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Control of Linear Motors for
Machine Tool Feed Drives:
Design and impiementation of
H.. Optimal Feedback Control’

Direct drive linear motors have good potential for use as next generation machine
tool feed drives since they can increase machinin g rates and improve servo accuracy
by eliminating gear related mechanical problems. To explair the high speed and high
response direct drives for machining, the servo control must achieve as high as
possible tracking performance while at the same time establishing as much as possible
the dynamic siiffness in order to maintain machining stabifity and reduce the effecr
of machining disturbance forces on the 100! position. This paper investigales the use of
optimal H.. conirol 10 design for large stiffness and closed-loap tracking performance.
Position feedbuck alone is first considered, with cuiting force feedback later added
to augment closed loop siiffness. Optimal position feedback is experimentallv seen
to achieve up 1o a 46 percent stiffness improvement over thar achievable with propor-
tional-derivative control. The addition of force feedback to the servo-toop resulted
in a further 70 to 100 percent stiffness improvement over the position feedback alone

values.

1 Introduction

Direct electric feed drives have come under study relatively
recently for use in next generation high-speed machine tools.
Directly driven feed axes eliminate gear related mechanical
problems such as backlash, large frictional and inertial loads.
and structural flexibilities and therefore have the petential to
ncrease machining speed and accuracy. However, there exists
a strong dynamic feedback interaction between the machining
process and the direct drives which can lead to excessive vibra-
tion or seif-excited chatter instability. Chatter and vibration
ieave ripple marks and indentations on the workpiece which
degrade surface finish, and can even cause tool breakage. With-
out servo-feedback control the direct feed drives do not have
stiffness to maintain machining-stability. Therefore, to exploit
the high speed and high response direct linear drives for machin-
ing applications, the servo-control must achieve as high as pos-
sibie the tracking performance while at the same time establish-
ing as much as possible the dynamic stiffness in order to main-
tain machining stability and reduce the effect of machining
disturbance forces on the tool position. This paper addresses
the dynamic stiffness of these two issues.

Chatter instability in directly driven machining systems has
been previously investigated, and various necessary and suffi-
cient stability conditions have been developed ( Srinivasan and
Nachtigal, 1978; Alter and Tsao, 1994). Figure 1 shows the
system block diagram employed in these studies, here in a
slightly simplified form. The cutting process dynamics from
depth of cut {d.y,) 1o cutting force (F.} are denoted by G- ),
and may be both nonlinear and time-varying in nature. The
machine tool/workpiece structural dynamics from cutting force
input to (workpiece} position cutput {y,) are denoted by
Uan(s), and the drive motor dynamics from force input to
position output {y) are denoted by P(s). Note that tool post
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dynamics may be embedded in P(s) if it s desired to do so.
The servo-controller C;,(5) produces a force input command
to the motor using the position error signal as its input, where
r represents the desired motor position,

This diagram is applicable to any general cutting operation
(e.g., milling, turning, grinding} were the particular cutting ge-
ometry may be defined by the above operator blocks. Note that
the variable 4., does not necessarily represent depth of cut in
the commonly used sense. For example, if the linear motor is
providing feed direction motion for a turning operation, .,
actually represents chip thickness.

Three feedback loops exist in the system: the machine tocl/
workpiece loop, the feed drive servo-loop, and the outer loop
that connects the first two loops. The machine tool/workpiece
loop is the traditional machining stability loop considered in
the literature {Mermit, 1965), and will be assumed stable in
this paper. In addition, this loop will be further neglected by
assuming G, (5) = 0, which means that the machine tool/
workpiece has relatively large stiffness. Chatter instability can
thus only manifest 1self in the outer loop. One stability ap-
proach is to consider the cutting process as all pessible stable
perturbations whose L, induced system gain is bounded by g.
ie.,

HGCp( : )WHZ
sip ——— < 1
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where w{} is an arbitrary input signal with 0 < |w||; < 4.
Assuming that the servo-loop transfer function y/F., is stable in
the absence of the cutting process, the small gain theorem states
that the outer system loop (with the cutting process present) is
stable if and only if
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Therefore, a reasonable goal with regards to chatter control is
to minimize the H.. norm of the servo-loop from force distur-
bance to position output. This is equivalent to maximizing
servo-dynamic stiffness, which is defined as the scalar inverse
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maching toolworkpiece loop

Fig. 1 Machining system block diagram

of the left hand side of (2). By requiring the satisfaction of
condition (1), one may now treat the cutting force as an external
disturbance to the serve-loop. rather than a signal in a feedback
loop.

While stability condition (2 ) may be conservative for specific
machining situations (i.e., when information about the cutting
process is known beyond the gain bound p), it is a reasonable
goal for a general purpose machine tool required to perform
different machining operations under various cutting conditions
(e.g., depth of cut, spindle speed, material type, tool geometry).

Aside from stability considerations, active control objectives
for direct drive machining include designing for disturbance
rejection and tracking properties. Machining errors result from
the combined effects of cutting force disturbances and servo-
ioop tracking errors, the later of which would be present even
in the absence of the cutting process. Disturbance rejection
properties depend upon the same transfer function v/F, as doés
the stability condition (2), and further motivates the use of -,
optimal control for this problem,

The proposed control structure is depicted in Fig. 2. Three
controliers are shown: position feedback (C,), cutting force
feedback {Cyp). and tracking feedforward (C,,). The linear
motor model 1s shown with two mputs: the first is the voltage
command to the servo amplifier, while the second s the force
input to the motor mechanical dynamics. The two plant sections
are coupled through a feedback path that will be detailed in the
next section. The tracking feedforward controller will be the
focus of a subsequent paper, and will not be discussed further
here. The two feedback conircllers are together tasked with
achieving good dynamic servo stiffness.

The rest of this paper is organized as follows. A nominal
linear motor drive model is first presented and derived experi-
mentally together with its unmodeled dynamics. Based on the
nominal model, the maximum achievable dynamic stiffness
with PD position feedback is calculated. The limit of perfor-
mance for all stabilizing controllers is derived based on H.
theory to show the potential room of improvement over FPD
control. f{: controilers that take into account practical consider-
ations such as robust stability, control energy limits, and closed-
loop tracking performance are designed and implemented with
comparison to the optimal PD controllers. After this, a force
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Fig. 2 Controller scheme showing feedbhack and feedforward control-
lers
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Fig. 3 Photograph of AURA HFA-100/6 linear motor

feedback controller which utilizes the (cutting) force distur-
bance measurernent is designed and implemented o enhance
the stiffness of the position servo loop.

2 System Open Loop Modeling

The hardware used for experimentation in this and the lollow-
ing paper is an AURA HFA-100/6 linear motor powered by
an Advanced Motien Controls #40A20 PWM servo-amplifier,
shown in the photograph of Fig. 3 (the ruler shown in the
picture foreground is 60 cm in length). Mounted on the motor
slide is a Kistler 9257 A force dynamometer which will be used
later to sense cutting force, and mounted on the dynamometer
is a tock post. Tool position is measured with an optical encoder
of 2 um reselution mounted to the linear motor slide {in fore-
ground), and controller implementation will be performed by
a 32 bit floating-point digital signal processor (TM3320C30)
accessed through an [BM-AT host compuler.

While PD control may be designed and implemented without
the aid of a good open loop dynamic model. one must generate
a better model if servo-performance polentials are o be fully
realized. In particular, the dynamics of the serve-amplificr could
be of great significance if large performance demands are placed
on the motor. A fourth-order model is here applied, illustrated
in block diagram form in Fig. 4. In addition to the second-order
nertial dynamics, this model includes first order dynamics for
the motor electrical components (i.e., coil inductance and resis-
tance) and a PI controller for the servo amplifier current loop.
The foliowing open loop transfer functions, which naturaily
share a common denominator, may be obtained from this figure:

Pi(s) = S
ur(s)
_ K. C.(K,s + Ky) Bl
[Los? + (R, + KK )s + KK Hims + By + CuClaps 5
{3a)}
¥is)
Pi(s) = m-)—
_ Los® + {Ra + KK )s + KK, A
[Loy® + (R, + KK )5 + KK, J(ms + B) + CuilCuas s
(3b)

Fig. 4 Open-loop motor block diagram
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Table 1

Identified open-loop model parameters

" 8 L, R, Co C.: K, K, K. K,
17.40. 250 1.6e-3 H L7 3425 3425 0.1855 0.94 .94 s
2765 Kg N-«s/m N/A V- sim VIA A%

Table 1 lists the identified parameter values, which were deter-
mined as follows: the systern mass () was weighed. the damp-
ing value (B) was found via frequency response curve fitting
echniques, K, K;, K,;, and X, were found using static gain
tests. and the remaining parameters were obtained from the
manufacturers documentation { C,y, C.,, L, and R,). The dif-
terence between the two listed mass values is the weight of the
force dynamometer. Also, the value X; = 0O reflects the fact
that the integrating capaciter in the amplifier current loop was
intentionally shorted to avoid integral windup in this loop.

Frequency responsc verification of the overall open-loop
model P\ (s) is shown in Fig. 5 for the case of m = 17.40 kg
(the case of m = 27.65 is similar). The experimental frequency
response was gencrated in Lwo pieces: a low frequency band
using encoder measurements ( <70 Hz), and a high frequency
band using an accelerometer sensor. The discontinuity in the
experimental curves at 70 Hz is due to mismatch between the
two tests, and does not reflect system behavior. Low frequency
phase mismatch between experimental and model data may be
a resuit of static friction. Causing high frequency mismatch is
a resonance/anti-resonance behavior in the range of 900~1100
Hz {350-500 Hz for the m = 27.65 kg case). This has been
attributed to mechanical structure flexibilicy.

lrrespective of the causes, all mismatches between model
and experimental frequency responses have been quantified as
multiplicative unmodeled dynamics;

Piisy = Pus)[1 + A(5)] (4)

where 2,(5), P, (s). and A, (5) respectively represent the actual
plant, the nominal plant (i.e.. modeled dynamics}, and the un-
medeled dynamics.

The unmedeled dynamics A, (s} may be computed from (4)
on a frequency by frequency basis using the identified nominal
moedel and experimental frequency response data, A magnitude
plot of the unmedeled dynamics is shown in Fig. 6 for both
mass cases. The largest unmodeled dynamics correspond to
those frequencies at which the resonance/anti-resonance behav-
tor oceurs. Note that the unmodeled dynamics of 2.{s) will not
affect the robust stability of the servo-loop since the cutting
force is treated as an external disturbance, and have not been
documented in this work. They have only the potential to change
the closed loop stiffness.

Since controller design is to be performed in the discrete-
time domain, conversion of the continuous-time domain model
o a discrete model must be performed. Referring to Fig. 2, it
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Fig. 5 Open-icop frequency response y/u®, m = 17.40 kg
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is clear that P.(s} may be transformed with no approximation
using the standard zero-crder hold techaique. On the other hand.
conversion of P,(s) using this method introduces some error
since the external force disturbance £, is a continuous signal.
However, this approximation does not affcet system stability it
the effects of the zero-order hold are accounted for in (1),
and should not greatly compromise closed loop stiffness except
possibly in the highest frequency band below the sample rate
Nyquist frequency. As such, the (approximate } discrete equiva-
lent model may be written as

k) = Pi(2)uf(k) + Po2)Fulk) (5)

where transter functions P,(z} and P,(z) are the conventional
zero-order hold equivalents of £,(s5) and P.(s) in the Z-trans-
form operator z. Note that £, (z) and P5( 2} will share a commen
denominator (i.e., the sampled eguivalent of the common de-
nominator of P, (5) and P:{s)). The reader is referred to { Alter,
1994) for a more extensive and detailed presentation of the
system modeling.

3 Achievable Dynamic Stiffness of the Nominal Plant
Model

While a practical controller must take into account ro-
bustness, control energy, tracking, and possibly other con-
straints, we first consider the maximum dynamic stiffness
achieved by position output feedback control for the nominal
linear motor drive mode! in Eq. (3}, This information is useful
for understanding the theoretical limit of {(dynumic stiffness)
performance. PD control and . optimal control will be consid-
ered. While PD control result gives what commercial servo
control, which is predominantly PID type, can achieve, the H.
optimal control resvit gives the limit of performance lor all the
stabilizing feedback controllers,

In view of Eq. {2), the dynamic stiffness for position feed-
back system can be derived from the inverse of the H. norm
of the transfer function

y(z) _ Py(z)
Fa() 1 + PI(Z)Cjb(Z) '

(6)

Discrete PD> contrel has been optimized for maximum dynamic
stiffness from this transfer function. A brute-force numerical
scheme was used to search over the PD control parameter space:

0.9 mo{7.40 kg - solid
m=27 65 kg - dashed

T — - —
10 10? 10
frequency (Hz)

Fig. 8 Unmodeled dynamics of open-loop model P, (s)
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Fig. ¥ Thecretically achievable stiffness for H. and PD feedback con-
trollers

z+ h

PD control = Cipi(z) = K

D K=K, —-l<b=0 (7}

where K., is the maximum gain possible for stability with
the particular & value under consideration. Using MATLAB ™
software, the optimization was accomplished by simply testing
successive values of b between —1 and 0 with a 0.01 interval,
determining K., from the open-loop Nyquist plot for each 5,
sweeping through the possible values of X using a 0.01 *K .,
intervai, and determining the closed-loop dynamic stiffness for
each X from the bode plot. The maximum dynamic stiffness
over the search yields the optimal X and & for any particular
sampling rate. Figure 7 shows the derived maximum dynamic,

stiffness for the range of b value at several sampling rates and

m = 17.40 kg. The maximum stiffness value on each curve is
thus the maximum achievable dynamic stiffness for that sam-
pling rate. The plot trends for m = 27.65 kg are similar (not
shown). From this figure it can be seen that the optimal PD
design tends toward pure denvative control (& = — | ) as sample
rate increases, and de-emphasizes the derivative term as sample
rate decreases. Also, the stiffness sensitivity to *‘5"" around
the optimal b value increases with sampling rate. This is of
significance when implementing an optimized PD design: lower
sampling rates allow a greater margin of error in the chosen
value of b at the expense of lower achievable stiffness.

The limit of performance is derived by finding among all
the stabilizing controllers, the maximum closed-loop dynamic
stiffness. The setup and solution to such a SISO H., optimization
problem is well understood, and in this work the problem has
been cast in the standard model matching form via the all-
stabilizing controller method (Vidyasagar, 1985), and then
solved via simple interpolation { Zames and Francis, 1983). The
achievable dynamic stiffness using the nominal model of the
linear motor is plotted in Fig. 8 for a range of different sampling
rates, and compared to the PD control resuit.
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Fig. 9 H. design setup block diagram

Several conclusions may be drawn from the data in Fig. ¥.
First, for the sampling rates shown here. the achievabie stiffness
using H.. control {on this particular linear motor system) is on
the order ot 10 to 100 times greater than is possible using PD
control. Second, increasing the system mass yields an increase
in achievable stiffness for both controller types. This is intuitive
since mass acts as a low pass filter such that larger mass reduces
the frequency response magnitude of the system. and therefore
increases its stiffness. Finally. the effects of sampling rate are
clearly visible: larger sample rate yields larger stiffness poten-
tial. Note however that the sensitivity of stiffness to sampling
rate decreases with increasing sampie rate, especially so for the
optimal PD control curves.

4 Practical H. Feedback Design

While Section 3 served to illustrate the dynamic stiffness
potential of the H. design method, it gave no consideration to
rabustness, control energy limits, closed-loop tracking proper-
ties, nor any other design aspect other than dynamic stiffness.
Considering the unmodeled dynamics quantified by Fig. 6 as
well as possible actuator saturation, it seems most unlikely that
the H. controllers obtained in the previous section will provide
stability when implemented. This is in fact the case. and as
such this section presents a more practical multi-objective H..
controller design.

As was the case for the SISO problem in the previous section,
it is not the objective of this work to review in any depth the
MIMO H. problem nor its solution methods, both of which are
well understood and well documented. A variety of commercial
software packages now exist which perform the optimization,
such as MATLAB u-Tools from The MathWorks Inc.. which
was utilized in this research. For a complete treatment of the
standard problem setup and background material, the reader is
referred to (Maciejowski, 1989}, or (Doyle et al., 1992},

The design setup used for this work is depicted in Fig. 9.
and shows two inputs (r and F,) and two outputs (W e and
g+ u). The selected inputs allow for the simultanecus consider-
ation of both stiffness and tracking, with the scalar ¥ applying
differential weighting between the two. The output W - e repre-
sents the frequency weighted combined output error from
tracking r and from the force disturbance y - £,. Finally, the
output g + u represents a weighting on the control energy. Since
H. system norms are the induced norms of L, signals, this setup
may loosely be thought of as minimizing a weighted sum of
e{1}* + u(n)?, although the actual transfer function norm being
minimized for this MIMO system is not induced from this time
domain signal. This setup has been converted to standard form
in Fig. 10.

Since the MATLAB p-Toclbox is designed for the continu-
ous-time domain problem, discrete c!esign has been accom-
plished using the w-plane transformation

2z-1

MR 1

{8)

where h is the sampling period. This function maps the unit
circle (closed unit disc) of the complex plane onto the imagi-
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Fig. 10 H. design setup in standard form

nary axis { closed left-half plane) of the complex plane. A stable
system in the z-domain will thus have all of its poles in the
open left-half of the w -plane after transformation. Since stability
definitions in the w and s domains are identical, continuous-
time domain design technigues may be applied to w-domain
transformed discrete systems, with the w-domain controller
transformed back into the t-domain as the final step. Further.
this transformation is H. norm preserving which justifies its use
in discrete H. design problems (Vidyasagar, 1985, p- 175).

The weighting filter W (w) is chosen as a proper first order
low-pass filter:

Jw + 278,

W(jw) = ,
) = g,

81> B (N
This filter choice places greater tracking and stiffness emphasis
on the low frequency range, desirable since the high frequency
stiffness of the open loop plant is large to begin with, and also
because good tracking perfermance is not in general required
above some low frequency band. Note that the filter is chogen
as proper, but not strictly proper. A strictly proper filter would,
in order to satisfy the ail-pass solution requirement, result in
undesirable large controller gains at high frequency.

Twa different H.. optimal controllers have been designed for
the case of m = 17.40 kg. A sample rate of 2000 Hz was
chosen for both, consistent with the fact that the open loop plant
dynamics have been identified up to 1000 Hz (the Nyquist
frequency for this sample rate).

Table 2 Controller performance costs for H. design
criteria

Design A criteria Design B criteria

Controller optimal cost = [.1133 optimal cost = (0.205
s EELRS 1.2077
B 1.7867 0.2051
optimal PD 16577 2.6560
1 {
E 4 o _‘_%-‘?
E ] A T
2 1o P
Eﬂ H o -
= 3 L o
£ 107 __-"_ﬁ/
ey } ’ ,_/7/ controller
é S ;_,_..-':'/ A
£ P ---B
N [ PR
10 e : - e
1 1] 100 100K)
frequency (Hz)

Fig. 11 Theoretical tracking error frequency responses

troller A is also seen sub-optimal for criteria B by a similar
slight amount. while controller B is more significantly subopti-
mal for criteria A by a factory of 1.6. In comparison, the optimal
PD controller is suboptimal by a factor of 2.4 for criteria A,
and 12.9 for criteria B.

Tracking error frequency responses as predicted by the theo-
retical closed loop equations based on the nominal plant model
are displayed in Fig. |1, and are seen qualitatively consistent
with the weighting filter choices. The harmonic tracking perfor-
mance of controtler B is superior to design A for low frequen-
cies up to 6 Hz, while controller A has the advaniage for mid-
range frequencies of 6 to 95 Hz. In companson with the optimal
PD controller. controller A provides better tracking up to 60

Design A: p=le — 6,y = 1e7, B, = 200, 8, = 50
' (z — 0.8197 + 0.0992i}(z — 0.8197 ~ 0.0992i)(z — 0.5773)
C =59 10a)
74(2) 8673 (z — 0.8544)(; — 0.1561 + 0.4075i)(z — 0.1561 - 0.40751) (
Design B: p=1le -7, v =11, 8 =10, 8, = |
(z - 09690)(z - 0.8259)(; — 0.5778)(z + 0.9951)
Crp(z) = 6.9214de5 - 106)
iz} {z— 1}z + 0.7538)(z + 0.0351 + 0.4278)(z + 0.0351 — 0.4278() (

The weighting filter choice for design B places a tenfoid empha-
sis on frequencies below 1 Hz as compared to those above 10
Hz, resulting in an integral action pole at z = 1 (to within four
decimal places)., The more moderate weighting in design A
places this pole at z = 0.8544, providing large but finite D.C.
controller gain. In comparison, the stiffness optimal PD control-
ler ai this sampling rate was determined to be;

Cr(z) = 3.906e5 2091
Z

{10¢)

Table 2 shows a comparison of the performance costs for
each design criteria with each controller. One will notice that
controller A is listed with a slightly suboptimal cost for the
design A criteria. This is because it originaily contained an
additional zero-pole combination of (z + 0.9905¥(z + 1)
which was canceled since such a highly oscillatory controller
mode could excite high frequency unmodeled dyramics. Con-
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Hz, and controller B up to 30 Hz. The low frequency accuracy
of these theoretical resuits has been experimentally verified at
several frequencies, as tabulated in Table 3. These tests placed
a considerable performance demand on the systemn: the amphi-

Tabile 3 Low frequency harmonic tracking error magni.
tude (m/m) (experimental value is listed above theoretical
value)

Frequency Controller Controller Optimal
(Hz) A B PD
5 0.00254 0.00257 0.00683
(.00364 0.00298 0.00856
10 (.00995 0.0106 0.0206
0.00979 0.0126 0.0221
20 0.0344 0.0457 0.0635
0.0345 0.0530 0.0671

DECEMBER 1386, Vol. 118 / 653



Table d Dynamic stiffness of position feedback closed-loop
system

Theoretical Experimental Hybnd

Controller N/m N/m Nim
A 3.5e6 33e6 33e6

B 5.0eb 3.8¢6 3.4eh
optimal PD 3.8eb 2.6e0 3.8e6

tude of the reference sine wave was selected to require an rms
inertial tracking force approximately equal to 70 percent of the
445 N continuous output capability of the linear motor.

Table 4 shows the experimentally determined closed loop
dynamic stiffness by impact testing, with a PCB Electronics
model 086C09 electric hammer providing a measurable impul-
sive disturbance to the system. Experimentally, controllers A
and B are seen to improve dynamic stiffness by 27 and 46
percent, respectively, over the optimal PD controller. The col-
umn labeled “*Theoretical’” has been computed using the nomi-
nal system model given by (3). The “*Hybrid"" column takes
into account the unmodeled system dynamics by computing (6)
on a frequency by frequency basis with P,(z) replaced with
experimentally based data (see Appendix}. This calculation
shows that the gquantified unmodeled dynamics explain well
the mismatch between theoretical and experimental dynamic
stiffness for controliers A and B. This is further confirmed by
examining the entire stiffness frequency response, shown in Fig.
12 for controller A. The hybrid computation in Table 4 15 seen
not as effective in the optimal PD case, possibly due to the
omission of the P;(z} unmodeled dynamics.

5§ H. Optimal Force Feedback Design

Application of an outer force feedback control loop 10 the
position feedback loop systern provides a means of increasing
dynamic stiffness beyond that achievable with position feedback
only. One might arguably choose to call the controller force
feedforward. However, force feedback has been used here since
the cutting force is really a system output {from the cutting
process), even though in Section 2 the cutting process was
treated as external to the servo system for stability studies. In
addition, there exists the possibility of instability in the force
feedback loop, which is a trait characteristic of feedback, and
not feedforward control. In any event, the terminology used 1s
not of major importance.

The basic idea behind force feedback is this: sense the cutting
force, and apply an equal and opposite actuator force o cancel
it. If such a scheme could be perfectly implemented, the effects
of the cutting process on the linear motor actuator would be
compietely eliminated. Of course, achievable loop bandwidths

41074
31072

2107

Ly { F, 1, (n/N)
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theoretical - dashed
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T r T T
0 100 1000
frequency (Hz)

Fig. 12 Stiffness results for controller A
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Fig. 13 Stiffness results for simple force feedback design

place a limitation on such an idealistic view. However, the
bandwidth of the actuator force loop is not directly hampered
by the system inertia, as is the case with position feedback.
Its performance is instead primarily determined by the servo
amplifier dynamics, which are considerably faster than those of
the motor inertial system.

Implementation of force feedback control for machining re-
quires the availability of the cutting force as a signal. One
approach to sense this force is to mount the cutting tool post
on a force dynamometer, and then affix this entire assembly to
the (linear motor) feed drive slide (see Fig. 3). The structure
dynamics of the tool post as well as those of the force sensor
will be presently neglected, although they could be incorporated
into the problem formulation if it were desired to do so. In

--particular, phase lag in the force sensor could significantly de-

arade closed loop performance, and might need to be accounted
for if stiffpess potentials are to be fully realized.

As motivation for the use of force feedback control in ma-
chining, a simple controlier design of Cy, = | was implemented

0.3 3 spln;.li: specd = 1729 mm
depth of cut = 1. 4anm
0.2 7 ived rave =0 mmieey |

T 0l
E
= 1]
3 E
5 0N
= ] ms =63 lm
= 02 ol TS = L5 L
g3 forue fecdback. furee Toedback
j. lurmed off \ / re-activated
4 T T T —
a 1 2 3 4 5 ]
time {sec)
Fig. 14 Experimental cutting tool response for simple force feedback
design
4 ][]'T'J!
henmticol with
position feedback: eaperimential with
5 \ AT posiion Feedback
3107 -
E 2 eaperimental with
:1’ 20 J pasition and lorce [eedbm:k\‘../__.
B 4
117
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to augment the dynamic stiffness obtained from a (discrete
equivalent) PD position feedback controiler. The linear motor
used for this is different from (he one presented in Section 2.
and the reader is referred 1o { Alter and Tsac, 1994 or 1993

Cop(z) = 217335

The addition of the torce dynamometer adds additional mass
to the linear motor system. as was documented in Section 2,
As such, the posttion teedback controllers presented in Section
4 were first redesigned to account for this change:

Design C: p=le — 5,y = le7, 84, = 200, 5 = 30
{1 — 0.8687 + 004820 (¢ — 0.8687 — 0.04820(7 - 0.573N

Cenl2) = 2.5319e5

{13

{z— 08544y — 04676 = (.29561) 1 ; — 04676 — 0.2056/)
Design D: p=le—6,y=1e7.8 =107 = 1

(2 - 096833z —~ DOMBY < - 0573

for hardware, implementation, and metal cutting details. From
Fig. 13, one may compute dynamic stiffness values of 2.3e3
N/m and [.6e5 N/m respectively for the active and nonactive
force feedback cases. Although both cases show low stiffness
values, the addition of force feedback does yield a 44 percent
dynamic stiffness improvement even with a simple negating
compensation. Figure [4 shows the vibration of the linear maotor
{1.e., with cutting tool attached} during the axial configuration
turning of a 416F stainless steel workpiece. Upon deactivating
the force feedback controller {time ~ 2 seconds). the tool is
seen to immediately underge unstable chatter vibrations, which
are later suppressed by reactivating the force feedback control-

For Design C:

(z

; T — {135
— 1)z — 04297 + 03191z — 04297 - 0.31911)

Similar w the two controllers designed in Section 4, controller
D has integral action while controlier C does not. However. the
above controller gains have been limited to a greater extent by
the larger unmodeled dynamics present with this higher mass
case, possibly due to the fexibility of the dynamometer. They
therefore offer less dynamic stuffness than was achieved for the
lower mass case. The experimental dynamic stiffness values
determuned by impact test, respectively for controllers C and
D. are 2.7¢6 and 3.2e6 N/m, compared to the theoretical predic-
tion of 3.1¢6 and 2.9¢6 N/m.

Force feedback controllers were designed using (12). and
are given by the following transfer functions:

(z — 0.5661)(; - 0.4839 + 03055}z — 0.4839 — 0.3055{)(z — 0.1883)

Cm(z) =

For Design D:

{ 1dey

20z — 04676 + 0.2956§)(z — 0.4676 — 0.2956i)(: + 0.2307)

(z —0.561)(c — 04488 + 032891z — 0.4488 — 032891z — 0.1847)

Cgb(iﬁ) =

ler. This demonstrates the utility of force feedback in machin-
ing.
in order to maximize the dynamic stiffness using force feed-
back, the control goal is again to minimize the M. norm of the
transfer function y/F.. The closed-loop transfer function from
cutting force to position is computed from Fig. 2 and Eq. (5)
F =P, P

F. 1+PC, 1 + P.Cp

(1)

This is already in standard model matching form, and ditectly
gives the optimal cost function

=

inf |M - GOl

Q€ b
where @ = —Cp,, and M, G € £, are defined as M ;= — P,/( 1]
+ PyCpp), Gi= Pi/(1 + P Cpy). As in Section 3, the optimization
problem (12 has again been solved via simple interpelation.
When G in (12} contains one or more unit circle zeros, the
optimal solution Q" may not exist. One solvable special case
is where every unit circle zero of G is also a zero of M. In this
case, a solution may be found by selving a sequence of problems
where the unit circle zeros are perturbed to the stable region,
with the perturbations converging to zero { Vidyasagar, 1985,
pp. 174-178). With the practically importance case where the
position feedback controller has been designed with integral
action in mind, one sees that those unit circle zeros of G ob-
tained from unit circle poles of Cj, are also common to M, and
therefore do not hinder the solvability of the problem.

(12}
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{1dh)

20z — 04297 + 031910 (z - 04297 — 0.31910)(z + 0.2307)

The force feedback controller for Design C originally conrained
an additional zero-pole combination of {z — 0.8546}3(; —
0.8544) and produced a theoretical all-pass suffness value of
5.5¢8 N/m. After removal of this pair, the theoretical closed loop
dynamic stiffness was reduced by {1 percent to 4.9¢8 N/m.

The force feedback controller for Design D originally con-
tained an additional zero-pole combination of {z — L.OG2)/(:
— 1}. and yielded a theoretical all-pass stiffness value of 5.5¢8
N/m. This unit circle pole results directly from the integral
action of the feedback controller D, such that G in (12) con-
tained a unit circle zero at z = 1 which was perturbed into the
stable region during the solution computation, with the perturba-
tion later being reduced to zero as the last step. Cancellation of
this pair reduced this dynamic stiffness value by 14 percent to
4.7¢8 N/m. In the general case, a similar zero may not exist
with which to cancel such unit circle poles. They must instead
be left perturbed in the stable region, which will also result in
a reduction of stiffness. For example, had the above pole at :
= 1 been perturbed to z = 0.99 (and the zero at 7 = 1.0002
left intact), the resulting theoretical dynamic stiffness would
be 1.1e7, or a reduction of 98 percent! In addition, while z =
0.99 may be theoretically stable, it may not provide adequate
performance from a practical point of view. Such difficulties
must be solved through engineering judgment on case by case
basis.

The zero-pole cancellations and perturbations discussed
above illustrate the sensitivity of dynamaic stiffness to even small
dynamic mismatches between the force feedback coniroller and
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the servo loop. Owing to the unmodeled dynamics here present
in the open loop linear motor, it might be anticipated that experi-
mental dynamie stilfness will not achieve a level comparable
with theoretical values. This in fact wms out to be the case,
although stiffness improvements are stll provided. Experimen-
Lal stiffness was determined through impact testing, as shown
in Fig. 15 for design C. One sees that the addition of force
feedback to design C experimenially vields a dynamic stiffness
of S.4e6h N/m: a two fold increase over the 2.7¢6 N/m vaiue
using position feedback alone. For design D ( figure not shown ).
force leedback also produces a dynamic stiffness of 3.4e6
N/m, for a 7% increase over the position feedback only value
of 3.2¢6 N/m.

6 Conclusion

The potential of the H. methodology when designing for
dynamic stiftness has been demonstrated. The theoretically
achievable stiffness using H. control is for the present hardware
on the crder of 10 to 100 times larger than that obtainable
with conventional PD control. For implementation purposes. a
practical H. design was employed which considered not only
stiffness but also robust stability and tracking and control en-
ergy. One design setup was also chosen to yield a position
feedback controller with integral action properties: a desirable
feature for machine tools. Experimental dynamic stiffness gains
over PD control of 27 to 46 percent have been shown. Finally.
the use of H. optimal force feedback control for stiffness en-
hancement was also experimentally demonstrated, resulting in
a 70— 100 percent dynamig stiffness increase over position feed-
back aione.

The software currently available to assist with . controller
design is extensive in scope. As such, this technique offers an
attractive practical alternative to conventional PD control for
direct feed drive stiffness design. More extensive modeling of
the lincar moior and power ampiifier may be needed to fully
exploit the stiffness potential of linear motor feed drives. In
addition. careful ptanning of the mechanical design of the feed
drive should be performed to eliminate large structural reso-
nance and excessive amounts of friction, and therecby reduce
the unmodeled system dynamics.
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APPENDIX

Computation of **Hybrid’* Stiffness

Suppose that the unmodeled dynamics of the open-loop plant
are characterized in the discrete-time domain as:

Biizy =P + Azl (15}

where P, (z) is the actual plant, #,(z) is the nominal plaot. and
A (z) is a siable multiplicative perturbation. The **Hybrid"”
computation is to be performed by replacing P, {z) with P ()
in Eq. {6). However. (he system unmodeled dynamics are cur-
rently known only in the continuous-time domain (i.e., see Fig.
6}, and therefore some conversion to discrete-time js needed.
Given an arbitrary stable continuous-time domain system trans-
fer function F(s) with complex frequency response H{jw).
one may express the frequency response of its discrete zern-
order hold equivalent as ( Franklin and Powell, 1981 ):
|27 Hijw ~ jaw)

e T R R D ,
h . Jwo- faw,

LR

(16)

where h is the sampiing period and w, = 1/(27h). However.
it H{jw) is zero for all frequencies above w,/2, ( 18) reduces
oy

1 Hi o
H(z) pmv = (1 = g 1HUw)

17
- h o fuw an

Now, the continuous-time complex frequency response £ (jw)
was experimentally determined ar distinet frequencies up to
1000 Hz (ie., w,/2). Referming to Fig. 5. it is arguably reason-
able to take as zero the diminishing freguency response above
1000 Hz. Thus. (17) may be used to compute {approximately )

the complex frequency response of Pi{/~*} on a frequency by
frequency basis.
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