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ABSTRACT

Asymptotic behavior of the solution of the moving oscilla-
tor problem is examined for large values of the spring stiffness
for the general case of nonzero beam initial conditions. In the
limit of infinite spring stiffness, the moving oscillator problem
for a simply supported beam is shown to be not equivalent in
a strict sense to the moving mass problem; i.e., beam displace-
ments obtained by solving the two problems are the same, but
the higher-order derivatives of the two solutions are different. In
the general case, the force acting on the beam from the oscilla-
tor is shown to contain a high-frequency component, which does
not vanish, or even grows, when the spring coefficient tends to
infinity. The magnitude of this force and its dependence on the
oscillator parameters can be estimated by considering the asymp-
totics of the solution for the initial stage of the oscillator motion.
For the case of a simply supported beam, the magnitude of the
high-frequency force linearly depends on the oscillator eigenfre-
quency and velocity. The deficiency of the moving mass model
is noted in that it fails to predict stresses in the bridge structure.
Results of numerical experiments are presented.

1 INTRODUCTION

The problem of calculation of the dynamic response of a dis-
tributed parameter system carrying one or more traveling subsys-
tems is very important in many engineering applications related,
for example, to the analysis and design of highway and railway
bridges, cable-railways, and the like. Two simple models of mov-
ing subsystems are generally accepted in the studies on this sub-
ject where the emphasis is put on the dynamics of the distributed
parameter system rather than on that of the moving subsystem:
moving mass and moving oscillator models. The difference be-
tween the two models is that the stiffness of the coupling between
the moving subsystem and the continuum in the former model is
assumed infinite. In what follows, the problems of the vibration
of the distributed parameter system due to the moving mass or
oscillator will be referred to as the moving mass or moving os-
cillator problems, respectively. There is a large body of literature
devoted to these problems, and a number of methods for solving
them have been developed during last several decades. We refer
the interested reader to the ample lists of references in Yang at
al. (2000) and Pesterev at al. (2000a), as well to those in other
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works cited throughout this paper. Some discussion of papers on
the moving mass problem related to the main subject discussed
in this study is given in Section 7.

The purpose of this study is to examine the asymptotic be-
havior of the solution of the moving oscillator problem for large
values of the spring stiffness and to establish the relationship be-
tween the moving oscillator and moving mass problems. The
reasons for this study are as follows.

It is commonly accepted that the moving oscillator prob-
lem in the limit of infinite coupling stiffness is equivalent to the
moving mass one (see, e.g., Yang and Lin, 1995; Yang and Yau,
1997). One can also meet the statements in some papers that the
authors used large values of the spring stiffness in their numerical
experiments modeling thus the moving mass problem. At first
glance, the assumption about the equivalence of the two prob-
lems seems to be valid taking into account the fact that the am-
plitude of the oscillator vibration vanishes when the spring stiff-
ness goes to infinity. It is also substantiated by numerous results
of numerical experiments presented in the literature, which show
the convergence of the solution of the moving oscillator problem
as the spring stiffness grows. To the authors’ best knowledge,
however, the validity of this assertion has never been proved in
the literature but was taken for granted.

On the other hand, when modeling the multiple moving os-
cillator problem, one can observe that the force acting on the
beam from the second oscillator is very different from that from
the first one. Figure 1 illustrates this; it shows the time history
of the forces acting on the unit dimensionless simply supported
beam with zero initial conditions traversed by two identical high-
frequency oscillators of unit weight moving with the velocity
v = π/2 (more details about this example, as well as about the
subsequent illustrations, are given in Section 8). The second os-
cillator enters the left end of the beam at the moment when the
first oscillator leaves the beam. Both oscillators are assumed to
have zero initial conditions at the moment when they enter the
beam. Thus, the problem is decomposed into two problems of
one moving oscillator (in the intervals [0,2/π] and [2/π,4/π],
respectively). The only difference between these two problems
is that the beam initial conditions in the second problem are
nonzero. The difference in the two forces is easily seen: whereas
the force from the first oscillator may be associated with the iner-
tia of the moving mass, the force from the second oscillator con-
tains a high-frequency component of large magnitude, which is
not typical to a moving mass solution. This phenomenon implies
that the solution to the problem considered cannot adequately be
approximated by any moving mass solution.

The above was a motivation to more closely examine the ef-
fect of nonzero beam initial conditions on the moving oscillator
solution and to compare the latter solution with the correspond-
ing moving mass one. It will be shown that the moving oscillator
solution does not tend to the corresponding moving mass one in
a strict sense and that the force acting on the beam from the oscil-
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Figure 1. Forces from two oscillators traversing the SS beam one after

another

lator contains a high-frequency component, which does not van-
ish, or even grows, when the spring stiffness increases. In spite
of this, the two solutions are still equivalent in terms of the beam
displacement (which is further referred to as weak equivalence).

The examination of the equivalence problem brought us to
the conclusion about deficiency of the moving mass model, which
is discussed in Section 7. While the moving mass model can be
used to accurately approximate the displacement of a long bridge
due to a real vehicle with a stiff suspension, it fails to predict
stresses. The issue of the deficiency of the moving mass prob-
lems comes to existence when the beam initial conditions are
allowed to be nonzero and originates from the fact that the mov-
ing mass problem statement is physically incorrect in this case.
Note that, in most of publications on the moving mass problem,
the initial conditions for the beam either are not discussed at all
or are assumed to be zero. Even if the governing equation is
written for arbitrary initial conditions, the discussion is usually
reduced to zero ones by means of the magic words “without loss
of generality.” Indeed, in many cases, the consideration of zero
initial conditions simplifies calculations and results in no loss of
generality. However, this expedient does not work in the case of
the moving mass problem, which is an idealization obtained by
assuming infinitely large stiffness of coupling between the sub-
systems.
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2 PROBLEM STATEMENT
The vibration of a uniform beam traversed by an oscillator

of mass m0 attached to the beam through a spring of stiffness k
moving with a constant velocity v is governed by the equations

ρ ∂2

∂t2 w+ EI ∂4

∂x4 w = −(m0g+ k(w(vt,t)− z(t)))δ(x− vt), (1)

m0z̈ = k(w(vt, t)− z(t)), 0 ≤ x ≤ L, 0 ≤ t ≤ L/v. (2)

subject to given boundary and initial conditions, where z(t) is the
absolute displacement of the lumped mass. The beam ends are
assumed to be fixed (simply supported or clamped).

The equations governing the moving mass solution
wmm(x,t) is well known to be

ρ ∂2

∂t2 wmm + EI ∂4

∂x4 wmm =

−
[

m0g+ m0

(
∂
∂t + v ∂

∂x

)2
wmm(x, t)

∣∣∣∣
x=vt

]
δ(x− vt) (3)

subject to given boundary and initial conditions.
The basic purpose of this study is to examine the asymptotics

of the solution of equation (1), (2) for large values of the spring
stiffness k, to find out what new phenomena are associated with
nonzero beam initial conditions, and to understand whether the
moving mass and moving oscillator problems are equivalent in
the limit of infinite spring stiffness.

3 ASYMPTOTIC FORMULA FOR THE INTERACTION
FORCE
Let beam initial conditions be arbitrary, and let k be large. If

we compare equations (1), (2) with (3), we see that the solution to
the former equations depends on two additional parameters, the
initial vertical displacement z(0) and velocity ż(0) of the oscilla-
tor. Under the assumption that the oscillator initial conditions are
due to external forces of finite magnitude acting on the oscillator
before it enters the beam, it can be easily shown that we should
confine our consideration to the case where

z(0) = O

(
1

ω2
0

)
, ż(0) = O

(
1

ω0

)
. (4)

Let us rewrite equation (2) in the form

z̈+ ω2
0z = ω2

0w(vt, t), (5)

where ω0 =
√

k/m0 is the oscillator eigenfrequency. The solu-
tion to equation (5) is the sum of the solution to the homogeneous

equation (5) satisfying given initial conditions and the particular
solution satisfying zero initial conditions and is given by

z(t) = z(0)cosω0t +
1

ω0
ż(0)sinω0t

+ω0

t�

0

w(vτ,τ)sin ω0(t − τ)dτ. (6)

Taking the integral on the right-hand side of (6) by parts four
times with regard to the condition w(0,0) = 0 and dropping the
terms of order less than 1

ω2
0
, we get

z(t) = z(0)cosω0t +
1

ω0
ż(0)sinω0t − 1

ω0
ẇ(0,0)sinω0t

+w(vt, t)− 1

ω2
0

ẅ(vt, t)+
1

ω2
0

ẅ(0,0)cosω0t + o

(
1

ω2
0

)
, (7)

where ẇ(vt, t) and ẅ(vt, t) are the convective derivatives,

ẇ(vt, t) ≡
(

∂
∂t + v ∂

∂x

)
w(x, t)

∣∣∣
x=vt

,

ẅ(vt, t) ≡
(

∂
∂t + v ∂

∂x

)2
w(x, t)

∣∣∣∣
x=vt

.

Note that, for t = 0, we have

ẇ(0,0) = vwx(0,0), ẅ(0,0) = v2wxx(0,0)+ 2vwxt(0,0), (8)

where wxx and wxt are the partial derivatives. It immediately fol-
lows from equations (7) and (4) that the relative oscillator dis-
placement z(t)−w(vt, t) vanishes when the spring stiffness goes
to infinity.

Further, multiplying both sides of equation (7) by the spring
stiffness k, we find the elastic force of interaction between the
beam and oscillator

f (t) ≡−k(w(vt, t)− z(t)) = −m0ω0(ẇ(0,0)− ż(0))sinω0t+

m0(ẅ(0,0)+ ω2
0z(0))cosω0t −m0ẅ(vt,t)+ o(1). (9)

As can be seen, in the general case of the oscillator and
beam initial conditions, the elastic interaction force contains two
harmonic components with the frequency ω 0 due to the eigen-
vibration of the oscillator, which do not vanish when k goes to
infinity. Moreover, the amplitude of the first of them grows in-
finitely as the spring stiffness tends to infinity. This implies that
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Figure 2. Shear force distributions at three close instants in the two-

oscillator problem (the first oscillator is outside the beam).

the moving mass and moving oscillator problems are generally
not equivalent in the limit of infinite spring stiffness since the
force on the right-hand side of (1) does not tend to that of equa-
tion (3). The oscillating character of the interaction force in the
moving oscillator problem implies, in particular, that the picture
of the shear force distribution rapidly changes in time, especially
in the vicinity of the moving oscillator attachment point, since
the concentrated force acting on the beam is equal to the jump in
the shear force at that point. This phenomenon is illustrated in
Fig. 2, which shows the shear force distributions at three close in-
stants, t = 0.8, 0.805, and 0.81, for the example discussed above
(see explanations to Fig. 1). It demonstrates that the jump in
the shear force distribution considerably changes in a fraction of
time, which may imply that the beam is subject to “damaging”
stresses.

4 CONDITIONS OF EQUIVALENCE OF THE MOVING
OSCILLATOR AND MOVING MASS PROBLEMS

Since the operators on the left-hand sides of equations (1)
and (3) are exactly the same, the solution of the moving oscilla-
tor problem, together with all its derivatives, tends to that of the
moving mass problem if the right-hand side of (1) tends to that
of equation (3) as ω0 → ∞. It follows from equation (9) that the
latter condition holds only if oscillator initial conditions satisfy

the relations

z(0) = − ẅ(0,0)
ω2

0

, ż(0) = ẇ(0,0) ≡ vwx(0,0). (10)

The second condition (10) implies that the velocity of the oscilla-
tor at t = 0 is directed along the tangent line to the beam at x = 0,
and the first condition (10) implies that the spring is prestressed
to make the force acting on the beam at t = 0 equal to the initial
inertia force inherent in the moving mass problem.

In the case of zero beam initial conditions, equations (10)
are satisfied by taking zero oscillator initial conditions. Let now
beam initial conditions be nonzero. If the left beam end is simply
supported, the initial slope is generally a certain finite number not
depending on the oscillator eigenfrequency, and the second con-
dition (10) cannot be satisfied since, by virtue of (4), ż(0) must
vanish when ω0 → ∞. This implies that the moving oscillator
problem in the limit of infinite spring stiffness is not equivalent
in the strict sense to the moving mass problem.

Thus, we may conclude that, except for the case of zero ini-
tial conditions, there is no strict equivalence between the two
problems in the limit of infinite spring stiffness if the left beam
end is simply supported. If the beam left end is clamped, it is
always possible to choose oscillator initial conditions such that
the moving oscillator problem is strictly equivalent to the mov-
ing mass problem in the limit of infinite spring stiffness. If the
oscillator initial conditions do not match well the beam initial
conditions (do not satisfy (10)), the two problems are not equiv-
alent.

Remark. The incorporation of damping into the oscillator
model considerably complicates all calculations and makes the
analysis more involved. It is for this reason that we consider here
the undamped oscillator. It can be shown however that all basic
findings of this study remain valid for the damped case. The elas-
tic force in the damped case is described by the equation similar
to equation (9), with the functions sinω0t and cosω0t being re-

placed by the e−αt sin
√

ω2
0 −α2 and e−αt cos

√
ω2

0 −α2, respec-
tively, where α is the damping coefficient. The coefficients of the
latter functions are more complicated functions of the initial con-
ditions and the spring and damper coefficients. It can be proved
however that these coefficients vanish if the oscillator initial con-
ditions satisfy the same equations (10). Although the interaction
force vanishes shortly after the oscillator enters the beam, it still
exists during finite time such that the two problems, as in the un-
damped case, are not equivalent in the mathematical sense. From
the engineering standpoint, it is important that the magnitude of
that force immediately after the oscillator enters the beam may
be considerable, and the picture of the shear force distribution
for an initial stage of the oscillator motion will be similar to that
depicted in Fig. 2.

The above analysis shows that high-frequency oscillations
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of the elastic (dynamic) force appear when a stiff oscillator en-
ters an already vibrating beam. In the general case, the oscillator
initial conditions cannot be adjusted to satisfy (10), and we need
to examine the effect of the high-frequency component of the dy-
namic force on the beam vibration. We will show that the beam
displacement is not sensitive to the oscillator initial conditions as
long as they satisfy (4) and that, in spite of the “stress” nonequiv-
alence, the two problems are still equivalent in terms of the beam
displacements (i.e., the response of the beam due to the moving
oscillator tends to that due to the moving mass as k → ∞). We
will call this weak equivalence.

5 WEAK EQUIVALENCE OF THE MOVING MASS AND
MOVING OSCILLATOR PROBLEMS
Let oscillator initial conditions be arbitrary. Equation (9)

can be written in the form

f (t) = −c1m0ω0 sinω0t + c2m0 cosω0t −m0ẅ(vt,t)+ o(1),
(11)

where c1 and c2 are determined by the beam and oscillator initial
conditions and do not depend on ω0. Let us represent the solution
to equation (1) in the form

w(x, t) = wmm(x, t)+ w̃(x, t), (12)

where wmm(x, t) is the solution to the corresponding moving mass
problem (3) satisfying the given initial conditions

wmm(x,0) = w(x,0), ∂
∂t wmm(x, t) |t=0 = ∂

∂t w(x, t)
∣∣∣
t=0

,

and

w̃(x,0) = ∂
∂t w̃(x, t) |t=0 = 0.

Substituting (12) into equation (1) with regard to (11), dropping
the small-order term, and taking into account that w mm(x, t) sat-
isfies (3), we find that w̃(x,t) is governed by the equation

ρ ∂2

∂t2 w̃+ EI ∂4

∂x4 w̃+ m0
¨̃w(vt, t)δ(x− vt) =

−(c1m0ω0 sinω0t − c2m0 cosω0t)δ(x− vt), (13)

subject to the given boundary conditions and zero initial con-
ditions. The last equation describes the vibration of the beam
with the rigidly attached weightless mass m0 that moves along
the beam with the velocity v (or, in other words, the beam with

the mass distribution given by ρ + m0δ(x− vt)) excited by the
moving harmonic force.

It is evident that the second harmonic force on the right-hand
side of equation (13) can be dropped for sufficiently large values
of ω0 (it remains constant when ω0 → ∞, whereas the first force
increases infinitely). Thus, for simplicity of the notation, it is
sufficient to prove that the solution to the equation

ρ ∂2

∂t2 w̃+ EI ∂4

∂x4 w̃+ m0
¨̃w(vt, t)δ(x− vt) =

−c1m0ω0 sin(ω0t)δ(x− vt) (14)

satisfying the given boundary and zero initial conditions tends to
zero when ω0 → ∞. The solution to (14) is given by

w̃(x, t) = −
t�

0

L�

0

g(x,ξ; t − τ)c1m0ω0 sin(ω0τ)δ(ξ− vτ)dξdτ

= −c1m0ω0

t�

0

g(x,vτ; t − τ)sinω0τdτ,

where g(x,ξ, t) is the dynamic Green’s function of the system
governed by the left-hand side of equation (14) with regard to the
boundary conditions. Although its closed-form representation is
not available (and hardly can be found), it is sufficient for our
purposes that such a function exists (which follows from physical
considerations). Taking the last integral by parts twice, we get

w̃(x, t) = c1m0

t�

0

g(x,vτ; t − τ)d cosω0τ =

c1m0g(x,vτ; t − τ)cosω0τ|tτ=0 −
c1m0

ω0

d
dτ

g(x,vτ,t − τ)sinω0τ |tτ=0

+
c1m0

ω0

t�

0

d2

dτ2 g(x,vτ; t − τ)sinω0τdτ.

The first term on the right-hand side of the equation van-
ishes since g(x,0; t) = 0 (fixed left end) and g(x,ξ;0) = 0 (the
deflection of the system at t = 0 due to the unit impulse applied
at t = 0 is zero), and we finally arrive at the following equation:

w̃(x, t) = −c1m0

ω0

d
dτ

g(x,vτ, t − τ) |τ=t sinω0t

+
c1m0

ω0

t�

0

d2

dτ2 g(x,vτ; t − τ)sinω0τdτ. (15)
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It follows from the last equation that, in view of the finiteness of
the first and second partial derivatives of the Green’s function,
the solution to equation (14) tends to zero as ω0 → 0,

w̃(x, t) = O

(
1

ω0

)
,

which proves the weak equivalence of the moving mass and mov-
ing oscillator problems in the limit of infinite spring stiffness.

From the physical standpoint, small effect of the additional
harmonic forces on the beam vibration is explained by the fact
that these forces have high frequency and excite only high-order
eigenvibrations of the beam, the contribution of which into the
beam response is negligible. Moreover, no resonance phenomena
can take place because of the finiteness of the passage time and
since the time-varying system governed by the left-hand side of
equation (14) has no fixed resonance frequencies.

Although the high-frequency component of the dynamic in-
teraction force does not result in any increase of the beam dis-
placement, the magnitude of this force (or, to be more specific,
the magnitude of the total dynamic force) is of great significance,
in particular, to pavement wear (DIVINE report, 1998). The
magnitude of the additional high-frequency force is determined
by the oscillator parameters and the beam and oscillator initial
conditions and may be considerable. Thus, it is important to es-
tablish the dependence of this force on the oscillator parameters
and initial conditions and to find a priori estimates of the peak
values of the concentrated force acting on the beam. In the next
section, we will show that the magnitude of the dynamic force
f (t) can be estimated by considering its asymptotics for small
values of time.

6 ESTIMATES FOR THE INTERACTION FORCE

As was shown above, when a stiff oscillator enters the al-
ready vibrating beam, there appear a harmonic high-frequency
component in the elastic interaction force with the frequency ω 0

and the accompanying force associated with the high-frequency
low-amplitude vibration w̃(x, t) of the beam excited by the for-
mer force. Although, as was shown in Section 5, w̃(x,t) tends to
zero as ω0 →∞, the force m0

¨̃w(x, t) associated with this vibration
does not (note that this is clearly seen in Fig. 2). These forces are
added to the force associated with the inertia of the moving mass
such that the resulting dynamic force acting on the beam from
the oscillator can be represented as

f (t) = −m0ẅmm(vt,t)+ fad(t). (16)

By virtue of (9) and (12), the equation for the additional force is
given by

fad(t) = −m0ω0c1 sinω0t + m0c2 cosω0t + m0
¨̃w(vt,t), (17)

where c1 and c2 are determined by the oscillator and beam initial
conditions and do not depend on ω0.

If c1 �= 0 and ω0 is sufficiently large, the amplitude of the
harmonic force can be very well approximated by the first term
only. The inertia term m0ẅmm(vt, t) associated with the moving
mass solution can also be neglected for large ω0. The last term in
equation (17) is a rather complicated function and can accurately
be calculated only numerically. As can be seen from equation
(15), its magnitude linearly depends on the amplitude of the ex-
citing harmonic force (and, hence, on ω 0), and, thus, it cannot
be generally neglected. Note, however, that, due to the damping
inherent in any real problem, the high-frequency vibration of the
beam and oscillator decrease rapidly. Thus, from the practical
standpoint, it is sufficient to be able to estimate the peak values
of the dynamic force on the initial stage of the oscillator motion.
For small t such that vt � L (the oscillator is close to the left end
of the beam), the third term on the right-hand side of (17) can
be dropped. This can formally be proved if we take into account
that the harmonic force with the frequency ω0 excites mainly the
beam eigenvibrations at the eigenfrequencies ωn close to ω0 and
that the wave numbers λn are proportional to the square roots of
the eigenfrequencies,

√
ωn. Then it follows that the maximum

magnitude of the dynamic force f (t) can be very well approxi-
mated by that for small t, which is given by

max
t

| f (t)| ≈ m0ω0v

(
wx(0,0)− ż(0)

v

)
, vt � L. (18)

Note that the expression in the parentheses is the difference be-
tween the initial slope of the beam at x = 0 and the direction of
the oscillator velocity. As can be seen from (18), the magnitude
of the dynamic force is proportional to the oscillator eigenfre-
quency and velocity.

If c1 is small (the difference between the initial beam slope
and the direction of the oscillator velocity is small) or the spring
stiffness is not large enough, the estimate can be improved by
taking the second term on the right-hand side of (17) into ac-
count. Moreover, we can also take the first term in (16) into
account by noting that, for vt � L, it can be considered constant,
ẅmm(vt, t) ≈ ẅ(0,0). Thus, e.g., for a simply supported beam
and zero oscillator initial conditions, we get the following ap-
proximate formula for the concentrated force acting on the beam

F(t) ≈−m0g−m0ω0vwx(0,0)sinω0t

−2m0vwxt(0,0)(1− cosω0t), vt � L. (19)
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Figure 3. Oscillator with ω0 = 200 traversing the SS beam at v = π/2.

Figures 3–5 illustrate the above-said. The concentrated
forces F(t) acting on the beam from the undamped oscillators are
depicted by the thin solid lines. Figures 3 (ω0 = 200,v = π/2)
and 4 (ω0 = 400,v = π/2) demonstrate that the magnitude of the
elastic force grows with the increase of the oscillator eigenfre-
quency. Figures 4 and 5(ω = 400,v = π) show that it is a linear
function of the oscillator velocity. Approximations of the con-
centrated force for small values of time by means of (19) are
shown in Figs. 3–5 by the dashed lines. The bold lines show
the forces acting on the beam in the case of the damped oscilla-
tors with the damping coefficients c0 = 6 (Fig. 3) and c0 = 12
(Figs. 4 and 5) (for both oscillators, damping is about 15% of
the critical damping). These figures clearly demonstrate that (i)
the high-frequency oscillations of the elastic force reduce rapidly
and (ii) the approximate equation (19) can be used to adequately
estimate upper bounds of the peak values of the elastic force.

If c1 is zero, the dynamic force does not depend on ω 0; in
this case, the inertia force cannot generally be neglected, and esti-
mates (18) and (19) are not applicable. In particular, they cannot
be applied to the case of an oscillator with zero initial conditions
entering a vibrating clamped-clamped beam. Let us show how to
estimate the concentrated interaction force without solving nu-
merically the differential equations involved for a particular case
of the problem where the clamped-clamped beam freely vibrates
at the moment when the oscillator enters the beam (no other os-
cillators on the beam). Clearly, at the initial stage of the oscillator
motion, the effect of the moving oscillator on the beam vibration
can be neglected, and we may assume that wmm(vt,t)≈ wh(vt, t),
where wh(x, t) is the solution to the homogeneous equation (1).
The latter solution is easily calculated given the initial displace-
ments w(x,0) and velocities wt (x,0) of the beam points and is
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Figure 4. Oscillator with ω0 = 400 traversing the SS beam at v = π/2.

given by

wh(x, t) =
N

∑
n=1

[
qn1 cosωnt +

qn2

ωn
sinωnt

]
ϕn(x), (20)

where ωn and ϕn(x) are eigenfrequencies and eigenfunctions of
the beam, N is the number of the series terms taken into account,
and qn1 and qn2 are the Fourier coefficients of the expansions of
the initial functions in terms of the eigenfunctions of the beam,

w(x,0) =
N

∑
n=1

qn1ϕn(x), wt (x,0) =
N

∑
n=1

qn2ϕn(x).

Substituting x = vt into (20) and differentiating the resulting
equation twice, we get the desired approximation for the concen-
trated interaction force. Figure 6 illustrates this, it shows the cal-
culated numerically force F(t) (solid line) acting on the clamped-
clamped beam from the oscillator of eigenfrequency ω 0 = 200
traversing the beam with the velocity v = π/6 and its approxima-
tion by the function−m0g−m0ẅh(vt, t) (dashed line). The beam
was assumed to vibrate at its fundamental frequency before the
oscillator entered it.

7 DEFICIENCY OF THE MOVING MASS MODEL
The moving mass model is an idealization of the moving

oscillator model obtained by assuming infinitely large stiffness of
coupling between the subsystems. However, if the beam initial
conditions are nonzero, it cannot be obtained from the moving

7 Copyright  2001 by ASME
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Figure 5. Oscillator with ω0 = 400 traversing the SS beam at v = π.

oscillator model without assuming infinitely large forces acting
on the mass, which follows from the second condition in (10).
This implies that the moving mass model is physically incorrect
if initial conditions for a simply supported beam are allowed to
be nonzero.

As shown in Section 5, the use of the moving mass model is
still justified when we need to calculate the beam displacement.
The “cost” of this model incorrectness is that it fails to accurately
calculate the concentrated force acting on the beam from the ve-
hicle and, thus, to predict stresses in the beam. Indeed, when a
vehicle with a stiff suspension enters an already vibrating bridge,
its initial conditions are generally not “in agreement” with those
of the bridge (i.e., do not satisfy (10)). As shown in Section 3,
this results in the appearance of a high-frequency component in
the dynamic interaction force. In certain circumstances, the mag-
nitude of this force may be considerable and exceed that of the in-
ertia force associated with the moving vehicle. Thus, neglecting
this force, we are not able to accurately calculate stresses in the
bridge. When using the moving mass model, the high-frequency
component of the force is missing, which implies the deficiency
of the moving mass model in that it fails to predict stresses in the
bridge.

The deficiency of the moving mass model becomes even
more evident when it is applied to solving the problem of sev-
eral vehicles passing a bridge represented by a simply supported
beam. Assuming that a “rigid” vehicle approaches the beam
moving along the rigid horizontal surface, we see that the vertical
velocity of the vehicle at x =−0 is zero. When the vehicle enters
the beam, we must admit that, in the framework of the moving
mass model, its vertical velocity at x = +0 is vwx(0,0), which
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Figure 6. Oscillator with ω0 = 200 traversing the CC beam at v = π/6.

implies that the velocity has been instantly changed, which, in
turn, suggests infinite force acting on the mass (beam).

In view of the above, it is not surprising that the multiple
moving mass problem almost has not been considered in the lit-
erature and the problem of stress calculation is not discussed
at all. Moreover, in most of publications on the moving mass
problem, only zero initial conditions for the beam are consid-
ered (e.g., Stanišić (1985) and Sadiku and Leipholz (1987)). In
Gbadeyan and Oni (1995), the governing equation is written for
the case of several moving masses, and it is stated that the method
is applicable to arbitrary initial conditions; however, by means
of the universal expedient “without loss of generality,” the anal-
ysis is reduced to one moving mass and zero initial conditions,
and no numerical results related to several masses are presented.
Moreover, the right-hand side of the governing equation in that
paper suggests that all masses enter the beam at the same mo-
ment. In Stanišić and Hardin (1969), all masses are also assumed
to enter the beam at the same moment and the initial conditions
are zero. Lee (1996) examines the case of high velocities of the
moving mass and considers the effect of the separation between
the mass and beam. At the instant of recontact in that problem,
the situation is the same as that at the moment when a moving
mass enters the already vibrating beam in the problem consid-
ered in this paper. For simplicity, the impact effect in that pa-
per is neglected and the concentrated force is assumed to have a
jump at the instant of recontact. Since the paper examines only
the beam displacement rather than stresses in the beam, such an
approach seems to be justified in view of the analysis given in
Section 5 of this paper. In several papers (Nelson and Conover,
1971; Benedetti, 1974; Rao, 2000), results of numerical exper-
iments with several moving masses are presented; however, no
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discussions are given about what happens when a mass enters the
already vibrating beam, the initial conditions are not presented,
and the problem of stress calculation is not discussed.

8 NUMERICAL EXAMPLES
In our numerical experiments, we employed the unit dimen-

sionless beam (ρ = EI = L = 1). The fundamental frequen-
cies of the simply supported and clamped-clamped dimension-
less beams are ω1 = π2 and ω1 ≈ 22.37, respectively. The nondi-
mensionalization procedure is pretty standard (Yang at al., 2000)
and is not presented here to save room. The dimensionless os-
cillator velocity is given in terms of π in order to compare it
with the “critical” velocity v = π inherent in the moving force
problem (Meirovitch, 1967). The oscillator weight was taken
equal to one; i.e., m0 = 1/g ≈ 0.1, where g is the acceleration
of gravity. All figures show the resulting concentrated force
F(t) ≡−m0g+ f (t) acting on the beam from the oscillator.

The results depicted in Figs. 1 and 2 (two-moving-oscillator
problem) correspond to zero beam initial conditions and the os-
cillator parameters ω0 = 400 and v = π/2. In all other experi-
ments with simply supported beam (Figs. 3–5), the beam initial
conditions were nonzero and the same to make it possible to ex-
amine the effect of variation of the oscillator parameters on the
magnitude of the elastic force. To avoid the danger of choosing
“unrealistic” initial conditions and the question of what initial
functions should be considered as “appropriate,” we did the fol-
lowing. First, we numerically solved the one moving oscillator
problem for the beam with zero initial conditions and the oscilla-
tor parameters ω0 = 400 and v = π/2. The functions w(x, t) and
wt(x,t) have been calculated at the moment when the oscillator
was at the right end of the beam and were taken as the initial
functions w(x,0) and wt(x,0) for all following experiments. In
the experiment with the clamped ends (Fig. 6), the beam was
assumed to vibrate at its fundamental frequency at the moment
when the oscillator entered it.

To numerically solve the moving oscillator problem, the
method described in Pesterev and Bergman (1997) (one oscil-
lator) and Pesterev et al. (2001a) (extension to the multiple mov-
ing oscillator problem) was used, which is based on the expan-
sion of the solution in the series in terms of the beam eigenfunc-
tions. The number of the series terms used in all calculations
was equal to eight, which is quite sufficient to make the results
reliable (note that the maximum oscillator eigenfrequency con-
sidered, ω0=400, is less than the seventh beam eigenfrequency
ω7 ≈ 484 of the simply supported beam).

The conventional series expansion is known to converge
poorly when applied to calculation of the higher-order derivatives
of the response. To accurately calculate the shear force distribu-
tions depicted in Fig. 2, an improved series expansion suggested
in Pesterev et al. (2001b) was employed, which makes use of
the beam static Green’s function and gives an exact value of the

shear force jump.

9 CONCLUSIONS
Asymptotic behavior of the moving oscillator problem has

been examined for large values of the spring stiffness for the gen-
eral case of nonzero beam initial conditions.

1. It has been shown that, in the case of a simply sup-
ported beam with nonzero initial conditions, the moving oscilla-
tor problem is mathematically not equivalent to the moving mass
problem in the limit of infinite spring stiffness. In the case of a
clamped beam, the two problems are equivalent only under ap-
propriate choice of the oscillator initial conditions. Nevertheless,
when the spring stiffness goes to infinity, the beam displacement
obtained by solving the moving oscillator problem tends to that
due to the moving mass. Thus, for sufficiently large spring stiff-
ness, the beam displacement is a function of the beam initial con-
ditions and the oscillator mass and velocity but is not sensitive to
the spring coefficient and to the oscillator initial conditions. The
two solutions differ by their higher-order derivatives and by the
dynamic force acting on the beam from the mass.

2. The magnitude of the high-frequency component in the
concentrated force has been shown to linearly depend on the os-
cillator eigenfrequency and velocity if the vector of the oscillator
velocity is not directed along the tangent line to the beam at its
left end. Asymptotic formulas (18) and (19) for the concentrated
force acting on a simply supported beam on the initial stage of the
oscillator motion have been derived, which provide a priori esti-
mates for the maximum magnitude of the dynamic force acting
on the beam for the damped case. Note that the high-frequency
component of the dynamic force appears not only at the moment
when the oscillator enters the beam. Clearly, such a component
appears any time when the oscillator passes a point where the
function describing the “road profile” is not smooth (the first
derivative has a jump).

3. The existence of the high-frequency component of the
interaction force in the moving oscillator problem results in a
rapidly changing “picture of stresses” in the vicinity of the os-
cillator attachment point (Fig. 2). This effect seems to consider-
ably affect the pavement wear. If so, it follows from the results
obtained that a vehicle with a softer suspension is more road-
friendly than that with a stiffer suspension. This result agrees
well with the conclusion made in the DIVINE report (1998) that
“pavement profile deteriorates more rapidly under a steel suspen-
sion than under an air suspension carrying the same load.”

4. The adequacy of the moving mass model for modeling
real vehicles and its physical incorrectness when applied to the
case of a simply supported beam with nonzero initial conditions
have been discussed. The deficiency of the model has been noted
in that it fails to predict stresses in the bridge structure.
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