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Abstract

Traditional methods of tracking controller design involve in-
verting the system dynamics using the model of the system,
Model errors will result in performance degradation and may
lead to instability. Since the system parameters vary due to the
factors such aa age, temperature, etc., there is an interest in
tracking control schemes that can efficiently address changes in
the system’s behavior. This research proposes a tracking con-
trol scheme, in which the inverse dynamics of an LTI system
are determined using the input-output data. In many practical
applications the system is desired to track a set of trajectories
that can be characterized by a subspace of L2. The proposed
algorithm utilizes expansion of the output in terms of a signal
obtained in an identification experiment by generating a set of
vectors spanning the desired subspace. The performance oft he
scheme is compared with the performance of the conventional
model-based feedforward and repetitive controllers,

1 Introduction

The objective of tracking control is to minimize the errors of
path following. In a number of applications the desired tra-
jectory is also periodic, like in noncircular turning of engine
camshafts that is considered in this paper. In noncircular turn-
ing, the radial position of the tool slide is synchronized with the
rotation of the spindle, and the cam is produced by following
a certain trajectory corresponding to the desired cam shape.
The tool trajectories for some of the cams used in the automo-
tive industry are shown in Fig. 1. These trajectories share one
common feature - they are low frequency signals.

A high performance tracking controller must be used in the
tool drive’s servocontrol system in order to satisfy stringent
profile error requirements for camshafts. The issues involved
in tracking centroller design are briefly discussed next.

Suppose that a feedback control system that satisfies certain
performance requirements with respect to disturbance rejec-
tion has already been designed. To minimize tracking errors,
the feedback structure is augmented with a feedforward or a
repetitive controller (since the desired trajectory is periodic),
as shown in Fig.2. The design methods for these schemes are
well known. In general, one attempts to find a prefilter that
is an approximate inverse of the feedbaek system, @ = TZU

(e.g. by pole/zero and phase cancellation, as done in Tomizuka
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Fig. 2: Control System Configuration.

[1987], Tomizuka, et al. [1989]). Tracking controllers generate
appropriate “modified reference” signal, u, based on the de-
sired trajectory, yd, or the tracking error, e (in the repetitive
control case).

The necessary control signal, u, can be found by iteration
using

uk = ~k_l +~~–l(ek–l), (1)

where ~ is a learning gain, and W– 1 is an approximate inverse
of the inner feedback system mapping, 0, i.e. @( T-l ([)) w (,
Feedforward control can be viewed as a first iteration in (1),
Namely, setting u-l = O, -y= 1, e-~ = y~ leads to

u = wl(y~), y = o(u) = qv-l(~q) r%yd. (2)

For the iterative control case, the vector error dynamics are
governed by
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% e~_l –-fek_l = (1 –~)e~–1, (3)

and the error converges to zero asymptotically for O < ~ <2.
Real systems do not behave exactly like the models that are

used for control system design. Unmodeled dynamics and pa-
rameter variation due to changes in environment or aging may
lead to performance degradation or instability. The model un-
certainty is usually larger at higher frequencies, therefore a low-
psss filter, Q, is commonly used to improve robustness prop-
erties of the repetitive control by suppressing high frequency
dynamics in the system (Tsao and Tomizuka [1994]). Adap-
tive or data based approaches can also be used to reduce or
eliminate the need in the exact model of the system. Adap-
tive feedforward control was considered in Tsao and Tomizuka
[1987, 1994]. Design methodology for minimizing feedforward
errors using frequency response data was developed in McNab
and Tsao [1997]. Messner et al. [1991] represented the con-
trol signal, necessary to counteract exogenous signals, as an
integral of a predefine kernel function multiplied by an un-
known influence function. Using time history of the plant, a
gradient-like algorithm was used to update the estimate of the
influence function. Tao et al. [1994] used inverse of a matrix
formed from experimental impulse response of the system in
conjunction with a scheme similar to (1).

The method proposed in this paper, in effect, eliminates the
need in explicit system modeling by determining the inverse
system mapping, V–l, using the data from an appropriate sys-
tem identification experiment. It represents an extension of the
ideas contained in previous research on tracking control and is
suitable for applications where an LTI system is required to
track trajectories from a set characterized by a finite number
of frequencies.

Suppose that a signal h(t) is used as an input to the inner
feedback system, resulting in an output g(t), as shown in Fig.3.
Similar to impulse and impulse response, h(t) and g(t) provide
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Fig. 3: “System Identification Experiment .“

an input-output description of the system dynamics; however,
it is limited to the range of frequencies that are contained in
h(t).If the desired system output, yd, can be represented as a
linear function of g(t), i.e. yd = F’[g(t)], the input signal to pro-
duce this output can be determined as u = F[h(t)]. As shown
in the following sections, by shifting the experimentally deter-

mined signal, g(t), it is possible to generate a nonorthogonal
basis set that can be used in conjunction with superposition to
represent bandlimited signak, such as the cam profiles shown
in Fig.1.

The remainder of the paper is organized as follows. Relevant
theoretical results are presented in Section 2. The approach is
formfllzed in Section 3, and experimental results are presented
in Section 4. The presentation concludes with discussion in
Section 5.

Z System Output Based Function Expansion

Due to the space limitations only sketches of the proofs are pro-
vided. It is assumed that all signals are periodic. The notation

(~1, f2) refers to the inner product in J52(0,2n):

Suppose S is a finite dimensional subspace of L2(O,2i7) given
by S= span{& : @n = ~ein’, n= O,+l,... +$}. Let hbe

a vector in S, satisfying (h, @n) # O for all n. Assuming that
an LTI system @ does not contain transmission zeros, it follows
that

g es, an = (g, @n) # o, Vn, (4)

where g = @(h). The following theorem provides a function set
generated by g that spans S.

Theorem 1

{
span gk : gk = 9(X – &), k=o,l,... iv}=s. (5)

Proof. dim{$} = N+ 1; therefore, it remains to show that the
(N+l) elements of the set {gk} are linearly independent. Func-
tions gk are LI @ An(I’) # O, Vn, where &(r) are eigenvalues
of the Grammian

[

(90)90) ““” (90,9N)
r= : ., 1 (6)

(gNhO) (gN, gN)

Lemma 2

}~(1’) = (N+ l)lan12, n= 0,+1,,., +N/2. (7)

Proof of Lemma 2. It is straightforward to verify that

(g~,g~) = (g~+l,g~+l) and (wv,g~) = (gl,g~+l), i.e. r is a
circulant matrix. Eigenvalues of circulant matrices are equal
to the values of the polynomial, formed from the entries of the
first row, evaluated at N + 1 equally spaced points around a
unit circle (Ortega [1987]):

An(I’) = (go, go)+(go, gl)~n+(go, gz)++. ~‘+(90 >W)V: (8)

where

vn=eifi, n= 0,+1, ,., +N/2. (9)

It follows from (8) that

An(r) = (90,90 +glvn +92V2 + ~. +9NV~) =

= (go, (IV+ l)ane’n’) = (N+ I) fin(go, ein’) =

= (N+ l)iinan. ❑ (lo)

871



The second equality in (10) follows from a simple but quite
remarkable fact

which can be verified by direct substitution.
Noting (7) and (4), it follows that the grammian, r, is nonsin-
gular, which completes the proof of Theorem 1. _

Theorem 3 The expansion of a vector ~ E S, with respect to
the basis set {gk}, is given by

N N

Y = ~Wk = ~(y>dgk,

k=O k=O

(12)

where {qk } is the dual basis set:

qk = q(~ – &), k=o,l,... N (13)

(14)

with the property

(9i!f7.1) = ii. (15)

Proof. Given a function y ● S, the vector of expansion coeffi-
cients, a E !RN+l is determined as

HI”
~o (90,90) “““ (gO)gN) “

——
~N kid “::(9N,9N) 1

The inverse of the Grammian is given by

r-l = uD-lu*,

where

(90!Y)

(9N,Y)

D = (IV+ l)diag[lao12, la112,la212,. . . . laz12,lal[2],

and
-1 1 1 . 1

lV V2 ~~~ UN
1 V2 V4 . V2N

‘“k ,,:,. . .

1 UN V2JV . VN2

(16)

(17)

(18)

(19)

with v = eifi. Substituting these expressions into (16) and
collecting terms in conjunction with (11) yields the desired re-
sults. ■

In the following, let operator r; : L2(O,27r)~ RN+l denote
the operation in (16), and operator 2. : lRN+l ~ S denote
linear combination of N + 1 vectors {~k} in S1.

It can be seen that operator PS = EJ ~ is an orthogonal
projection of L2 onto S. Indeed, writing ~ E LZIas j = js.+.fs L,
it follows that

~(f,qk)gk = :(tS+tS%~k)gk = ~(i%~k)gk
k=O k=O k=O

N N

+~(.fs%qk)gk = ~(.f%dgk, (20)
k=O k=O

because qk E S.
The calculations simplify considerably in discrete domain,

where all operations reduce to matrix multiplication. For ex-
ample, suppose a function g E S is given by M discrete points.
The operator Xg is given by a M x N + 1 matrix G, whose
columns are copies of g, cyclically shifted by L = M/ (N + 1):

[

9(1) !J(M-L+l) . . . IJ(M-LN+l)

Eg=G= : : ‘1 (21)

g(M) g(M-L) g(M-LN)

The operator I’: is given by a N + 1 x M matrix

r; = (GTG)-l GT, (22)

Comment. As can be seen from Theorem 3, the condition-
ing of the expansion is directly affected by the magnitude of
the frequency components in g(t). Since most physical systems
exhibit low-pass behavior, in the cases when the frequent y con-
tent of the desired trajectory is well above the system’s band-
width, special attention must be paid to the design of appro-
priate excitation function h(t).

a Input-Output Data Based Tracking Con-

trol

The system inverse, necessary for tracking control, can be found
by exploiting the fact that h(t) and g(t) = Oh(t) contain im-
plicit information about system dynamics in some frequency
range.

Theorem 4 Given a stable LTI system +, and two basis sets
{hk} and {gk}, generated by h E S and g = @h respectively, it
follows that

@xh = Eg, (23)

@~hr~ = & (24)

r~@~h = I. (25)

An easy proof utilizes LTI properties of 0,
It follows from (24) that the system inverse over S is given

by
~-l = ~ r+hg. (26)

Thus, for the desired trajectory, yd, the required feedforward
input is calculated (in discrete time) as

u = H (GTG)–l GTTJd, (27)

where H and G are matrices, whose columns are cyclically
shifted copies of h and g respectively, as given in (21),

In the iterative scheme, let the control signal u(t)be con-
strained to S. Noting (26), the control law (1) is given by

u(k) ~ ~hW(k) = ~~’w(k – 1) + ~~~r~e(k – 1). (28)

Using linearity of I’;, the control system, shown in Fig.4a2, can
be redrawn as shown in Fig.4b. From property (25), it follows
that the plant becomes an identity, as indicated in the picture.
It can be seen that the control law

lWith this notation, the baais expansion (12) can be compactly written
~ y = q,r$(y).

2For simplicity, the disturbance signal enters the system at the plant
output.
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Fig. 4: a) Iterative Control System. b) Equivalent Structure.

zu(k)=Iu(k-l)+ T&(/c-1), &(k–l)=l’~e(k -1), (29)

guarantees asymptotic converges of the error to zero in S:

E(k) = p–w(k)– J=p–w(k–1)–-y&(k –1)–J=

= &(k– 1) –y&(k– 1) = (l–-f)&(k– 1), (30)

where p, 6, E, w E ~N+l are as shown in Fig.4b. It follows that
the steady state error is given by

A Experimental Results

The experimental system consisted of a linear tool slide driven
by a voice coil actuator. A laser sensor with 0.628 pm resolu-
tion was used for measuring the position of the tool. The con-
trol algorithm was implemented on a 133 MHz Pentium com-
puter and a DSP board with Texas Instruments TMS320C32
floating point digital signal processor, The host program was
used for communication with the the DSP, and to conduct nec-
essary on-line calculation for tracking control. The feedback
control algorithm and data collection were done by the DSP
at a sampling frequency of 5kHz. Spindle speed of 600rpm
and the cam profile indicated in Fig. 1 was used as a desired
trajectory (corresponding to the base period 2’ = O.lsec, and
the maximum tool travel, velocity, and acceleration of 6.5mm,
0.6m/see, and 98.2m/sec2 respectively). An aggressive ?tm
feedback controller was designed to provide adequate distur-
bance rejection characteristics for the drive. A noncausal feed-
forward and repetitive controllers were also designed (Tsao
[1994], Tomizuka et al. [1989]) to be compared with the pro-
posed data based scheme. Signal vectors contained 500 data
point (M = 500); in order to reduce the computation time for
control update in the iterative scheme, every 10th data point of
the g(t) and e(t) was used (Mg = Me = 50, which corresponds
to the Nyquist frequency of 250Hz).

The frequency spectrum of the desired trajectory for the
given base period, T = O.lsec, is shown in Fig.5. Since the
signal strength is very small above 120H.z (i.e. 12 harmonics),
the expansion set with N + 1 = 2 x 12 + 1 = 25 should be
sufficient to achieve low tracking errors. The following ad hoc
procedure was used for the design of the signal h(t) used in the
system identification. A Gaussian distribution,

~z

h(t) = e–~, (32)

is a convenient form for the “impulse-like” function, whose fre-
quency content is easily controlled by varying a. The param-
eter was reduced until the 25 x 25 matrix r~ = GTG, formed
using the g(t) data obtained in the experiment, became well
conditioned. Time and frequency domain plots of signals h(t)
and g(t) are shown in Fig.3 and Fig.5 respectively. It should be
noted that these signals are not bandlimited, although the high
frequency components are small. Results of extensive simula-
tion and experimental tests show that the performance of the
scheme is not affected by these components. The work on the-
oretical characterization of the introduced error is in progress.
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Fig. 5: Power Spectrums of the Desired Trajectory and the
Basis Functions (DFT).

The feedforward control signal was calculated as Uff =
d — ~ GT G) – 1GT@. The tracking errors observed inzhr~y – (

the experiments are compared with the errors of model-based
feedforward controller in Fig.6 for two amplitudes of the de-
sired trajectory. The degradation of performance with increas-
ing amplitude can be attributed to the inability of the system
description to cover a wider operating range. Error feedback
used in the iterative control significantly improves tracking per-
formance, as can be seen in Fig.7 and Fig.8.
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Fig. 6: Tracking Error with Feedforward Control.

The control signal in the iterative control scheme was calcu-
lated on the host computer as Uil = ~h(w(k – 1) + ~r:e(k –
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1)) = H(w(k – 1)+ ~(GTG)-l GTe(k – l)). The calculation
of the control signal (written in C) and data transfers between
the host and the DSP board took approximately 5msec (25
sampling intervals), which was slightly longer than the time
available for update at the end of the cycle (equal to M/Mg,
or 10 sampling intervals). Therefore, a “delayed” scheme was
used, where the update of Ull was performed every two cycles.

Figure 7 shows the convergence of the tracking error with ~ =
0.9 for full amplitude cam profile. As expected, the frequency
of the steady state error is outside the 120Hz range, as can
be seen in Fig.8. The figure also shows the steady state error
achieved with the model-baaed repetitive control.
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Fig. 7: Convergence of the Tracking Error. 7 = 0.9.
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Fig. 8: Steady State Tracking Error.

5 Conclusion

single identification experiment, and therefore is of value for
applications, where the system parameters may vary during
operation, but extensive modeling is not practical or feasible.
In certain sense the scheme is similar to an impact hammer test,
and by controlling the frequency content of the input function
it is possible to focus only on the dynamics that are essential for
tracking a given set of trajectories. Expansion of the error and
control signals in terms of the low frequency basis functions
has an affect of suppressing high frequency dynamics, which
improves the robustness of the iterative PI scheme,
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