Proceedings of the American Control Conference
Philadelphia, Pennsylvania * June 1998

Identification and Control of Electrohydraulic Actuator
Modeled as a Linear Periodic System

Dean H. Kim”
Tsu-Chin Tsao

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana-Champaign, Illinois

Abstract

In tracking of periodic signals, the nonlinear dynamics of
electrohydraulic actuators are modeled as linear periodic systems
perturbed along periodic input and output trajectories. System
identification of linear periodic systems is first performed and then
periodic repetitive controllers are designed and implemented within
the valid range of the linear approximation. Successive iterations of
the identification and control are then performed to drive the system
output towards the desired output trajectory.

1. Introduction

Noncircular turning for camshaft machining is a process,
which uses fast response high-force actuators like electrohydraulic
actuators and high performance motion control to make the cutting
tool attached to the actuator track specified periodic cam profiles.
The design of such high performance precision motion control
requires the use of accurate electrohydraulic models. While the
hydraulic systems are nonlinear, it is desirable to use a linear
input/output approach for modeling, identification, and control.
This is because that the main system nonlinearities for the
electrohydraulic actuator for this application reside in the
servovalve, for which the nonlinear model parameters are difficult
to determine and internal state variables cannot be measured [7].

It is well known that a periodic linear system results from
linearizing a nonlinear system along a periodic state trajectory that
corresponds to a certain input trajectory. Utilizing this fact, linear
periodic input/output models of linearization around some nominal
input and output trajectories can be identified. However, controllers
designed using the identified linear models will only be effective for
small perturbations around the nominal trajectories. Since the input
trajectory that corresponds to the desired output trajectory is
unknown, more than one iteration of this identification and
controller design procedure may be required so that the nominal
input and output trajectories will converge to the desired ones.
This paper proposes a formal successive iteration procedure, which
involves periodic system identification, periodic repetitive control
design, and control performance evaluation, to address the periodic
trajectory tracking problem for the nonlinear electrohydraulic
systems.

Repetitive  controllers are useful for  asymptotic
tracking/regulation of systems with exogenous periodic signals.
Previous work in repetitive control of periodic systems can be
found in [6] and [2]. Omata et al. [6] developed a sufficient
stability condition and a control design method based on /-2
optimization.
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Hanson and Tsao [2] developed a necessary and sufficient stability
condition and a control design method based on gain scheduling of
a zero phase error compensator described in Tsao and Tomizuka [8].
The rest of this paper is organized as follows. The
experimental system is described briefly. The identification
methodology and control design strategy for the linear periodic
system are described, and are performed in two successive
iterations. The identified periodic model for each iteration is shown
to provide the best match of the corresponding experimental data.
The tracking performance is improved with each iteration by using
the appropriate periodic repetitive controller and feedforward input.

2. System Description

The experimental system consists of a two-stage flow control
servovalve and a double-ended actuator, operated at a supply
pressure of 18.6 MPa (2700 psi). The system input is a voltage
corresponding to current input to the servovalve torque motor, and
the output is the actuator displacement measured by a laser
displacement linear encoder with 0.6 micron resolution. An analog
proportional control loop (with gain = 1) is applied to the open loop
system to create a stabilized plant with input signal “v3,."

This plant model has the form

Xam(s) - s> +f54 +£553 +£352 +fys +fs
Vim(s) s8 +g1s’ +g256 +g355 *gﬁ +g5° +g652 +g78 +88

Py (5) = ty
which incorporates the actuator and servovalve model [7]. In order
to facilitate the subsequent system identification and controller
implementation, the consistency of the electrohydraulic system
response must be enhanced. This is accomplished by using an
appropriate inner-loop H® feedback controller [4]. The closed-loop
system with this controller is now considered the plant, with input
“iNyam” as shown in figure 1:

_Xam(s)
yam (8) @

where Py(s) will be 18th-order due to P,’(s) and the 10th-order H*
feedback controller [4].

The discrete-time plant model is

Po(s) =

n_ Xam(@) _ qdB@)
Po@) = em @D~ A )
A =1-A1qT- . - Agg™

B(@')=Bo+Biq ! + ..+ Byg™,By#0,

where the discrete-time delay operator is designated by q'l.
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3. Problem Formulation

Figure 2 shows a reference cam profile, which contains 200
points (i.e. N = 200). For the equivalent spindle speed of 600 RPM,
the corresponding sampling frequency is 2,000 Hz. Initially,
repetitive controllers and feedforward controllers are designed from
a linear time-invariant model, which corresponds to perturbations
about the zero actuator position [3]. These controllers are used to
track three reference trajectories with maximum amplitudes of 9.6,
10.5, and 11.4 mm, the largest being shown in figure 2. The
tracking performance diminishes for the larger trajectories, as the
maximum errors are 180 microns, 290 microns, and 410 microns,
respectively, and the RMS errors are 44 microns, 69 microns, and
95 microns, respectively. Hence, the controllers designed from the
time-invariant model do not provide adequate tracking for the
largest amplitude reference, indicating the existence of system non-
linearities.

Due to the periodic nature of this tracking application, the
electrohydraulic system is modeled as a linear periodic system, with
the models obtained from linearization about nominal input and
output trajectories. A progressive identification and control
approach is used and illustrated in figure 3. The two-dimensional
space in figure 3 can be considered in two ways, as a function space
for the input and output trajectories, and as a performance space,
where the vertical axis represents the tracking errors and the
horizontal axis represent the iterations. The point (ingam*, Xamref)
in the function space represents perfect tracking of the reference
trajectory and its corresponding input. The point (ingam(!), Xam(D)
represents the first input trajectory and the corresponding output
response. The linear periodic model for motion near (inyam(D),
Xam(1)), valid within radius Ry, is used for controller design. The
implementation of these first controllers moves the nominal
performance to the point (ingm(®), x,,(2), which signifies
improved tracking of the reference trajectory. Next, perturbed data
around these input and output trajectories are obtained, and the
identification and controller design is repeated. The nominal
trajectories are then moved to point (ingam®), xam(3)), which
represents further improved tracking. With each successive
iteration, the controllers designed from the corresponding linear
periodic model are used to improve the tracking of the reference
trajectory, until the tracking error converges to zero.

For each iteration, the N-periodic nominal input trajectory
iNxamNOM = { iNamNOM (1), -, inamNoM N} (@)
and the corresponding nominal output trajectory

;amNOM = { XamnOMm (1), ..., XamnoM (N) } (5

is obtained. Defining the input and output deviations from the
nominal trajectories

Ainyam = iNxam - N xamNOM (6)
and
AXam = Xam - XamNOM. 0]
the perturbed model at each point in the trajectory is expressed as
- Mm@ _ g9Ba@h
P, (@) = 302 = = 8
@) Bnam@h ~ Aa@n @

Aga D =1-ajq"- -2
Ba(@ ) =bg+bjq ! + ... +byg™, by =0,

4. Periodic System Identification

Due to the inherent nonlinearity of the electrohydraulic system
and the large desired range of motion, it is expected that the
perturbed model (8) will vary along each periodic trajectory. The
strategy for system identification is to determine the perturbed
model corresponding to each point in the trajectory.

The notation for system identification is presented. Define the
vectors

@ T(k-1)=[Axgm(k-1) ... Axam(k-n) Aingam(k-1) ... Ainggm(k-m)] (9)
0T(k) = [-a1(k) ... -an(k)  bo(k) ... by(K)] (10)

It can be seen that Axyn(k) = @T(k-1) 8(k), and the goal of the
system identification is to use the input-output data to estimate 6(k)
v k.

The identification framework first is described for a linear
time-invariant system, i.e. 8(k) = 0,, and then is expanded for the
linear periodic system. Using the direct least squares algorithm, the
estimate for 0, i.e. O, computed from “m” sets of data is

-1

k:
6 - { lo (k—l)cpT(k-l)]}

k=1

k=m
2[0 (k-1) Axgm(K)]
k=1

an

and the prediction error verifies the accuracy of the identified
model:

examPRED(K) = Axgm(k) - 9T(k-1) 0, k=1.m (12)

Here, a total of “mcyc)e” cycles of perturbed data around the
nominal input trajectory and corresponding output trajectory are
used to determine the best model Oj forj=1,2,...N:

-1

N ke= le . . k=
b=t ot 0TGN SToD) MmO (1)
ke=1 ke=1

A
For each 6j, the same interval is used on the input trajectories and
output trajectories for “mgcycie” cycles. For the identification of this
experimental system, mcycle = 100.
The prediction error is computed for each of the identified
models:

examPREDj (k) = Axamj (k) - 9iT(-1) §j(k), j=1,2,...N (14)

over the “meycle” cycles. Both the average prediction error and
standard deviation are computed at each location over the “meycje”
cycles.

5. Periodic Repetitive Control

Periodic repetitive controllers are designed from each
identified linear periodic model, since repetitive controllers improve
tracking of the periodic reference trajectory. The discrete-time
repetitive controller formulated in [8] is used, specifically

Ainxamrep(k)}=Q(q,q)[Ainxamrep(k-N)+q"N*LM(g-1eaxam(¥)]

M)~ AAENETBAD) 1s)

L=d+m
b= (fboll + ... + |b[)2,
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The signals Ainxamrep (k) and epxam(k) represent the discrete-time
repetitive control signal and tracking error, respectively. In
addition, Q(q,q'l) is a low-pass, zero-phase filter which is included
for robust stability (i.e. Q(q,q°!) = [0.25¢ 0.5 0.25¢"1]4). Under
this formulation, each repetitive controller is a finite impulse
response (FIR) filter. Repetitive controllers are designed for each of
the N perturbed models, resulting in a periodic repetitive controller.
The repetitive controllers are implemented with a gain scheduling
scheme. Figure 1 illustrates how the perturbed signals are obtained
from the nominal input trajectory and output trajectory.

The feedforward control input shown in figure 1 is obtained
from off-line simulation of the periodic repetitive controller on the
identified periodic plant model, with the intention of reducing the
tracking error shown in figure 2. These are the system vectors,
which contain N points each:

1) taxam (reference inputs) = Txam - XamNOM
2) A—inxam (system inputs) = Exam - ExamNOM
3) A_Xam (system outputs) = ;am - ;amNOM

4) EAxam (tracking errors) = ;Axam - A_xam

The closed-loop stability for both simulation and
implementation must be assessed for each N-periodic repetitive
controller design, since the resulting controller is not necessarily
stabilizing. Specifically, the linear periodic system must be lifted to
a higher dimensional time-invariant system, so that the stability of
the periodic repetitive control system can be determined by the
necessary and sufficient condition [2]:

p(Acp) <l. (16)

Since the linearized models are only valid for small perturbation
around the nominal trajectories, the actual valid ranges, as
represented by the circles in figure 3, were determined
experimentally by accessing the tracking performance for a range of
perturbed reference trajectories. The experimental results are
analyzed in two ways: the actuator motion with respect to the scaled
perturbed reference trajectory, and the actuator motion with respect
to the full reference trajectory of figure 2. In both cases, the
tracking results are quantified by the maximum error and by the
root-mean-square (RMS) error.

6. Results for First Iteration

The N-periodic nominal output trajectory from figure 2 and the
corresponding nominal input trajectory are used as the nominal
trajectories for the first iteration. The identification methodology is
applied to the perturbed system around these nominal trajectories.
A uniformly distributed random input signal with maximum
amplitude of 300 microns, are sampled and held at each value for
seven sampling intervals in order to allow the hydraulic system to
respond sufficiently.

For this first iteration, 18th-order models (8) are fit at each of
the 200 points. This identified periodic model provides better
prediction errors than the time-invariant model, as demonstrated by
figure 4, which shows the averaged prediction error and its standard
deviation at each point on the trajectories (j =1 ... N). The biggest
difference can be seen near the peak amplitude on the reference cam
trajectory (i.e. j = 80), which also corresponds to the position of
greatest acceleration.

The periodic repetitive controllers (14) are implemented via
gain scheduling, in addition to the feedforward input obtained from

the repetitive control simulation. The goal is to reduce the nominal
tracking error of figure 2, which is the difference of the nominal
output trajectory from the desired output. This nominal error is
used as the perturbed reference trajectory for the periodic repetitive
control simulation (for finding the feedforward input) and
implementation.  Stability of the periodic control system is
confirmed from the calculation of the lifted system matrix spectral
radius, where p( Acr) = 0.98 for this case.

The best results are obtained with the perturbed reference
trajectory scaled by 50 percent, which are shown in figure 5. The
improved tracking error with respect to the full reference trajectory
is shown in figure 7. As seen in figure 9, the tracking performance
worsens for larger scaling of the perturbed reference trajectory.
This indicates that the system nonlinearity has deviated from the
linear periodic behavior around the nominal trajectories. Another
iteration of this procedure around the new input and output
trajectories, which are now closer to the desired ones, would further
improve the performance. For this first iteration, the hydraulic
pump and system variations contribute 12 microns to each RMS
error.

7. Results for Second Iteration

The identification methodology is applied again to the
perturbed system around the nominal trajectories corresponding to
the responses from the first iteration shown in figure 5. Perturbed
input data similar to the previous iteration, except now a maximum
amplitude of 100 microns are used.

As shown in figure 6, the new identified periodic model
provides smaller prediction errors than the periodic model from the
first iteration.

Following the identical procedure in the previous iteration, the
periodic repetitive controllers (14) are implemented via gain
scheduling, in addition to the feedforward input obtained from the
repetitive control simulation, the goal being to further reduce the
error from the first iteration. Stability is again checked with
p(Acp) =0.97 for the periodic repetitive control system.

The best result is obtained with the new perturbed reference
trajectory scaled by 50 percent, which shown in figure 8. The
further improvement in tracking error with respect to the full
reference trajectory is shown in figure 7. As seen in figure 9, the
performance again worsens for larger scaling of the perturbed
reference trajectory. For this second iteration, the hydraulic pump
variations contribute 6 microns to each RMS error, due to the fact
that the hydraulic system varies with time.

Table 1 indicates improved performance, in terms of maximum
error and cumulative error, for the full reference trajectory of figure
2, using the periodic repetitive controllers and feedforward inputs
for the two iterations. The improved tracking of this periodic
reference signal validates the modeling of the electrohydraulic
system as a linear periodic system, which is valid for a certain
amplitude range around nominal input and output trajectories.
Conceivably more iterations could have been applied to further
improve the tracking performance up to the system’s noise levels or
hardware limits.

8. Conclusions

The linear periodic systems have been obtained from
linearizing the electrohydraulic system around the nominal input
and output trajectories corresponding to the reference trajectory,
and the correct identification methodology has been developed and
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utilized.  The identification and controller design has been
performed in two successive iterations. In each case, the identified
periodic model provides the best agreement with experimental data.
The repetitive controllers and feedforward inputs designed from
these linear periodic models provide improved tracking of the
reference trajectory.
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Figure 1. Control System Block Diagram
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Figure 5. Results for first iteration in microns:

Top: Scaled perturbed reference (dot)
Simulated perturbed output (dash)
Experimental perturbed output (solid)

Bottom: Experimental perturbed input (solid)

Perturbed feedforward input (dot)
Perturbed repetitive input (dash)
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Figure 6. Prediction errors for second iteration in microns:
new periodic model (solid), previous model (dot)
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Figure 7. Tracking errors for full reference: nominal (dot)
after 15t iteration (dash), after 2nd iteration (solid)
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Figure 8. Results for second iteration in microns:

Top: Scaled perturbed reference (dot)
Simulated perturbed output (dash)
Experimental perturbed output (solid)

Bottom: Experimental perturbed input (solid)
Perturbed feedforward input (dot)
Perturbed repetitive input (dash)
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Figure 9. RMS errors for scaled perturbed reference:
Experimental: 18! iteration (o), 2nd jteration ()

Simulation: 15t iteration (dot), 2nd jteration (dash)

Table 1. Summary of results
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Maximum error RMS error
{microns) (microns)

Nominal 410 95
response
After
15t jteration 190 50
After
2nd jteration 125 2




