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Abstract

Tracking or rejection of unknown exogenous
signals with known generating dynamics is of major concern
in feedback control design. Linear feedback control based
on the internal model principle achieves asymptotic
performance for linear systems with linear exogenous signal
dynamics. This paper presents a control design based on the
internal model principle to track or reject nonlinear
exogenous signal dynamics for nonlinear systems.
Necessary condition to achieve asymptotic disturbance
rejection based on the proposed control structure is first
derived. It is shown that the necessary condition becomes
sufficient for linear systems with linear disturbance
dynamics. Inspired by the unique structure of the necessary
condition, sufficient conditions are then proposed.
Simulations of a nonlinear plant with chaotic disturbance
show the effectiveness of the proposed scheme.

1. Introduction

Globally asymptotic tracking and/or rejection of
exogenous signals is a desirable performance in many
control systems. The exogenous signals can often be
modeled as unknown deterministic signals with known
signal generating dynamics. For linear systems with linear
disturbance dynamics, this problem has been studied by
Davison (1976) and Francis and Wonham (1976) etc.. The
terminology of "Internal Model Principle" (IMP) was
coined by Francis and Wonham (1976), which shows that it
is necessary to place the disturbance dynamics in the
feedback control loop for achieving asymptotic tracking or
disturbance rejection. Integral control and repetitive control
are examples of IMP type controllers. Recently more
research efforts have been concentrated on developing
similar concepts for nonlinear systems. Isidori and Byrnes
(1990) discussed the local output regulation of nonlinear
systems and gave necessary and sufficient conditions for
solvability of the problem. The so called “nonlinear
regulator equation” is proposed and discussed. This
approach is a natural extension of linear internal model

principle to the nonlinear settings. However the nonlinear
regulator equation, which is a partial differential equation
(PDE) is usually difficult to solve, and in many cases, the
solution of the nonlinear regulator equation may not exist at
all. Khalil (1994) presented a robust servomechanism
output feedback control design based on high gain observer
and saturation for feedback linearizable systems. Combining
this control design and the local output regulation results,
Isidori (1997) addressed the semiglobal output regulation
problem, where the initial condition of the disturbance
dynamics is confined in a known bounded set. Huang and
Lin (1991) and Huang (1995, 1998) proposed a kth-order
robust nonlinear servomechanism design, and discussed the
existence conditions of the kth-order servomechanism. A k-
fold exosystem is built based on the linearized disturbance
model. Then a feedback controller including the k-fold
exosystem is designed based on the linearized plant model.
It is shown that the controlled system output is bounded by
the disturbance up to the kth order. However this is a local
result which requires the initial conditions of the plant and
disturbance close enough to the origin. Also to reject the
disturbance to the k-th order, one need to use a very
complex exosystem model in the controller design. Ding
(2001) presented a global output regulation result for a class
of minimum phase nonlinear systems with linear
disturbances. Sun and Tsao (1999, 2001) addressed the
asymptotic disturbance rejection problems for linear system
with nonlinear disturbance dynamics, especially chaotic
disturbances in the discrete and continuous time domains
respectively. Sufficient conditions for achieving global
asymptotic performance were presented. System robust
stability and performance under unmodeled dynamics and
model matching errors were derived and demonstrated
through simulations.

This paper considers the asymptotic tracking or
disturbance rejection problem for single-input-single-ouput
nonlinear systems from the input-output viewpoint. The
objective is to find a control synthesis method to
asymptotically reject unknown exogenous nonlinear
disturbances for nonlinear systems. A feedback control
structure which incorporates the nonlinear disturbance
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model in the feedback loop is adopted. Necessary condition
is first derived for asymptotic disturbance rejection. It is
shown that the necessary condition becomes sufficient for
linear systems with linear disturbance dynamics provided
that the closed loop system is asymptotically stable. Inspired
by the unique structure of the necessary conditions,
sufficient conditions to achieve asymptotic disturbance
rejection are then proposed. Our results differ from the
previous output regulation results in three aspects. First, we
do not address the problem of existence of control for
asymptotic tracking. Instead, we make it an assumption and
focus on the controller design problem for a specific
feedback control structure. Second, we present the global
asymptotic output regulation results for SISO nonlinear
systems with nonlinear disturbance. Thus, the plant and
disturbance initial conditions need not to stay in a small
neighborhood of the origin. Finally, the disturbance model
needs not to be neutrally stable and thus includes chaotic
disturbance signals.

The rest of this paper is organized as follows.
Section 2 describes the plant and disturbance models;
Section 3 presents the feedback control design; Section 4
shows the simulation results and Section 5 is the conclusion.

2. Problem Description

Consider the following single input single output
nonlinear plant:

),()( uxftx =& (1)

)(),()( tduxhty +=

where mRtx ∈)( , Rtu ∈)( and Rty ∈)( are the state, input

and output signals respectively. Rtd ∈)( is the

unmeasurable bounded disturbance.

Suppose the disturbance satisfies the following nonlinear
model:

)()( wtw µ=& (2)

)()( wgtd =

where nRtw ∈)( , nRR →:µ and RRg n →: .

Rewrite the plant model (1) and the disturbance model (2)
into the following input-output representation:

duy += ][π (3)

][dd χ=
where pepe LL →:π is strictly causal, internally and finite

gain stable. pepe LL →:χ is strictly causal and finite gain

stable.

Remark: Although the above plant and disturbance models
only show the input and output signals explicitly, those
mappings are also functions of the initial states. Since we
are mainly interested in the signal flow in the feedback loop,
and for notation convenience, the dependence on the initial
states is not explicitly shown.

The following assumption is made about the plant:

Assumption 1: There exists a unique control signal

peLu ∈* such that du −=][ *π .

Detailed control structures will be outlined in the
following section. The control objective is to achieve

0)(lim =
∞→

ty
t

for any initial conditions of the plant and the

disturbance.

3. Nonlinear Feedback Control Design

As shown in Figure 1, the nonlinear internal model
principle control (NIMPC) law is as follows:

][ zu θ= , ]}[{ zyz ψφ −= (4)

where pepe LL →:ψ and pepe LL →:φ are strictly causal

and finite gain stable, pepe LL →:θ is finite gain stable and

][⋅πθ is strictly causal.

The motivation behind the control structure (4) is
that we need a self-excitation mechanism in the feedback
loop which will drive the system to cancel out the persistent
but bounded disturbance once the output becomes zero.

As shown in Figure 1, we can divide the closed
loop system into two serially connected blocks. One is

][][ ⋅−⋅ ψπθ and the other is ][⋅φ . Since both ][][ ⋅−⋅ ψπθ
and ][⋅φ are strictly causal, the feedback system is well

posed (Dahleh and Diaz-Bobillo, 1995).

Our approach to achieve asymptotic performance
for system (3) with the control law (4) is to derive the
necessary condition first and then synthesize a set of
sufficient conditions based on the solutions of the necessary
condition.

3.1 Necessary Conditions For Asymptotic Disturbance
Rejection

In this section, we derive the necessary condition
to achieve asymptotic disturbance rejection based on system
(3) and control law (4). First, we would like to introduce the
following definition:
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Definition 1: Consider mappings pepe LL →:1η and

pepe LL →:2η . Suppose ][ 111 uy η= and ][ 222 uy η= , then

0)(lim][][ 212211 =−⇔=
∞→

yyuu
t

ηη .

Theorem 1: Consider the nonlinear system (3) and the
control law (4), it is necessary to satisfy the following
condition to achieve asymptotic disturbance rejection:

])[(])[()( ** zz πθχψφπθ −=−− (5)

where *z will be defined in the proof.

(b) If the plant and disturbance dynamics are linear, the
above condition is also sufficient provided that the
closed loop system is asymptotically stable.

Proof:
(a) As shown in Figure 2, assume asymptotic disturbance

rejection has been achieved, i.e. 0)( ≡ty , along with

assumption 1, we have:

du −=][ *π (6)

][ ** zu θ= (7)

])[( ** zz ψφ −= (8)

Combining (6), (7) and (8), we get

])[( *zd ψπθφ −−= (9)

From (3), (6) and (7), we get

])[( *zd πθχ −= (10)

Comparing (9) and (10), we have

])[(])[()( ** zz πθχψφπθ −=−−

(b): Suppose the system and disturbance dynamics are both
linear, then ][⋅π , ][⋅θ , ][⋅ψ and ][⋅φ become linear

mappings. The necessary condition (5) becomes:

])[(])[( ** zz πθχπθψφ −=−−
So ][][ ddd χψφ =−= (11)

Combining it with the system model (3) and control law
(4), we have the following results:

0]}[1{]}[1{ =+=−+ dy ψφπθφψφ

So 0)(lim =
∞→

ty
t

provided that the closed loop system is

asymptotically stable.

Remark: We name condition (11) as the generalized
disturbance model. The physical meaning of this condition
is that disturbance dynamics are incorporated into the
feedback loop to achieve asymptotic performance. This is
consistent with the well known Internal Model Principle.

Remark: It is worth to point out that repetitive control
which is widely used to track or reject periodic signals can
be viewed as a special case of the proposed control design.
For that case, ][⋅φ becomes the identity mapping and ][⋅ψ
is the delay mapping.

3.2 Sufficient Conditions for Asymptotic Disturbance
Rejection

In this section we will first find solutions for the
necessary condition (5) and then propose the sufficient
conditions based on them. Inspired by condition (11), to
include the disturbance dynamics in the feedback loop, we
design ][⋅ψ and ][⋅φ such that:

][][ ⋅=⋅− χψφ (12)

Then condition (5) becomes:

])[(])[( ** zz πθψφψπθφ −=− (13)

The above condition is nothing but swapping between the
mappings. Obviously it will be satisfied automatically for
linear time invariant (LTI) systems, but not for general
nonlinear systems. To utilize this unique structure, we
propose the following condition:

][][ ⋅=⋅ πθψ (14)

Obviously, condition (5) is then satisfied. With this, we
propose the following sufficient conditions to achieve
asymptotic performance.

Theorem 2: Consider system (3) and control laws (4), (12),
and (14), we have the following:

(a): The closed loop system is input output pL -stable if

1<×−
pp

φψπθ (15)

(b): Asymptotic disturbance rejection is achieved if
conditions (12) and (14) are satisfied.

Proof:
(a): As shown in Figure 1, we can divide the closed loop

system into two serially connected blocks. One is
][][ ⋅−⋅ ψπθ and the other is ][⋅φ . Since the closed
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loop system is well posed, by the small gain theorem,
it is input output pL -stable if 1<×−

pp
φψπθ .

(b): The steady state output of the closed loop system is:

}][{ yzdy +−+= ψπθφ
}][][{ dzzdy ++−+= πθψπθφ

If condition (12) and (14) are satisfied, we have
0][ =+= ddy ψφ

Remark: Conditions (12) and (14) are two independent
conditions. Condition (12) is to build the disturbance
observer, while condition (14) is to find the stabilizing
feedback controller through model matching. We can design
them separately and )(⋅ψ is used to connect these two

conditions.

Remark: Although we claim that conditions (12) and (14)
are sufficient conditions, they are the only obvious solutions
to the necessary condition (5), so they are actually close to
be necessary.

Remark: To improve system robustness, we can introduce
a low pass filter ][⋅Q and place it before ][⋅ψ and ][⋅θ .

Then condition (15) becomes 1<×−
pp

QQ φψπθ .

4. Simulation Results

In this section, we will simulate the disturbance
rejection performance of the proposed scheme. Consider the
following nonlinear plant with chaotic disturbance:

211 sin xaxx +−=& (16)

uxxx +−= 2
2
12&

dxy += 2

The chaotic disturbance satisfies the Duffing’s equation:

)cos( 0
3 ttdddd +=+−+ γδ &&& (17)

where )0(d , )0(d& and 0t are unknown, δ and γ are

known constants.

This model represents the chaotic motion of a nonlinear
spring, damper and mass system. It is a good approximation
of many chaotic mechanical systems, for example, the
chaotic motion of the spindle due to rolling bearing defect.
The chaotic motion is very sensitive to the initial conditions
and the values of δ and γ . In the following simulations,

we choose 25.0=δ and 4.0=γ . It is easy to verify that the

Jacobian matrix of (17) at origin has unstable eigenvalue.

The feedback control laws are described in (4) and
shown in Figure 1. Based on theorem 2, we need to design

][⋅ψ , ][⋅θ and ][⋅φ to satisfy conditions (12) and (14) to

achieve asymptotic disturbance rejection.

Step 1: Design ][⋅ψ and ][⋅θ to satisfy condition (14).

Let zxu −−= 2
1 and plug it into (16):

21 sin xaxx +−=&

zxx −−= 22&

dxy += 2

So the mapping from z to y becomes
1

1

+
−

s
and

consequently we choose:

1

1
)(

+
−=

s
sψ , where s is the Laplace operator.

Step 2: Next we design an asymptotic nonlinear disturbance
observer to satisfy condition (12).

⇔= ][dz φ

]ˆ[][ ddKdBA −+Γ+= σξξ& (18)

ξCd =ˆ

ξPz =
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][

d

dd

d

dd and 3][ ddd −=σ .

In the above observer design, A itself is not strictly
Hurwitz since states 3ξ and 4ξ are included to estimate the

external driving force )cos( 0tt +γ . K is designed so that

KCA − is strictly Hurwitz. Then it is easy to verify that
condition (12) is satisfied. Also note in (18) d is only used
to represent the input to ][⋅φ , it doesn’t mean that we can

measure the disturbance directly. Instead, we assume the
disturbance is unmeasurable and the actual input to ][⋅φ in

the feedback loop is ][zy ψ− as shown in Figure 1.
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Figure 3 shows the chaotic disturbance generated

by model (17) with 5.0)0( =d , 8.0)0( =d& and 5/0 π=t

respectively. Figure 4 shows the estimate of the disturbance
and the estimation error generated by the nonlinear observer
(18). Figure 5 shows the regulated output of the plant and
the control signal. State signals of the nonlinear plant are
shown in Figure 6. As predicted by theorem 2, asymptotic
performance has been achieved.

5. Conclusions

This paper presents the control analysis and
synthesis to achieve global output regulation for SISO
nonlinear plant with nonlinear disturbance dynamics. Under
the assumptions of the existence of the control signal for
asymptotic tracking, the necessary condition to achieve
asymptotic performance for the specifically proposed
feedback control structure was derived. A set of sufficient
conditions were then presented. Using these conditions,
the control design was performed for an example of a
nonlinear plant with chaotic disturbance. Simulation results
were given to illustrate the control performance.
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Figure 1. Block Diagram for the Nonlinear Internal Model
Principle Control (NIMPC)

Figure 2. Block Diagram for Asymptotic Disturbance
Rejection
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Figure 3. Chaotic Disturbance Generated by Duffing’s
Equation
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Figure 4. Disturbance Estimate and the Estimation Error
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Figure 5. Regulated Plant Output and Control Signal
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Figure 6. States of the Nonlinear Plant
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