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Abstract

Asymptotic tracking and disturbancerejection k a
desirableperformancein many applications. Linear feedback
control based on internal model principle achieves asymptotic
tracking for linear system with known linear exogenous signal
dynamics. This paper investigates the case of rejecting exogenous
chaotic signals with known nonlinear dynamics for linear systems
in the discrete time domain. Feedback controllers based on the
internal model principle and predictive internal model control
respectively are proposed and investigated in this paper. Both
control algorithms are based on inversion of the linear system. It
is shown that asymptotic tracking performance is achieved when
perfectplant inversion is possible and it cannot be achieved with
either algorithm when inversion errors from unmodeled dynamics
or plant nonrninimum phase zeros exist. The closed loop stability
and performance rely on the relative size of the linear system
inversion errors to the exogenous signal’s local growth rate.

L Introduction

Trackingand rejection of exogenous signals is of major
concern in feedback control design. The exogenous signals can
often be modeled as unknown deterministic signals with known
signal generating dynamics. For linear systems with linear
disturbance dynamics, this problem has been studied by Davison
(1976) and Francis and Wonham (1976) etc. The terminology of
“Internal Model Principle” (IMP) was coined by Francis and
Wonham (1976), which shows that it is necessary to place the
disturbance dynamics in the feedback control loop for achieving
asymptotic tracking. Integral control and repetitive control are
examples of IMP type controllers. Recently more research efforts
have been concentrated on developing similar concepts for
nonlinear systems. Isidori and Byrnes (1990) discussed the local
output regulation of nonlinear systems and gave necessary and
sufficient conditions for solvability of the problem. Isidori (1997)
further extended the results to the serniglobal output regulation
problem, where the initial condition of the disturbance dynamics
is confined in a bounded set. Huang and Lhr (1991) proposed a
kth-order robust nonlinear servomechanism design, and discussed
the necessary and sufficient conditions for the existence of the kth-
order servomechanism. All these works have focused on
nonlinear systems with linear and in some cases slightly nonlinear
disturbance dynamics.

Another class of controller design for disturbance
rejection is internal model control (IMC). Garcia and Morari
(1982, 1985, 1986) provided a unifying review on internal model
control and further extended it to multivariable systems and
nonlinear systems. A crucial step in applying internal model
control is system inversion. Unstable zeros pose constraints on
system inversion performance. Robustness to modeling errors is
always a concern for internal model control. Various methods
have been proposed to enhance system robustness. Morari and

Zafiriou (1989) provided a detailed discussion on the robustness
issue of IMC. Tsypkin (1993) proposed a robust internal model
control. The so called “absorption principle” was proposed, which
essential y embedded the disturbance signal model in the internal
model control structure for asymptotic tracking performance.

This paper considers discrete time linear systems with
chaotic disturbances, where the signal dynamics are known but the
initial conditions are unknown. The chaotic signal generated by
unstable nonlinear dynamics is sensitive to the initial conditions.
The signal may converge to fixed points or periodic limit cycles
with periods depending on the initial conditions. In this case, the
repetitive control with a period identification scheme (Tsao and
Nemani 1992, Tsao and Qian 1993) may be applied. In other
cases, the chaotic signal may not converge to periodic orbits at all.
This paper considers the control design for this latter case.

Two control algorithms are proposed in this paper: The
nonlinear internal model principle (NIMP) scheme is designed by
incorporating nonlinear disturbance model in the feedback loop.
The predictive internal model control (PIMC) scheme is proposed
by predicting the future disturbance based on the disturbance
model in the internal model control structure. It will be shown that
these two similar schemes are identical in the case that system is
minimum phase.

The rest of this paper is organized as follows. Section2
describes the system and disturbance models; Section 3 presents
the nonlinear internal model principle control; Section 4 presents
the predictive internal model control; Section 5 presents the robust
stability and performance analysis of both schemes; Section 6
presents simulation examples followed by conclusions in Section
7.

2. Problem Description

Consider following single input single output discrete-
time linear time invariant causal system:

A~(q-] )y(k) = B~ (q-l )u~ (k) + Cm(q-l )d~(k) (1)

where Um(k) and y(k) are input and output respectively. d~ is

bounded disturbance. Am(q-l) and B~ (q-]) are coprime.

Am(q-l) and Cm (q-l) aremonic. Cm (q-*) is stable.

Supposethedisturbancesatisfiesfollowing nonlinearmodel:

dm(k + 1)= y/(dm (k)) (2)

where Y is a nonlinear memoryless function.
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A stabilizing feedback controller is first designed for the original
plant,

S(q-’ )Um(k) = -R(q-’ )y(k) + u(~)

Plug it into system(1), we have

B (4-’) (u(k)_ R@-l)~) + CJq-’)dJk)A/Jq-])y(k) = ~
S(q-])

~(k)= B(q-1 ) ~(k)+ C(q-’) ~ (k)

A(q-’ ) A(q-] ) m
(3)

where A(q-]) = S(q-])Am(q-l)+ Bm(q-’)l?(q-]) and

C(q-’ ) = S(q-’ )Cm (q-’ ) are stable.B(q-] ) = Bm (q-l )

For notation convenience, we rewrite system (3) in the following
form:

y(k) = h(k)+ d(k) (4)

where ,.@ , W-l) ~m(~) .d(k) = F(q-’)dm(k) =—
A(q-l ) A(q-’ )

Assume S is monic and stable, then F is proper stable and
inversely stable. Therefore the disturbance d(k) satisfies

following nonlinear model:

d(k + 1) = FY(;d(k)) (5)

Remark: If the original system (1) is not stable, we can first
stabilize it by designing a feedback controller. Also note both
input and output disturbances can be represented in the form of
system (1). So the control schemes we are going to propose in
following sections can be used for rejecting either input or output
disturbances.

3. NonlinearInternalModel Principle Control

As shown h Fig. 1, the nonlinear internal model
principlecontrollawis asfollows:

U(k) =–GcZ(lc), z(k) = ~@(Z(k – ~)+ y(k))) (6)

where ~ is defined in (2), G= is a stable controller to be

designed in section 3.1.

Plug the control law into system (3), we have

y(k) = d(k)- PGCFVL (#Z(k -L)+ y(k)))

y(k) = d(k) –PGc FvL(#z(k -L)– PGcz(k)+d(k)))

y(k) = d(k) –PGc FyL(#(q-L - PGc)z(k) +d(k)))

If PGC = q-~, we have

y(k) = d(k) – q-LFyL (~d(k))

y(k) =d(k) –d(k)

;. y(k) ~ O asymptotically, the output disturbance is rejected in

a deadbeat fashion.

Remark As shown in Fig. 1, disturbance model has been placed
in the feedback loop. Besides this, to achieve perfect disturbance
rejection, we also need to design a inverse controller.

3.1Inverse Controller Design

To achieve perfect disturbance rejection, we need to
design a inverse control by solving following model matching
moblem:.

J = ~r, Z-L – PGC
c

(7)

9
–L

If P is a minimum phase system, we can design Cc = — by
P

direct inversion. If the plant is a non-minimum phase system,
delays are needed to improve the inversion performance.

Remark: A feature of the proposed nonlinear internal model
principle control is the insertion of multiple delays into the system
by putting more disturbance models in the feedback loop. The
number of delays directly determines the achievable inversion
performance in (7).

3.2 Extension to Dkturbance in Vector Form

In many cases, the dynamic model of disturbance is in
vector form.

Suppose,(k)=[~~J=~~~~~lJ)

As shown in Fig. 2, we have

y(k) = d(k) - PGCMFtyL(#Z(k - L)+ Ny(k)))

where M = [1,0,.. -O]E R ““+l)X1,N=~, q-’ q-*... m~m~

‘Z(k-l)=[z(k -l), z(k-2),... z(m-1)~)~

Therefore

y(k) = d(k) - PGC[l,O,..,OIFI//l

y(k)=d(k) -P~[ljQ .,OIF@;

[

If PGC = q-L, we get

1[.
Z(k-L)

1 Z(IC-. L-1)
F:

z(k-L–m) [

y(k)

t
y(k -1)

y(k – m

z(k -L)

1[1

d(k) -PQz(k)

z(k– L–1) + d(k -1)- P~z(k -1)

z(k– L–m) d(k -m) -PQz(k –m)

1[-11
d(k)

y(k) =d(k)–q-L [l,O,...,OIF~L ; ‘(k:–l)

d(k – m)

y(k) =d(k)–d(k)=O
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4. Predictive Interml Model Control

In this section, we will propose a new disturbance
rejection scheme based on internal model control and disturbance
prediction: Predictive Internal Model Control (PIMC). The block
diagram of PIMC is shown in Fig. 3 and the control law is as
follows:

u(k) = -GCz(k) (8)

z(k) = F@(~Gcz(k)+ y(k)))

Plug Control Law (8) into system (3), we have

y(k) = d(k) - PGcF@(#~Gcz(Q + Y(k)))

Y(k) = ~(~) – PGcW@(~GcZ(k) – pG,z(k)+d(k)))

H PGC = ~GC =q-L ,

y(k) =d(k) -q-LF@(+d(k))

y(k) =d(k) -d(k) =0

Remark: Note the proposed predictive internal model control is
different from ordinary internal model control because the
disturbance model is inserted into the closed loop to predict future
disturbance. Actually it is a integration of internal model control

and internal model principle control. If PGC = q-L, the

predictive internal model control scheme is exactly the same as
nonlinear internal model principle control.

Remark: Similarly to nonlinear internal model principle control
proposed in section 3, the predictive internal model control can
also insert multiple delays into the feedback loop which makes an
approximate inversion of non-minimum phase system possible.
Also note that extensions of PIMC to disturbance in vector form
can be obtained in similar fashion as the NIMPC.

5 Robust Stability and Performance Analysis for NIMPC and
PIMC

In seetions 3 and 4 we have shown that deadbeat
disturbance rejection can be achieved by the proposed schemes
based on the assumption of accurate model and perfect plant
inversion. The effects of the unmodeled dynamics and the plant
model inversion error on both schemes are analyzed next. Denote

Al: Unmodeled dynamics of plant, i.e. P = ~(1 +Al )

AZ: plant inversion error, i.e. ~GC = q-L(l + AZ)

Theorem 1 :
Iv(a)l

Suppose v(O) = O and —,., S M for some

finite positive number M .

(a): The NIMPC is globally asymptotically stable if

hlL IIA1+Az +A1A2 Ilm<l (9)

(b): The PIMC is globally asymptotically stable if

(lo)M~ll A1+A1A211m<l

Proofi (a): As shown in Fig. 1, we can separate the system into a

feedback loop with a linear block q-L – PGC and a memoryless

nonlinear block I#L. By the Circle Criterion (Khalil, 1996), the

feedback system is globally asymptotically stable if

1
H(z-L-PGc)llm<-

ML

Since Z-L – PGC = Z-L(A1 +A2 +A1A2) , (9) follows.

(b): Similarly, in view of Figure 3, II(PGC -~GC ) Ii=< ~,
ML

which implies (1O).

Remarks: If O< ~ < M , the Circle Criterion gives the
0

–1
stability condition that Re(e-~W (Al + Az + AIAZ )) > —

ML

–1‘jti(A1 +AIAZ))> MLfor NIMPC, and Re(e — for PIMC.

Now let’s investigate system performance while
uncertainties exist. To improve system performance, we insert a
low pass filter Q into the system. For nonlinear internal model

principle control, we have:

y(k) = d(k) -Qq-~(l +Al)(l+A2)F@#Q,@ –L)+ y(k))

y(k)= d(k)–Qq-~(l+A1 )(l+A2)F@(Qz(k-L)

-Q(l + A])(l + A,)z(k - L)+ d(k))

y(k) =d(k) -Qq-L(l+A1)(l+A)F #(d(k) -Q(AI +4 +Al@z(k –L))

If IIQ(AI +A2 +AIA2 ) II is small enough, y(k) will be close

to zero.

For predictive internal model control, we have:

y(k) =d(k)-QPGc Fty L ~(Q~GcZ(k)+ y(k))

y(k) =d(k) - Qq-L(l+Al)(l+A2)FyL:(Q~GCz(k) – QPGCz(k)+d(k))

y(k) = d(k) –Qg-L(l+ AI)(l+A2)FvL#f(k) –Q(A1+ AIAz)z(k- L))

If IIQ(AI + AIA2 ) II is small enough, y(k) will be close to zero.

Suppose the disturbance is linear, then I// becomes a

linear operator. Plug d(k + 1) = ~d(k) into above derivation, we

have following results:

(1– (q-L - PGc)yL)y(k) = (1– q-L~L)d(k) = O for NIMPC,

(l-(kC -PGc)r#L)y(k) =(l-q-LtpL -A2q-L~L)d(k) =-A2d(k)

for PIMC.
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Remark From the above derivation, we find that the PIMC is
more robust than the NIMC. For linear disturbance dynamics, the
internal model principle control provides asymptotic tracking
performance while the predictive internal model control has an
error due to the inversion error.

6. SimulationResults

The logistic map equation is used:

d(k)= r*d(k-l)*(l –d(k-1)) (11)

This is a discrete time analog of the logistic equation for
population growth (see Strogate 1994) . This nonlinear model is
very sensitive to the values of ~ and d(0) . For O< r S 4 and

0 ~ ~(fJ) ~ 1, we have ()< ~(k) ~ 1, For other initial conditions,

d(k) will diverge. Let’s fix d(0) =0.1, if 3S r <4 ,

d(k) becomes chaotic. Fig. 4 shows the plot of a’(k) for

r = 4.() which is used throughout the simulations. It can be

verified that the bound of the signal local growth rate is M= 4.0.

The plant model used in simulations is

P=i(l+aq-’),

where the nominal model, having a nonminimum phase zero at
10.0 is

~ = l.oq-l –lo.oq-2

1.0–l.8q-1 +0.9q-2

and the unmodeled dynamics, when existing, are cs = 0.005.

Using ~ to solve for the inverse controller in Eq.(7), we find the
minimizing H- solution:

G= =-O. 1(0.1L-2 + O.lL-3q + 0.. + qL-2)(1 - 1.8q-l + 0.9q-2)

and the minimized inversion error is J = 0.1 ‘–1 for # .

Since llAlllmSIX and IIA211 SO.lL-’, The.

(sufficient) stability conditions in Theorem 1 can be checked for
the case of different L values. Two sets of simulations have been
conducted for L = 3 and 4 respectively. Theorem 1 predicts
stability for the cases of L = 3 and L = 4 for ~ = O(no

unmodeled dynamics) and L = 3 for G?= 0.005. Figures 5 and 6
show the simulation results for L = 3 and L = 4 respectively.
All cases achieve certain degree of disturbance rejection. Without
unmodeled dynamics, the disturbance rejection performance will
become better for larger L, but it is not true when unmodeled
dynamics exist.

7. Conclusions

Nonlinear internal model principle control and
predictive internal model control algorithms are proposed and
analyzed for rejecting exogenous signals with known nonlinear
dynamics, particularly chaotic dynamics. The effects of the
disturbance growth rate, system unmodeled dynamics, and
nonminimum phase plant inversion error on the system stability
are derived.
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Fig. 1 Block Diagram for the Nonlinear Internal Model Principle
Control

Yref = o

Fig. 2 Block Diagram of NIMPC for Disturbance in Vector Form
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Fig. 3 Block Diagram of Predictive Internal Model Control
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Fig. 4 Chaotic Disturbance used in Simulations.
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Fig. 5 Disturbance Rejection by Internal Model Principle Control
and Predictive Internal Model Control without unmodeled
dynamics (a)b) and with unmodeled dynamics (c,d) respectively.
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Fig. 6 Disturbance Rejection by Internal Model Principle Control
and Predictive Internal Model Control without unmodeled
dynamics (a,b) and with unmodeled dynamics (c,d) respectively.
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