locations on the bridge. Thus the system can be
classified as a linear parameter varying system.

(iv) It’s convenient to add nonlinear effects in the
component blocks. For example, the nonlinear spring
and damping effects of the suspension, and separation
of the vehicle tires from the bridge.

External Disturbances. The external disturbances have
been represented in Egs. (13) and (14) as {r(t)} for motion
and {d(t)}for force input respectively. The effects of
randomly varying road surface profiles and bumps and
potholes at specific locations in the roadway are also
important factors as they participate as disturbance inputs in
the vehicle-bridge system. The bump/pothole problem can
be explicitly accounted for in the formulation through the

function #({ (z)) in Eq. (13). Various scenarios can be

presented in the framework of this examination. For
example: What is a "dangerous” pothole for given set of
vehicle parameters? How can the effect of a given pothole
be minimized by an appropriate vehicle suspension control
(active or semi-active) or structure (bridge) control?
Finally, The vehicle static gravity can be lumped into the
disturbance term as di(t) =M;g. Other external disturbances
such as the earth quake ground motion and wind gust
distributed forces can also be included but are omitted here
for brevity.

Control Systems. Active or semi-active vehicle suspension
control can be considered as a way to modify the vehicle
dynamics to cope with the bridge dynamics and external
road surface disturbances. This is shown as transfer
function matrix [Ki] in Figure 2. Furthermore, the
continuum’s structural control can also be included where
the point-wise feedback sensor and force actuator locations



are represented in the modal ftransformation matrices

[P )] and [W (& .y )] respectively in Figure 2.
[Kc] represents the structural coniroller.

3. Proportionally Damped Non-Gyroscopic Systems.
Bridge structures can usually be considered as
proportionally damped system from practical system
modeling and identification standpoint. In this case, the
general results in Eqn. (6~8) can be further simplified. It
has been well established that the eigenfunctions are real

and coincide with the eigenfunctions @, (x)of the self-
adjoint undamped problem

2

L, -aa—zw(x,t)+LKw(x,t) =0. (13)
t

After manipulations, the continuous system can be put in
the following familiar state space form:

{?:(I)}=[Ac]{?}g(1)}+{ ,? } (16)
q (@) q () Q" (1)

o ] [
Ael= {[oc 1] [204]} [[—af] [—%w]}m

The interaction forces and displacements with the lumped
systems are related to the eigenfunctions by

(O O} =DEENHW D},
w(n)} =0 EN {g" ), (18)
[CEC ) =P, @}, (0L, D} 1.

The moving vehicle interacts with the continuum through a
spring of stiffness k. The force of interaction may take both
positive and negative values. The possibility of separation
of the vehicle from the continuum is not considered herein,
but can be included in the simulation. The profile of the
road surface (i.e., its deviation from the ideal surface) can
be modeled as a general function r(z), which can be
stochastic, representing the random profile of the road
surface, or deterministic in the case of bumps and potholes
at specific locations.

The vehicle dynamics with the interaction motion
as the input and the interaction force as the output always
have zero relative order. Therefore, to ensure that the
entire feedback system have integral causality and is free of
algebraic loop, the continuous system must have at least
one integrator (relative order 1) between the input and
output variables. Indeed, this is true for output to be the

displacement g" (£) or velocity ¢ (¢) in view of Eq. (16)

& (17). This is not always true for the more general case in
Eq. (6). Indeed if the tire model contains a damper, then
the velocity is considered as the input variable to the
lummped parameter system. In this case the input is
represented as

()} =TE T (¢" (t)}+[F(§ ) {g" @)}
=L {¢"®) +dlag[é' 3 ][F(C(f))] (" ®)}

19)
The input to the lumped system in Eq. (13) should be
changed accordingly

{w®) = O+ O} = (W@} +{EH } HE®)

4

(20)

However, for the general case of non-self-adjoint
continuous system in Eq. (6), we have

@} =[dMI (g@)}+ [CF(I)]T{Q(I)}

=([@M]'[Q] +dlag[C C ][CI)(I)] Ha@)}+

[@OT [QI'[F@OHW @)

The system would avoid algebraic loop if and only if the
feed through term, i.e. the last term of the right hand side of
the equation, is zero.

4. Simulation Example.

Based on the above formulation, block diagram based
simulation was constructed by using commercially
available software (Simulink) to simulate the case of
multiple vehicles traversing through a bridge represented
by a simply supported beam. Here we consider the bridge
as a 20 m long simply supported beam with first natural
frequency at about 2 Hz. All the modes are assumed to
have 5% damping ratio. We consider simple vehicle
dynamics as single mass-spring-damper-system as shown in
Figure 1 with a mass of 30000 kg and damping ratio of
10%. Two spring stiffness, a soft spring that gives 1.5 Hz.
vehicle natural frequency and a hard spring (or higher order
mode) that gives 15 Hz. natural frequency, are considered.
A stream of five vehicles traversing at 30 m/sec with a
uniform spacing of 15 m was simulated. These different
suspension characteristics can be considered as actively
tuned suspension control to account for interactions with
the bridge. The bridge displacement at various locations
and the tire force for each vehicle are respectively shown in
the plots. Figure 3 shows the results for soft spring and
figure 4 shows that of hard spring. Clearly, the 2 Hz.
Vehicle passing frequency matches the bridge’s natural
frequency and causes quasi resonance. The dynamic force
due to the stiff spring is much larger than that of the soft
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spring. For the case of stiff spring, the dynamic tire force
of the fifth car is much larger than that of the leading car.
If we had considered this system as a moving (gravity)
force problem, there would not have been the dynamic tire
force components, i.e. [y(1))=(0), as illustrated in the
simulation. While this is an oversimplified simulation to
represent the real vehicle-bridge system dynamics, it
demonstrates the possible detrimental effect of a heavy
vehicle platoon.

5. Conclusions

We proposed a system model representation for
general multiple moving lumped parameter systems
interacting with a distributed parameter systems and applied
it to the heavy vehicle-bridge interaction problem. The
system model is modularized that complex and realistic
vehicle and bridge dynamic model, road surface
disturbances, and various traffic conditions can be included
conveniently and separately into the different sub-systems
in the system model. An importance aspect of this
approach, where we differ from the work of others, is in the
recognition of not only vehicle-bridge interactions but also
interactions between vehicles while on the bridge. Another
important aspect is that the form of the linear parameter
varying system developed herein allows us to consider the
analysis and control design using the theoretical results in
that field and also employ them to other applications. Both
aspects are our ongoing research effort.
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Figure 1 Continuous-lumped system
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