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Abstract

This paper presents a discrete time adaptive inversion
scheme for linear systems and its usage in adaptive feedforward
and feedback controllers. Two parameter adaptation algorithms
(PAA) were used in the proposed schemes. The first PAA applies
the extended bias-eliminating least-squares (EBELS) algorithm for
plant estimation to ensure convergent to a tuned model under
colored noise and unmodeled dynamics. The second PAA applies
EBELS or least mean squares (LMS), respectively for two
adaptive inversion schemes, to estimate a finite impulse response
(FIR) plant inverse filter. A feedforward and a repetitive feedback
control algorithms are designed respectively by including the
adaptive inverse filter.

1. Introduction

Most feedforward and some feedback tracking control
designs, e.g. repetitive control, involve the determination of a
stable inverse of plant dynamics. The tracking control
performance relies on the accuracy of the plant inversion, which in
turns depends on the accuracy of the plant model estimation and
the plant inversion method. Adaptive inversion is a useful
technique to obtain an accurate inverse model, which is less
sensitive to plant uncertainties and variations but also adjusts itself
to plant parameter changes.

In indirect adaptive inversion schemes, a plant model is
first estimated and the plant inversion is either calculated or
estimated by a second parameter estimation scheme. Since the on-
line computation of plant inversion at every time step maybe quite
computationally intensive, Tsao and Tomizuka ( 1988, 1989, 1994)
proposed the use of the zero phase error filter, which is
computationally simple and efficient, as the approximation of
delayed inverse plant in the indirect adaptive feedforward tracking
controller. Projection parameter adaptation schemes with
filtering, dead zones, and parameter space constraints were

employed in the PAA to achieve robust adaptive plant estimation
against bounded noise and unmodeled dynamics without assuming
persistency excitation condition. Sun and Tsao (1997) further
applied similar method in indirect adaptive feedback control,
where an internal model was also included for asymptotic tracking
performance. In particular, the adaptive zero phase error inversion
was used in adaptive repetitive control. The system stability and
the relations of the tracking error to the plant estimation error were
provided respectively for both the adaptive feedforward tracking
and the adaptive repetitive control schemes.

The idea of using a second PAA to estimate delayed
plant inverse can mostly be found in the adaptive inverse control
proposed by Widrow and his associates. Widrow introduced the
adaptive inverse feedforwrsrd control (1985, 1986) using Least
Mean Squares adaptation scheme. Widrow and Walach (1996)
further discussed the

0-7803-4990-6/99

Filtered-X algorithm and disturbance

$10.00 @ 1999 AACC 29

canceller using adaptive inverse control in a feedback loop.
However, there is a lack of stability analysis when systems
experience colored noise and unmodeled dynamics. When the
plant parameter estimation is biased, the adaptive inverse
controller may not be accurate any more.

When the bound of the noise is too large for the relative
dead zone approach to be effective or the colored noise makes the
LMS scheme invalid, the above mentioned adaptive inversion
methods cannot be applied. However, if the persistent excitation
condition is met, recent results on eliminating parameter
estimation bias for input/output signals corrupted by colored
bounded noise ( Feng and Zhartg 1995, Zhang and Feng 1997) can
be utilized to ensure parameter convergence to a tuned model.
This paper treats the adaptive feedforward and adaptive repetitive
control problems using the extended bias-eliminating least-squares
(EBELS) algorithm to solve the bias problem associated with
bounded colored noise. Stability and robustness analysis are
presented and discussed along with simulation results.

2. System Model Description

Consider the system model as follows:

y(k) = %(k) +d(k)

y(k) = Gw(k)+q(k)+d(k) (1)

where thetuned model is G,, = ~ (2)
A(q-l)

A(q-l) = 1+ alq-* +... + anq-” (3)

B(q-l) = b. +~q-] + . . . + bmq-m (4)

A(q-l ) and B(q-l ) are coprime. ~(k) and d(k) denotes the

unmodeled dynamics and colored noise respectively. q-] is the

delay operator.

Remark 1: In system model (l), the unmodeled dynamics ~(k)

can be multiplicative, additive or both. Note the bound for
unmodeled dynamics will vary corresponding to the tuned model
structure one chooses. In many tracking control applications, the
upper bound for unmodeled dynamics can be determined
experimentally once the tuned model is fixed. So by choosing a
good tuned model, the upper bound of unmodeled dynamics can
be suppressed. Generally one can’t suppress the bound for noise
once the hardware of a system is fixed.

Assumption 1: System (1) is a stable system, i.e. A(q-] ) is strictly

stable, q is bounded by u and some constant.

Remark 2: We assume the original open loop system is stable or
can be stabilized by a fixed controller. This is a general case in



many tracking control applications. Also note there is no
assumptionsmadeon thezerodynamicsof thesystemmodel.

3. ParameterAdaptationAlgorithm

Ourgoal of plantestimationis to identi~ a tunedmodel
insteadof the truemodel becauseof theexistenceof unmodeled
dynamics.With both unmodeleddynamicsand colored noise in
system model (1), the tuned model will be biased if we use
ordinary least squares. Recent results on eliminating estimation
bias for input output signals corrupted by colored bounded noise (
Feng and Zhang 1995, Zhang and Feng 1997 ) can be utilized for
plant estimation to ensure convergence to the tuned model. The
basic idea behind the extended bias-eliminating least-squares
(EBELS) algorithm is that by insertingsomeknownpartsinto the
estimatedsystem,we can asymptoticallyestimatethebias caused
by noise and then eliminate it. If we take the unmodeled dynamics

q(k) as a kind of noise which is correlated with both input and

output in the identification process, we can then eliminate its bias
effect together with the bias caused by colored noise by using
EBELS algorithm.

Assumption 2: Persistent excitation is ensured in the adaptive
system.

Define d=[–al,... an,~, ~, bin],bm] (5)

d=[–6,,... tin,&, &,im], im] (6)

p = i(q-’ ) (7)
~

By the properties of the extended bias eliminating least squares
algorithm, we have following lemma:

Lemma 1: liim6(N) = e . W.p.l.

Proofi See Zhang and Feng (1997).

Remark 3: In the identification process, we take the unmodeled

dynamics ~(k) as a kind of noise because in most applications, it

is impossible to distinguish unmodeled dynamics and noise from

experimental data. Generally ?I(k) is correlated with u(k), so

now both input and output are corrupted by noise. The Extended
Bias Eliminating Least Squares (EBELS) ensures an accurate
estimate of the tuned model, i.e. F + GO. Also notice that it can

be used in either open loop or closed loop because this estimation
algorithm doesn’t have any requirements on the noise model.

4. Adaptive Feedforward Tracking Control

Widrow and Walach (1996) proposed an adaptive
feedforward inverse control scheme (as shown in Fig. 1 with

F = 1). Filtered-X algorithm was used to online adapt controller
parameters based on the estimated plant model. With no
unmodeled dynamics and noise, the adaptive feedforward inverse
control can achieve perfect tracking performance. For the case that
Figure I is at ‘a’ position, the estimated plant and therefore the
adaptive inverse controller may be biased if there exist unmodeled
dynamics or colored noise. Another approach is to put the switch
at ‘b’position as shown in Fig. 1 . In this case, the LMS adaptation

gain may need to be very small to ensure convergence. One way
to alleviate this problem is to introduce a low pass filter F in the
Filterd-X algorithm. The Modified Filterd-X algorithm is

d(k + 1)= ~(k) + 2a&(k) F~(k) (8)

where

x(k) = [Z(k), z(k–1),. . .. ;(k–kf+l)~, z(k) = Pyr,f (k) ,

& is the error signal as shown in Fig. 1, U is the adaptation gain,

F is a low pass filter, and the adaptive inverse controller ~ is a

FIR filter with length M

Theorem 1: The proposed adaptive feedforward tracking control
scheme using EBELS and Modified Filterd-X algorithm can
guarantee system stability and the adaptive controller will
converge to the inverse model of the original plant.

Proofi Suppose the inverse model of the original plant P is C“,

as shown in Fig. 1 (with switch at position ‘b), we have

W=(C* -t(k) ~x(k) -d(k) ,

where

x(k) = [x(k), X(k –1),-.., X(k–kf+l)y , x(k) = Pyref (~)

E(k) = –vT(k)x(k) –d(k) ,

where V(k) =@) – C*(k)

&(k) = –xT(k)v(k) –d(k) ,

Subtracting C* from both sides of Eq. (8), we get

V(k +1)= V(k) +2u&(k)Ff(k)

V(k + 1) = V(k) + 2a(-XT (k)V(k) – d(k)) F~(k)

V(k + 1) = (1 – 2aF~(k)X~ (k))V(k) - 2ad(k)F~(k)

Assume d(k) is not correlated with ~ , then

E[V(k + 1)]= E[v(k)]- 2aE[F~(k)X ~ (k)~[v(k)]

E[V(k +1)]= E[V(k)]- 2a~E[V(k)],

where ~ = E[F~(k)X~ (k)]

we transform R into normal form

E[V(k +1)]= T(1 - 2ai~-lEIV(k)]

E& ’(k +1)]= (1- 2ux)E&’(k)],

where V’(k) = ~-lV(k)

E~’(k +1)]= (1- 2ai~E~’(0)]

E[V(k +1)]= T(I - 2ai~F-]EIV(0)]

we choose the adaptation gain O < a < —
L

, where ~~m is the

maximum eigenvalue of ~ (also the maximum eigenvalue of X ),
then

/~mm(l – 2ai)k + O, ~~m=~[v(k)l + O, had(k) ~ C*.

Because ~ is a FIR filter and it converges, stability of the

adaptive system is guaranteed.
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“ yfl Y(k)= Yref(k-c)+d(k). .

Remark 4:

●

●

●

We choose the adaptive inverse controller ~ as a FIR filter

so that it won’t be biased as long as input ~ is not correlated
with noise.

If the structure of the tuned model GO is carefully chosen, ~

may be very close to P (since F+ Go by EBELS), then ~

is nearly symmetric. We also know that unmodeled dynamics
are mostly concentrated at high frequencies, therefore by

appropriately filtering signal ~ , we can guarantee that ~ is

almost symmetric so that it is easy to determine ~~m .

Note in the proof, we have used the independence
assumptionfor ~heLMS algorithm.Also the conve~gence of
variance can be guaranteed by carefully choosing the
adaptation gain.

5. Adaptive Repetitive Control for Tracking Periodic Signals

To track or reject periodic signals, Tomizuka et. al.
(1989) proposed a discrete time repetitive control scheme which
requires the inverse plant model. In this section, we are going to
apply the adaptive inverse control to the repetitive control
structure to track or reject periodic signals.

5.1 Adaptive Repetitive Control Scheme I

The closed loop adaptive repetitive control system is

shown in Fig.2 (with switch at position ‘a’ and F = 1 ).
Uncertainties of the adaptive system are mainly from two sources.
One is the unmodeled dynamics of the original plant; the other is
due to the plant inversion error which may rise because of limited
length of the FIR filter and the adaptation time. Both uncertainties
could deteriorate the performance and stability of the adaptive
closed loop system. To enhance system robustness, the repetitive
control law is designed as follows:

u(k) =~(k)~(yref -,)
1-Qq-

where Q is a low pass filter, L is the period of the

signals and C is some positive constant smaller than L.

The adaptation law for inverse controller is as follows:

t(k +1)= t(k)+ 2a&(k)X(k)

(9)

periodic

(lo)

where X(k) = [x(k), x(k –1),..., x(k–M+l)]T ,x(k) = Pal(k) ,

a.) is white noise, & is the error signal and a is the adaptation

gain.

Theorem 2: The closed loop adaptive system is BIBO stable. By
appropriately choosing Q , the closed loop transfer function will

converge closely to a pure delay.

Proof Assume the original plant is P = P(1 + Al) , the closed

loop characteristic polynomial becomes:

M =l-Qz-L+Qz ‘L+c~P = 1– QZ-L + Qz-L+cd@ + A()

Denote @ = Z-C(l + AZ), where A2 is due to the plant inversion

error.

Then M=l-@-L +Qz-L(l+Az Xl+A1)

so we can design Q such that

IIQ(A1 +A2 +AlA2)lle<l

Thus Iz 1<1, also ~ converges, then the closed loop system

stability can be guaranteed (see Goodwin, et. al., 1986).

5.2 Adaptive Repetitive Control Scheme II

Adaptive repetitive control scheme I is conservative

because the adaptive inverse controller ~ only approaches the
.

inverse of estimated plant model P instead of P . So we need to
design Q to improve system robustness. This is the trade off

between system robustness and performance. In this section, we
are going to present an unbiased adaptive repetitive control
scheme which will result in better performance.

The closed loop adaptive system is shown in Fig. 2 (with switch at
position ‘b). The repetitive control law is as follows:

–L+C

u(k) = E(k)+ (y,,f – y)
l–q

(11)

The goal of the adaptation law for ~ is to approach the inverse of

P . As shown in Fig. 2 (with switch at position ‘b), we closed the
loop for inverse controller parameter adaptation. Now we use the
actual output to adjust the controller parameters which will
minimize tracking error variance. Since we have two closed loops

in the system, during the adaptation for C, both input X and

output ~ will be corrupted by noise and unmodeled dynamics.

The extended bias eliminating least squares is used again to get

the unbiased inverse controller C*

Theorem 3: The closed loop adaptive system is BIBO stable. The
closed loop transfer function will converge to a pure delay, i.e.

lim y(k)= yref (k –L)+ d(k).
k-i-

Proof : From Fig. 2 (with switch at position ‘b’), we know the
reference model is

~(k) = Fq-cii(k)

~(k) = FPC*ii(k)

~(k) = FGoC*iI(k) + Fq(k)

-c

where C* = ~ is the exact inverse model of P , F is a low
P

pass filter to be designed such that Fv(k ) -) 0.

The actual output ~ is

~(k) = FP@c) + Fd(k)

~(k) = FGo~ii(k) + Fq(k) + Fd(k)
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where Go is thetunedmodel.

In the closed loop adaptivesystem,both E(k) and ~(k) are

corruptedby noise. By applying the extendedbias-eliminating

least-squares(EBELS) algorithm to the adaptationof ~,
convergence to the tuned model is guaranteed.

.“. lim FGo~ + FGOC*, then we can conclude that
K-)-

lim ~ + C*. The closed loop transfer function will converge to
k+-

a pure delay q–L , so system stability is guaranteed and

lim y(k)= Yr,f (k -L)+ d(k).
k+-

Remurk 5: Note the proposed adaptive repetitive schemes can not
only guarantee perfect tracking performance for periodic signals
due to the internal model principle but also provide good tracking
performance for non-periodic signals since the closed loop
transfer function will converge to a pure delay.

6. Simulation Results

The plant model for simulations is

1.Oq-’ – 2.oq-2
P= which have unstable zeros at 2 and

1– 1.8q-[ + 0.94-2

infinity. Colored noise d(k) = O.1w(,4) + 0.05w(k – 1) ( where

w(k) is white noise with variance 1.0) was added to the output

during plant identification. A periodic siganl was used as reference
signal to test both adaptive feedforward and adaptive repetitive
control schemes. One period of the reference signal and the
random colored noise is shown in Fig. 3

For the ~lant P =
2.oq-21.Oq-’ -

- , we run the
1– 1.8q-’ + 0.9q-’

EBELS and ordinary least
.

estimate P respectively.

For EBELS:

For ordinary least squares:

squares 10 times and get an averaged

~ = 1.0398q-1 – 2.0290q-2

1– 1.795 lq-’ + o.8939q-2

~ = 0.9989 q-’ -1. 1509q-2
.

1– o.9555q-’ + o.2433q-’

We can see ordinary least squares estimate is seriously biased
while EBELS gives a very accurate estimate.

Since plant P has an unstable zero at 2, we chose a
29th order FIR filter as the inverse controller, i.e.

t=co+clq-’ +... +c229-29

Denote C* as the optimal inverse of P , then the inversion
,. *

errors are lC&– C k ‘*l NYO, k=o,l,...29. Fig. 4 and 5

Ic”k I

show the tracking errors and plant inversion errors of adaptive
inverse feedforward control using filtered-X algorithm, adaptive
feedforward tracking control using modified filtered-X algorithm,
adaptive repetitive control scheme I and adaptive repetitive
control scheme 11 respectively. In Fig. 4, the maximum steady

state errors (from 1 to 4) are 0.12, 0.07, 0.03 and 0.02
respectively.

7. Conclusion

Adaptive tracking control schemes by system inversion
using extended bias-eliminating least-squares (EBLES) is
presented in this paper. Modified Fikered-X algorithm is proposed
to compensate unmodeled dynamics in feedforward loop to
achieve better tracking performance. The adaptive inverse
controller is then applied to the repetitive control structure to track
or reject periodic signals. Two adaptive repetitive control schemes
are presented and compared. Simulation results showed the
effectiveness of the proposed adaptive tracking schemes.
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