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Abstract

Globally asymptotic tracking and disturbance rejection
is a desirable performance in many applications. Linear feedback
control based on internal model principle achieves asymptotic
tracking performance for linear systems with linear exogenous
signal dynamics. This paper investigates the case of tracking or
rejecting unknown exogenous signals with known nonlinear
generating dynamics particularly chaotic signals for linear systems
in the continuous time domain. Two different control structures
are investigated: nonlinear internal model principle control and
predictive internal model control. It is shown that globally
asymptotic tracking or disturbance rejection can be achieved when
perfect model matching for the linear system is possible. The
closed loop robust stability and performance rely on the relative
size of the model matching errors to the exogenous signal’s local
growth rate.

1. Introduction

Tracking or rejection of exogenous signals is of major
concern in feedback control design. The exogenous signals can
often be modeled as unknown deterministic signals with known
signal generating dynamics. For linear systems with linear
disturbance dynamics, this problem has been studied by Davison
(1976) and Francis and Wonham (1976) etc.. The terminology of
"Internal Model Principle” (IMP) was coined by Francis and
Wonham (1976), which shows that it is necessary to place the
disturbance dynamics in the feedback control loop for achieving
asymptotic tracking or disturbance rejection. Integral control and
repetitive control are examples of IMP type controllers. Recently
more research efforts have been concentrated on developing
similar concepts for nonlinear systems. Isidori and Byrmes (1990)
discussed the local output regulation of nonlinear systems and
gave necessary and sufficient conditions for solvability of the
problem. The so called “nonlinear regulator equation™ is proposed
and discussed. Isidori (1997) further extended the results to the
semiglobal output regulation problem, where the initial condition
of the disturbance dynamics is confined in a bounded set. This
approach is a natural extension of linear internal model principle
to nonlinear settings. However the nonlinear regulator equation
which is a partial differential equation (PDE) is usually hard to
solve and in many cases, the solution of the nonlinear regulator
equation may not exist at all. Huang and Lin (1991) and Huang
(1995, 1998) proposed a kth-order robust nonlinear
servomechanism design, and discussed the existence conditions of

the kth-order servomechanism. A k-fold exosystem is built based
on the linearized disturbance model. Then a feedback controller
including the k-fold exosystem is designed based on the linearized
plant model. It is shown that the controlled system output will be
bounded by the disturbance up to the kth order. However this is a
local result which requires the initial conditions of the plant and
disturbance close enough to the origin. Also to reject the
disturbance to the k-th order, one need to use a very complex
exosystem model in the controller design which will result in a
high order controller and may not be able to be implemented for
real time applications.

Internal model control (IMC) is another class of control
design for disturbance rejection. Garcia and Morari (1982, 1985,
1986) provided a unifying review on internal model control and
further extended it to multivariable systems and nonlinear
systems. A crucial step for applying internal model control is
system inversion. Unstable zero dynamics pose fundamental
constraints on system inversion performance. Robustness to
modeling errors is always a concern for internal model control. A
detailed discussion was provided by Morari and Zafiriou (1989).
Tsypkin (1993) proposed a robust internal model control. The so
called “absorption principle" was used, which essentially
embedded the disturbance signal model in the internal model
control structure for asymptotic tracking performance.

Another closely related topic to asymptotically tracking
or rejecting exogenous nonlinear signals is chaos synchronization
(Kapitaniak, 1996, etc.). Feedback controller is designed to
synchronize a nonlinear system with a chaotic system. One
important application of chaos synchronization is secure
communication. The information signal is coded into a chaotic
signal and sent out through the transmitter. The receiver can
automatically synchronize the chaotic signal and then decode the
information signal. Theoretically chaos synchronization is a
special case of the general problem for tracking or rejecting
nonlinear exogenous signals. It is assumed the chaotic signal can
be directly measured, so plant dynamics are not considered. For
the case of secure communication, it means that the transmitted
signal can be directly obtained by the receiver without filtering
through certain channel dynamics.

This paper investigates the controller synthesis problem
of globally asymptotically rejecting exogenous nonlinear input or
output disturbances for linear systems in the continuous time
domain. Sun and Tsao (1999) presented a discrete time output
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regulation control design for rejecting nonlinear exogenous
disturbances. There are two major difference between the
continuous and discrete time disturbance rejection problem. First,
in the discrete time domain, future disturbance can be obtained
from the disturbance model based on current and previous
disturbances. While in the continuous time domain, only high
order derivatives can be obtained. Second, in the continuous time
domain, relative degree of the control plant will confine the
solution of the model matching problem. Two different control
schemes will be presented in this paper. The nonlinear internal
model principle (NIMP) control scheme is designed by
incorporating nonlinear disturbance model in the feedback loop.
The predictive internal model control (PIMC) scheme is proposed
by predicting the disturbance and its derivatives based on the
disturbance model in the internal model control structure. It will
be shown that these two schemes are identical in certain cases.
Sufficient conditions to achieve asymptotic disturbance rejection
are derived. Closed loop robust stability and performance due to
unmodeled dynamics and model matching errors are discussed
and then demonstrated in the simulations.

The rest of this paper is organized as follows. Section 2
describes the system and disturbance models; Section 3 presents
the feedback control design; Section 4 discusses the robust
stability and performance of the closed loop system; Section 5
shows the simulation results and Sectien 6 is the conclusion.

2. Problem Description

Consider the following single input single output
continuous linear time invariant causal system:
A(s)y(s) = B(s)u(s) + C(s)d,, (s) M
where u(s) and y(s) are input and output respectively. dm (s)

is the unmeasurable bounded disturbance. A(s) and B(s) are

coprime. C(s) is Hurwitz and deg C(s) = deg A(s).

Suppose the disturbance satisfies the following nonlinear model:

WD) = f(v@)+g(v®)o(d,, (1) @
d,, (1) = h(v())
where d,(t)eR, v(t)e RY, f:RY >R,

g:R" >R , o:R—>R"and h:RY > R.

If the original system (1) is not stable, we can first stabilize it by
designing a feedback controller. So without losing generality, we
assume the system is stable. For notation convenience, we rewrite
system (1) into the following form:

y(s) = 7(s)u(s)+d(s) ®3)
_BG) _ _C©)
where z(s) = 4G)’ d(s)=r(s)d,(s) = 46) d,(s).

Since A(s) and C(s) are both Hurwitz, #(s) is proper Hurwitz
and inversely Hurwitz. Therefore the disturbance d(¢) satisfies
following nonlinear model:

W(e) = f () + g(v(®)or ™ (d(©)) Q)
d(t) =rh(v(2))

The control law we are considering is output feedback. Details
will be presented in the following section. The control objective is

to achieve lim y(#)=0 for any initial conditions of the plant
f—»0

and disturbance.

The above control system and objective differ our
problem from previous output regulation results in two aspects.
One is that we will present global asymptotic output regulation
results for linear systems with nonlinear disturbance dynamics.
There is no constraints that the plant and disturbance initial
conditions need to stay in a small neighborhood of the origin. The
other is that the disturbance model doesn’t need to be neutrally
stable. Instead, we allow the Jacobian matrix of the disturbance
model at the equilibria contains unstable eigenvalues, which
actual represents the case of chaotic disturbances.

3. Feedback Control Design

Two different output feedback control schemes will be
presented in this section. The control structures are first outlined.
Conditions to achieve asymptotic disturbance rejection are then
provided. Robust stability and performance of the closed loop
system will be addressed in the following section.

e Nonlinear Internal Model Principle Control (NIMP)

As shown in Fig. 1, the nonlinear internal model
principle control law is as follows:

u(?) =6(z(1)), z(t) = p(=w (z(2)) + ¥(1)) )
where G(-) and () are time domain linear stable operators and
their Laplace domain representations are &(s) and (s)

respectively. ¢(-) is a time domain nonlinear operator.

e Predictive Internal Model Control (PIMC)

The block diagram of PIMC is shown in Fig. 2 and the
control law is as follows:

u(®) =(z(t)) , z(t) = $(-76(z()) + y(©)) ©
where 77(-) is the nominal model of the control plant. () and

#(-) are defined as above.

Following are the two conditions &(-), () and &(-)
need to satisfy to achieve asymptotic disturbance rejection:

w(s) = 7()6(s) )
tim pg(d(e) = ~d() ®)

Condition (7) is to find the stabilizing feedback
controller by solving the model matching problem. If z(s) is a
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minimum phase system, we can design &(s) =m by direct
n(s)

inversion. If 7(s) is a non-minimum phase system, we can

obtain an optimal approximate solution by solving

0(s) =arg _inf ,,“‘/"S) ~72()00)|, ©

Condition (8) is to build a disturbance observer based
on the disturbance model {4). Due to its asymptotic observer
performance, we name condition (8) as the generalized
disturbance model. For general nonlinear disturbance dynamics,
to build the generalized disturbance model is not trivial. Consider
a special case of disturbance model (4):

Wty = Fv(t) + or ' (d(1)) (10)
d(t) = r(HV(1))

One example for building the generalized disturbance model for
(10) is given as follows:

p(s)=-1

HA(D)): {VAO) = Fi@) + orld() + Kr ™ (d () = d(0)

- 11
d(z) = r(Hv(1)) .
From (10) and (11), we have

é(t) = (F + KH)e(t), where e(t) = v(t)—V(t)

If F+KH is Hurwitz, 9(f) > v(¢) and d(f) - d(t) , so
condition (8) is satisfied.

Remark: The generalized disturbance model is incorporated in
the feedback loop of NIMP control to achieve asymptotic
performance. Also note the proposed predictive internal model
control (PIMC) is different from ordinary internal model control
because the disturbance model is inserted into the closed loop to
predict the disturbance. Actually it is a integration of internal
model control and internal model principle control.

Remark: Condition (7) and (8) are two independent conditions.
As we mentioned above, condition (7) is to find the stabilizing
feedback controller, while condition (8) is to build the asymptotic
disturbance observer. We can design them separately, which

satisfies the separation principle. (-) is used to connect these
two conditions.

Remark: Disturbance model (10) represent a large class of
nonlinear signal dynamics, including chaotic signals, such as
Chua’s circuit, Duffing’s equation and van der Pol’s equation etc..

4. Robust Stability and Performance Analysis for NIMPC and
PIMC

Denote
A, : Unmodeled dynamics of plant, i.e. 7(s) =72 (s)(1+A,)
A, : Model matching error, i.e. Z(s)8(s) = w(s)(1+A,)

As shown in Fig.1 and 2, in both control schemes, only
@(-) contains nonlinear dynamics. We can always divide the

closed loop system into two parts: one is the linear part, the other
part contains only static nonlinear functions. Without losing

generality, in the following theorem, we assume ¢(:) is a static
nonlinear function, otherwise the linear dynamics in #(-) can
always be absorbed into (-) and 6(-). Also for simplicity, we

assume the input to @() is a scalar in the following theorem,

while similar result can be obtained for the vector input case using
the same approach.

[¢(c)

| <M for some finite
ol

Theorem 1: Suppose ¢(0)=0 and

positive number M .

(a): The NIMP control is globally asymptotically stable if

My (s) A +A5 +A145) (o<1 (12)
(b): The PIMC is globally asymptotically stable if
M|ly(s) (A +2,4,) [lo<1 (13)

(c): Asymptotic disturbance rejection can be achieved with both
schemes if conditions (7) and (8) are satisfied.

(d): If the disturbance model (4) is linear, the NIMP control will
achieve asymptotic disturbance rejection even when

Ay, A, #0, while the PIMC won’t.

Proof:
(a): As shown in Fig.1, we can separate the system into a feedback

loop with a linear block w(s)—n(s)0(s) and a memoryless
nonlinear block. By the Circle Criterion (Khalil, 1996), the

feedback system is globally asymptotically stable if
1
5y —7(s)0(s) < —
Il (s) = s)0s) lbo< 77

Since w(s) —z(s)0(s) =w(s) A + A, +AA,), (12)
follows.

A 1
(b): Similarly, in view of Figure 2, || 7(s)0(s) —7(s)0(5) ||.,< w
which implies (13).

(c): For the nonlinear internal model principle control (NIMP), the
steady state output is:

y(@) = d(8) +70p (—y (z(1)) + y(2))
y(0) = d(t) + nOp(~y (z(2)) + 70(2(1)) + d(1))

If condition (7) and (8) are satisfied, we have

y(©)=d@)+ypp(d(t)) =0

For predictive internal model control (PIMC), the steady state
output is:

y(0) = d(@) + n0p (-70(z(2)) + y())
y(t) = d(t) + 70p (~70(z(t)) + 76 (z(£)) + d (1))
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If condition (7) is satisfied, it implies Z(s) = 7z (s). Combining
with condition (8), we have

y(&)=d(t)+yp(d®)) =0

(d): Suppose the disturbance model (4) is linear, then ¢(:)
becomes a linear operator. For steady state output, plug
d(t) =—w@g(d(t)) into above derivation, we have following
results:

[1+ () =720(NFO) () = (1 +yg())d(e) = 0 for NIMPC,
[1+@0C) — 26O (@) =1+ 1+ Awd()d(@) = —A,d(©)

for PIMC.

#o)
o
stability condition that:

Remark: If 0< , the Circle Criterion gives the

Re(y/(e"j“’)(Al+A2+A1A2))>_ﬁ1 for NIMPC, and

_ -1
Re(p(e™“)NA; +AA,)) > " for PIMC.

Remark: From the above derivation, we find that the PIMC is
more robust than the NIMC. For linear disturbance dynamics, the
internal model principle control provides asymptotic tracking
performance while the predictive internal model control can’t due
to the model matching error.

5. Simulation Results

In this section, we will simulate the disturbance
rejection performance of the proposed schemes. A linear system
with unmodeled dynamics and a non-minimum phase zero is used
in the simulations.

m(sy=7z(s)Q1 +L) (14)
s+a
where the nominal model 7(s) is:
- s— 0 )
7(s) = with >0 (15)
(s+7) p

The Duffing’s equation is used as the disturbance model:
d+6d—d+d* =ycos(t+1,) (16)
where d{(0), d (0) and ¢, are unknown.

This model represent the chaotic motion of a nonlinear spring,
damper and mass system. It is a good approximation of many
chaotic mechanical systems, for example, the chaotic motion of
the spindle due to rolling bearing defect. The chaotic motion is
very sensitive to the initial conditions and the values of & and y .

In the following simulations, we choose § =0.25 and y =04.

It is easy to verify that the Jacobian matrix of (16) at origin has
unstable eigenvalue.

The block diagrams of NIMP control and PIMC to
reject the chaotic disturbance are shown in Fig. 3 and 4

respectively. Now we need to design w(-), 8(-) and &(-).

-1
We choose w(s)=——-.
s+a

First, we need to find &(s) to satisfy condition (7). Since 7z(s)
is a non-minimum phase system, direct inversion will result in an
unstable controller. Instead we solve Eq. (9) to find the optimal
approximate controller.

(s+7)
M@ “
Next we design a nonlinear observer to satisfy condition (8).
2() = $(d(®) = |
X(t) = AX () + BoL(d(t) + K(d(t) - d (1) (18)
d(t) = CX(t)
2(t) = PX (@)
x,(0) 0 1 0 0 0
where X (¢) = xz(t)’ A= 0 -5 0 7, B= ! ,
x5(0) 0 0 0 1 0
x4(0) 0 0 -10 Lo
17" al’ 4.75
0 1 7.1625
c=||,prP=| | k=
0 0 14.869
0 0 6.875
1.6, d(#)>1.6
d(t)=Td@) =1 d{©), 1.6=d()=-1.6 (19)
~1.6, d()<-1.6

and o(d () =d () -d > ()

In the above observer design, A itself is not strictly Hurwitz
since states x3(f) and x,(t) are included to estimate the

external driving force ycos(t+t,). K is designed so that

A—KC is strictly Hurwitz. Then it is easy to verify that
condition (8) is satisfied.

Remark: Note the optimal controller (17) is not proper since the
plant model (15) has a relative degree 1. To implement the

controller, derivatives of the input signal z(¢) (see Fig.3 and 4)
are required, which are available from observer (18).

To evaluate the stability of the closed loop control
system, we need to divide the system into a linear block and a
static nonlinear block. The linear block is:

__ L
1-T,T,

where

xT5

2a+ B+ac

T, =7(s)0(s)—w(s) and “71"‘m = aa(a+ p)

for NIMPC
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2a+ p

Ty = 2(s)0(s) - #(s)8(s) and |3 < aa(a+ f)

for PIMC

T, = P(sI - A+KC)"'K
T, =P(sI-A+KC)'B

The static nonlinear block is oI'(d(¥)) and the bound is
M =1.56 based on (19).

Choose a=0.1, @ =200 and S =10, we have

For NIMPC:

17 <! 20+ fraa ) 04212 < = 0.641
-T2, aata+p) M

For PIMC:

17 s |—E ] 2242 4rl <o1428<L — 061
1-1L|, aa(a+ )" M

Therefore Theorem 1 predicts global asymptotic stability for both
NIMPC and PIMC. Figure 5 and 6 show the chaotic disturbance
with its estimate, the derivative of the disturbance with its

estimate generated by model (16) with d(0)= 0.8, d(0)=0.9
and f, =0.7854 respectively. Figure 7 shows the asymptotic

disturbance rejection performance of the NIMPC and PIMC
respectively.

6. Conclusions

This paper addresses the control synthesis problem to
achieve global output regulation for linear systems with nonlinear
disturbance dynamics, particularly chaotic disturbances. The
proposed control schemes differ from previous results in two
aspects. One is that the initial conditions of the plant and the
disturbances are not required to stay in a small neighborhood of
the origin, nor do we assume the bound of the initial conditions is
known. The other is that the disturbance model is allowed to
contain unstable dynamics, which actually represents the case of
chaotic disturbances. Two specific algorithms have been
proposed: nonlinear internal model principle control and
predictive internal model control. The effects of the disturbance
growth rate, system unmeodeled dynamics, and non-minimum
phase plant model matching errors on the system stability and
performance are derived.
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