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1 Introduction

One crucial component {or high-speed machining applica-
tions is the development of machine tool feed drives and motion
controls thar are capable of high-spced precision motion. At
present, most metal cuiting machine tools consist of lead-
screw/ballnut-type gear trains to convert, for each axis, the
prime mover rotary motion into the cutting tool or workpiece
linear motion. Such mechanical transmissions not only sig-
nificanily reduce the linear motion speed and the dynamic
response, but also introduce backlash, large frictional and
inertial loads, and structural flexibility. However, thesc gear
reductions do offer the advantage of isclating the prime mover
from the cutting process so that cutting forces may be ignored
under normal cutting conditions.

To increase the feedrate and the response for high-speed
precision machining, it is necessary o reduce the gear ratio,
and to ultimately use direct-drives. Direct-drive actuators can
have faster speed and dynamic responses, and eliminate gear
related problems as well, Furthermore, unique features such
as dynamic error compensation and active chatter/vibration
suppression can be readily employed by the servo control soft-
ware without the need for altering hardware. Therefore, direct
drives have good potentials for next generation high-speed
machine tool feed axes. However, the use of direct-drives in-
troduces a stability concern due to the dynamic interaction
between the cutting process and the servo drive.

Stability is a fundamental issue in studying any dynamical
system. When investigating the possibility of using direct-drive
linear moters for machine tool feed motion, the overall ma-
chining systern stability is the first issug to be addressed before
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Stability of Turning Processes with
Actively Controlled Linear Motor
Feed Drives

Using linear motors as machine tool jfeed drives has the potential of enhancing
machining performance by eliminating gear related mechanical problems and in-
ereasing speed and accuracy, but introduces a stability concern due o a strong
dynamic feedback interaction between the machining process and the drives. This
paper investigutes the stabifity aspect of this dvnamic interaction and the use of
active damping fo achieve machining stability In turning. Various necessary and
sufficient conditions for stability at all cutting speeds are derived, and have heen
used to study the effect of damping and gear reduction in system stability. The
interaction of the cutting process with the tool servo foop is seen to have significant
instability consequences in systems with small drive gear reductions. Both theoretical
stability and experimental culting results are presenied for PD and PID regulation.
Resulls show that actively conirolled linear molors can provide sufficient dyvramic
stiffness for stable turning operation.

any of the aforementioned potendals can be investigated. This
paper is mainly concerned with the machining stability problem
introduced by the dynamic interactions between the machining
process and the servo controiled direcr-drives.

Some previous use of direct drive actuators for turning has
been made in the past 25 years. In the late 1960°s, some work
on active control of the direct-drive turning process was per-
formed (Comstock et al., 1969; Nachtigal and Cook, 1970;
Nachtigal, 1972). These efforts utilized either position feed-
back or force feedback to perform cireular cutting with an
electro-hydraulic tool actuator. The results showed the signif-
icant stability improvements possible with active cutting con-

irol. Comstock’s work, however, negiected the effect of the

cutting forces on cutting tool motion, while Nachtigal’s work
essentially used a feedforward control design to match the
drive dynamics to the lathe/workpiece structure dynamics.
Mitchell and Harrison later investigated the disturbance re-
jection capabilities of the previous control schemes, and the-
oretically formulated an observer based state fecdback
controller {Mitchell and Harrison, 1874, 1977).

It is important to note that the dynamic characteristics of
direct drive actuators vary depending upon which specific type
is employed. The present use of a linear motor actuator is
motivated hy its substantial savings in weight, bulk, noise,
mainzenance, and cost potential over hydraulic systems (Bark-
man, 1980). Unlike a hydraulic actuator, a linear motor has
zero static stiffness, Active control is therefore necessary for
proper funciioning.

The remainder of this paper is organized as follows. In
Section 2, the dynarnic interactions between each of the ma-
chining system elements are formulated and the role of gear
ratio in systemn stability is discussed. In Section 3, closed loop
serve control design issues for stable machining operations are
discussed. In Section 4. a numerical simulation study is de-
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Fig. 2.2 Generalized cutting system schematic

scribed. In Section 5, a direct-drive motor experimental system
is described and experimental turning results for both stable
and unstable cutting are demonstrated. Finally, conclusions
are given in Section 6.

2 System Dynamic Model

The goal of any machining process is the removal of metal
from the workpiece such that some desired workpiece geometry
is achieved with good surface finish. Chatter instability caused
by cutting process feedback leaves ripple marks and inden-
tations on ihe workpicece surface, and may cause tool or work-
piece breakage. The conventional approach to combat charter
has been the consiruction of lathes with very high static stiff-
ness along the cutting axes, as will be discussed in Section 3.1,
In a lathe system, flexibility exists in geared drives, lathe bear-
ings, and mounting structures. Additionally, certain workpiece
geometries, such as the turning of a long slender rod, further
decrease system static stiffness. While the directly driven lathe
system does not suffer from gear flexibility and backlash, the
ditect drive (e.g., linear motor) itself becomes the most flexible
elerment in the system along its primary axis of motion. Two
possitle circular culting configurations are shown in Fig. 2.1,
Theoretical formulations will assume the radiat configuration,
although the axial formulation is essentially identical.

The machining system, which consists of the machining
process, feed drives and servo controllers, and workplece and
machine structures, may be modeled as suggested by Fig. 2.2,
The motor mounting structure and lathe/workpiece structure
account for flexibility in the machine base structures, as well
as in the workpiece itself. It should be noted that these struc-
tures are not necessarily simple spring-damper systems; rather
they are likely to be distributed systerns. By neglecting the
motor mounting structure for convenience of presentation, the
closed loop system block diagram is shown in Fig. 2.3. The
notation (-) represents a general noulinear time-varying input-
output operator. The cutting process dynamics from depth of

cutting process and
jathe/workpicce sucture

controled ool
Fig. 2.3 General feedback loop bleck diagram

cut to cutting force are denoted by G.(+), the lathe/workpiece
dynamics from force input to position cutput are denoted by
Grd-), and the diive motor dynamics from torgue input to
position output are denoted by P{-). The servo controller {in-
cludes the servo-amplifier} Ci-) produces a torque input to the
motor using motor position as its input (as opposed to tool
position). External input signal &, represents a torque dis-
turbance acting on the drive motor, while external input o,
represents a positional disturbance in the cutting depth, for
example from spindle runout or workpiece out of roundness.
Mote that in the case of a linear motion drive, the torques T,
Trerr and &y, and angular position # should instead be consid-
ered as forces and position, respectively, although such dis-
tinction is extraneous to current analysis. The units of “N**
(i.e., the gearbox reduction, either from rotary to linear, or
from linear to linear motion} are unspecified and thus one has
the freedom to interchange force and torque.

if the drive motor and cutting tool are linear systems, any
significant inertia and damping present in the cutting tool
dynamics {i.e., those drive dynamics occurring after the gear
box) may be incorporated into the drive dynamics £(-). The
typically large stiffness of the cutting tool has been neglected.
For example, assuming mass-damper structures for the drive
motor and cutting tool {eads to the following Laplace transfer
function for £(-):

8(s) 1

Trat(s) m; B,
(Jm"'ﬁi S+ Bmﬁ:n;\‘d 5

where J,,, and B, denote motor inertia and damping, and #7,
and B, similarly denote tool properties.

Three feedback loops exist in the svstem: the feed drive servo
loap, the tool-workpiece loop, and the outer loop that connects
the first two loops. The tool-workpiece loop is the traditional
machining stability loop considered in the literature {(Smith
and Tlusty, 1990; Srinivasan, 1982; Srinivasan and MNachtigal,
1977; Merritt, 19657 Gurney and Tobias; 1961). For conven-
tional machine tools where gear reduction ratio N is large, the
stability of this loop usually implies the stability of the entire
system. Provided the servo ioop is also designed stable, the

P()=P(s)= @1

Nomenciature

G -) = lathe/workpiece structure

5 = Laplace Transform variable

Operator

B, = lathe/workpiece damping J. = motor inertia Tn = drive motor torque

B, = motor damping K. = static cutting stiffness T, = uet input torque to drive

B, = tool damping K.; = dynamic cutting stiffness system

C{-) = servo controller operator K, = lathe/workpiece stiffness ¥ = tool position

deye = depth of cut m; = lathe/workpiece mass Yw = workpiece position

d., = workpiece diameter m, = tool mass ¢ = cutting overlap factor

F, = motor actuation force N = drive motor gear reduction f = drive motor angular position

F. = cutting force P(-} = effective drive system opera- T = time per workpiece revolu-
Gy = cutting process operator tor tion
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Fig. 3.1 Equivaient biock diagram to Fig. 2.3

stability of the outer loop can easily be achieved because its
loop gain, being divided by &, is small, In other words, for
sufficiently large N, the servo loop is effectively decoupled
from the tool-workpiece loop by the smali gains of the two 1/
N blocks. For high-speed machines where &V is small, or with
direct drives where N = 1, this drive-process interaction loop
must be accounted for in the system stability analysis. This
paper will focus on the stability of this process-drive feedback
loop which has not been of much consideration before.

3 Closed Loop Stability Analysis

It is reasonable to assume linear structures for the servo locp
and lathe/workpiece dynamics since such hardware is typically
linear {albeit of possibly high order). By isolating the cutting
process from the rest of the system, Fig, 2.3 can be redrawn
to give Fig. 3.1, where the notation (s) represents Laplace
transform. Both blocks are intuitively assumed stable, but the
cutting process may be nonlinear and time-varying. For an
arbitrary signal z(t), its L, signal norm is defined as

fzl:= (S z(6)? dr) 2

Now consider the cutting process {or any other process) as ali
possible stable perturbations whose L. induced system gain is
bounded by p, i.e.

3.0

1Gep(-)wl;

w Twily

{3.2)

where w(¢) is an arbitrary input signal with 0 < fwii, < + oo,
Note that for a linear time invariant system, the I, induced
system gain is simply the H. norm of the system transfer
function. Define the transfer function of the servo loop from
force input to position output as fis):

T(s):= P(s}

“TTPOICE) G-

To conclude system stability, the small-gain theorem (Desoer

and Yidyasagar, 1975) states that the system is £, stable if and

only if

= max

1
7 TUw) + G (o)
N Heo wiRe

1 . . 1
I Tjw)+ Crijw) | < ;

K

(3.4)
For sufficiently large N, condition (3.4) may be approximated
as

1
max |Gy, (Juw)l < ~
wENe ol

(3.5}

which is precisely a necessary and sufficient condition for sta-
bility of the tool-workpiece loop in Fig. 2.3. As mentioned
before, this case has been afforded considerable attention in
the literature, Condition {3.5) proves the stability argument
given in the previous section, namely that in systems with large
gear reductions, stability of the tool-workpiece loop typically
implies stability of the entire system. Condition (3.5) also con-
firms the conventional wisdom that lathes with large stiffness
{i.e. |G, {jw)| small) are desirable for system stability. Finally,
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in light of (3.4}, it is clear for large N that if the tool-workpiece
loop is unstable, the servo controller present in T(s) will not
be able to stabilize the system due to the attenuating factor 1/
N

Consider now the small & (e.g. direct drive) case. Equation
(3.4} may be used to design a stabilizing servo controller for
the machining system even if the tocl-workpiece loop is un-
stable. As a simplification, consider the case where the tooi-
workpiece loop is of sufficient stiffness so that |G, (jw)l may
be neglected (this assumption will be made for the remainder
of this section}.
Defining the dynamic servo stiffness by

1

K =min s KRS
SR FTTRY G0

Equation (3.4} may now be approximated as
NK>p 3.7

which means that the servo stiffness of the {direct) drive should
be large enough to ensure stability. One possible control goal
is therefore 1o minimize the A, norm of 7(s). It also intuitively
follows that enough damping should be present in the servo
loop to avoid any large resonant peaks, which would reduce
K. Satisfaction of condition (3.7) may be a significant chal-
lenge for ¥ = 1.

Conditions (3.4y and (3.7) imposed on the direct drive system
are rather general but also tend to be conservative since the
cutting process 15 modeled as an operator of bounded gain,
but otherwise arbitrary. Such conditions should be incorpo-
rated in the serve controller design for general purpose machine
tools, where a variety of cutting processes and cutting con-
ditions may be involved and thus are best characterized as an
unstructured perturbation to the machine. For such a case, 1t
is concluded that the dynamic servo stiffness K, should be
designed large. [t might also be noted that large dynamic servo
stiffness is of importance for good disturbance rejection per-
formance, although this issue is not covered in this paper.

In special purpose machine tool design, the cutting process
and conditions can be characterized more precisely, leading to
refined stability conditions. For turning, the cutting model may
be given by the transfer function

Fc‘ -5 -
ch(s):d_:Kc'(l —ue )= Ko (3'8)

clit

which characterizes the key primary and regenerative feedback
mechanisms in the process {Matsubara et al., 1985). The many
geometries and parameters involved in the cutting process, such
as material composition, tool rake, lead, and back angle, width
of cut, and tool nose radius, have all been lumped into the
cutting constants K. and K. The cutting process damping
{K.4$) may be absorbed into the machine tool dynamics such
that the cutting process model becomes the often used **Clas-
sical”” one, given by

Gc‘p(s):-Kc(I_Fe_”) (3.9
In real metal turning, the following constraints are placed on
the parameters in {3.9):
(/} cutting load: 0= K. < K¢ max
—dependent on workpiece material, tool condition, depth
of cut and feedrate
(2) spindle speed range: 0= Tpip S 75 Tomgy
(3) overlap factor: 0=<u=<1]
The case K.=0 represents noncutting serve motion, which
must always be designed stable in any practical cutting system
(i.e., T(s) stable). Worst case cutting conditions from a stability
point of view are represented by u=1and K. = K., where
K, max st be determined a priori based upon expected cutting
conditions. Under these constraints, it is not difficult to see
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from (3.9} that p < 2K, ynay, and therefore a sufficient condition
for system stability, according to (3.7), is that

1’\'{2}{5) 2Kf,max (310)

For the direct-drive system, this means that the servo stiffness
should be at least twice the maximum expected static cutting
stiffness.

Less conservative stability conditions may also be obtained.
The characteristic equation thai determines stability in Fig. 2.3
is

Afs)=1 +$ T($)Gp(8) + G (5)Gop(5) =0 (3.11)

Recalling that the tool-workpiece loop is here neglected, and
applying the cutting process model {3.9), the characteristic
equation may be rearranged into the form

KC M

R T
A =1-pe™™ — =0 (3.12)

L+ ;\;’M T(s)

Ifl1+ Kc.,,m,(]'"(Lt:}/j'\«’2 is stable (i.e., the cutting system is closed
loop stable in the absence of cutting process regeneration), the
srmall gain theerem is again applicable so that the closed loop
systemn (with cutting regeneration) is stable if and only if

KL‘ mur T(Jw]

I
® |—

Kf,ﬂ’h’}_l‘ . (3. 13]
1+ -7\}5“ T}

Equation (3.13)isequivalent to (see Appendix A for derivation}

K. JHrax 1 23 f
T + > 3 3.14
Nz () ’u; Py ( )

Conditions (3.10) and (3.14) have graphical interpretations
in the complex plane, as iHustrated in Fig, 3.2, Condition (3.10)
restricts Kclm,(T(,r‘m)/j\f2 to an origin centered circle of radius
1/2. On the other hand, condition (3.14) requires the exclusion
of Kcl,,,,,Jr’}"(,im]/}\f2 from a circular area in the complex plane,
the center and radius depending on g. For & = 1, this exclusion
zone becomes the half plane to the right of e = — 1/2. At
the other limiting case of p = 0, (3.14) may be interpreted as
nonencirclement of the — 1 + 0/ peint on the Nyquist piot of
Ky mazTUw)/ N 1t is clear that {3,10) is much more conservative
than {3.14).

The assumption that 1 + Kc.,,,,‘.x]'"{s}/.f\r’2 be stable would scem
to hamper the utility of condition (3.14) since there appears
to be no guarantee that the assumption will hold upon com-
pletion of a design based on (3 14}. However, since T(s) must
be stable and since K.,V is stable, the Nyquist stability
technique states that 1+ K, mxT(s}/Nz is stable if and only if
the Nyquist plot of K, .. T(jw)/N° does not encircle the — 1 +0j
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point. When performing design then, the simultaneous satis-
faction on Fig. 3.2 of condition (3.14) along mth nonengir-
clement of the — 140/ point by X, m,T{;m)/N ensures the
stability of the complete lathe system.

A similar condition to {3.14) has previously been presented
for stability of the tool-workpigce loop when neglecting the
servo dynamics (Merritt, 1965). Finally, note that all of the
stability conditions presented in this section determine stability
without explicit nse of spindle speed.

3.1 Stability Analysis for Linear Motor Lathe Drive-PID
Control. Beyond the presented conditions in the previous
section, further stability insight may be obtained by assuming
mode! forms for every block in the system of Fig, 2.3, If
structure flexibilities in the lathe/workpiece are neglected (i.e.,
G, (s}=0), tool position may be treated as cutting depth. Ad-
ditionally, the direct drive motor will be modeled as a linear
mass-damper system, with =1, and with the cutting process
damping incorporated into the motor damping. For the linear
motor, the drive output torque 7, becomes a force, here de-
noted by F,. The PID control law is given by:

F‘,=er{f)+Kdé(f)+K; E e{r}dr (3.15)

vi

where the error signal is defined as e(f): = y..() — ¥{#) with
Frer(t) being the desired tool position. First consider the case
with X; = 0 {i.e., P control}. The closed loop transfer func-
tion is given as

dmg_ KéS'-FKP
drey M5+ (Kg+ Kea+ B)s+ K+ Ko— uKee™™

Equation (3.16) shows that PD control physically represents
the mechanical addition of a spring and damper to the linear
maotor system. This is analogous to a passive lathe with 2nd
order structure dynamics in either the cutting tool or work-
piece, which has a characteristic equation of identical form.
The Nyquist stability technique has been applied by ar-
ranging the characteristic equation of (3.16} into the form:

Ke lowe ™
m,5;+2§'w,,5‘+mi

(3.16}

3.17)

where
Kp= m,w,,, Ky=2muw, - K — B, 0=p=1,

Figure 3.3 shows a nondimensional, characteristically lobed
stability chart for several damping ratios and with p = |,
obtained from (3.17). Recall that the case p = | represents
worst case stability. Each curve is lower bounded by a non-
dimensional cutting stiffness value below which operation is
stable at all spindle speeds. This value is known as the asymp-
totic borderline of stability, and its behavior as a function of
systemn parameters is given by Eq. {3.18) below (see Appendix
B for derivation).
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The asymptotic X, monotenically increases with {, and mon-
otonically decreases with u, as can be verified. Note that the
nondimensional cutting stiffness Jx’c/.nmmf1 is equivalent to K./
K, for the active control case and to K./K; for the passive
lathe. Equation {3.10) illustrated the importance of dynamic
stiffness to stability, and in deriving (3.18}, dynamic stiffness
has been quantified in terms of static stiffness (i.e., K, or K))
and damping ratio by assuming 2nd order models for the servo
loop (or the passive lathe).

A passive lathe typically exhibits {=0.05 (Merritt, 1965;
Nachtigal, 1972) and a relatively high static stiffness for the
structure dynamics (excluding the workpiece, which is not con-
sidered here in either the active control or passive case). Active
control with the lincar motor achieves greater damping, but
lower static stiffness, both being limited by available motor
force. Thus for a given g, the asymptotic stability borderline
will increase with the increase in damping, but then decrease
with the reduction in stiffness. The proposed regulating con-
troller achieves a ner positive asymptotic stability gain over
the passive lathe only if damping can be increased sufficiently
to compensate for the decreased static stiffness.

It should be noted that while the above analysis utilizes
damping and static stiffness, the root of the explanation stems
from dynamic stiffness. Recall that dynamic stiffness has been
defined as the inverse of the maximum magnitude of a systems
frequency response. The frequency response plot for the lightly
damped passive lathe will have a large resonant peak near its
natura! frequency, thus reducing its dynamic stiffness. The
frequency response of the better damped active control case
does not contain such a peak. Therefore, even though its fre-
guency response plot may be higher than that of the passive
lathe at most frequencies {j.e.,, other than near the passive
lathes resonant peak), its dynamic stiffness can still be com-
parable with that of the passive lathe. According to (3.7), it
is by this mechanism that direct drive cutting may be com-
petitive with the passive lathe from a stability standpoint.

The only adjustable parameter in the passive system is the
lathe spindle speed, and one approach has been to set this
spindle speed near the first natural frequency of the lathe/
workpiece structure (Merritt, 1965; Smith and Tlusty, 1990).
This corresponds to operation in the region heneath the lst
peak of the ¢ = 0.03 stability curve in Fig. 3.3, Notice that
for this curve, the ratio of the st peak nondimensional cutting
stiffness to the asymptotic stability borderline is 7.0. Active
PD control ailows for the design of ¢ and w,. The ratio of the
15t peak cutting stiffness multiplier to the asymptotic stability
borderline for the { = 0.8,0.9, and 1.0 curves is approximately
1.3 in all three cases. Thus, for the second order system at
these higher damping ratios, utilization of the larger stability
region beneath the 1st peak gives little additional benefit over
a conservative design using the asymptotic stability value, which
also makes system stability essentially insensitive to spindle
speed.

To increase the static stiffness for the active control case,
integral control may be added as an extension of the FD con-
trol. With P1D control, the characteristic equation of (3.17)
becomes

+_& s(1—pe™™) ~
m, (s+a) (& + 2bw,S +wi)

0 (3.19

where
Ky=m2twsa+ wa) K= m,wia
Kd_—" m;(zfﬁ"n +a) - Km‘_“ Br-

A Nyguist stability analysis reveals that the additional pole-
zero combination of (3.19) quantitatively effects the PD
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Fig. 2.4 Gain in PiD asymptotic siability borderline over PO control,
p=1

asymptotic stability borderline as a scalar gain. The value of
this gain depends on the selected damping ratio and on the
ratio of the additional pole location to the natural frequency,
as shown in Fig. 3.4. Note that with g = 0, (3.19) reduces to
(3.17) and the gain of Fig. 3.4 becomes unity. The asymptotic
stability borderline for PID control is seen greater than or
equal to that of P control. Theoretically speaking, the static
stiffness by PID control should be infinite.

4 Exampie Lathe System: Theoretical Stability and
Simulation Result

A 2nd order lathe/workpisce structure representing the lst
vibratory mode was assumed and the following realistic system
parameters used to analyze system performance {Thompson,
1986):

=164 kg #,=1810 N-s/m
K,=2.0B6 N/m m=95kg p=0.945

The PID controller was designed for the rigid tathe case given
by BEq. (3.19): w, = 295 rad/s, { = 0.544, and @ = 93.3 rad/
s. Thus: K, = 1.1133e6, Ky = 3.9404e3, K, = 7.7264e7. Figure
4.1 shows theoretical stability limits for the following cases
using the above given parameters:

case 1: passive lathe {fixed tool, 2nd order lathe flexibility)
case 2: PID contro} without the lathe dynamics
case 3: PID control with 2nd order lathe dynamics

As predicted from Figs. 3.3 and 3.4, case 2 shows a greater
stability limit than case 1 for spindle speeds up to 3500 rpm.
Beyond this spindle speed, higher vibratory modes for the
lathe/workpiece should be considered before forming a con-
clusion. Case 3 shows that the introduction of lathe dynamics
into the closed loop system reduces the stability margin from
that of case 2 at all spindle speeds. However, this reduced
stability margin is stil} greater than the passive lathe case. Tt
is seen from the figure that at spindle speeds above 1600 rpm,
the two active control cases give similar stability litnits, 1m-
plying that Jathe dynamics may be neglected.

The natural frequency of the example passive lathe is 1054
rpm, and as stated in Section 3.1 and also apparent from Fig,
4.1, it is desirable to maich the spindle speed of the passive
system to this natural frequency in order to exploit the parrow
pand stability peak at this frequency. In comparison, the case
3 active control offers several wide, uniformly high stability
limit bands between approximately 300 and 1054 rpm, and
another usable stable region above 1600 rpm.

In an actual lathe system, both primary and regenerative
cutting force is always positive (i.e., repelling the tool from
the workpiece). With negative cutting depth, the cutting force
becomes zero. The cutting process model (3.9) used in the
determination of the theoretical stability limits of Fig. 4.1 does
not account for this nonlinearity. To demonstrate this nonlin-
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Table 4.2 Theoretical and simulated stability limits for the example
latha system al 800 rpm

Kc.muu {N/mm}

passive lathe | PID, flexibie lathe| PIEY, Tigid lathe
theoregical 500 1900 2150

sarriuclated 970 2800 3100

ear effect, simulation was performed with a discrete domain
controller equivalent {see Eq. 5.1) with a sampling rate of 1000
Hz. The results showed the nonlinearity to have a stabilizing
effect for both active and passive systems at all spindle speeds;
shown in Table 4.2 for an 800 rpm spindle speed and 2 mm
nominal cutting depth. Therefore, it should be safe to neglect
this nonlinearity in the PI1D controller design.

§ Experimental Hardware and Sctup

The primary control goal is to track the depth of cut to the
specified surface profile. In circular cutting, this problem re-
duces (o regulation since the desired shape is a constant radius.
There are significant instrumentation difficulties in obtaining
the cutting depth for output feedback. Tool position on the
other hand is easy to measure using, for example, a linear
digital encoder mounted to the linear motor. In the absence
of lathe/workpiece structure flexibility, tool position is depth
of cut. Even with such flexibility, tool position is still a close
approximation of cutting depth since the lathe/workpiece typ-
ically has large static stitfniess. Tool position will therefore be
regulaied instead of cutting depth. Because proportional-in-
tegral-derivative (PID) control Ras an obvious analogy to the
passive system, it has been considered here for regulation as
a first approach to active control.

The lincar motor assembly is comprised of dual permanent
magnet brushed motors with a combined output of 535 N rms
continuous force, and 1605 N peak force. Digital implemen-
tation of the continuous PID control law was achieved using
a first order forward difference for the derivative term, where
h denotes the sampling period:

'
uth =Kpethy+k, LD e Shein
i=1

The experimental cutting setup is depicted in Fig. 5.1, and a
photograph of the actual system shown in Fig, 5.2, Tool po-
sition was measured with an optical encoder of 2 um resolution
mounted to the linear motor slide. The active control was
implemented digitally by floating point arithmetic using a dig-
ital signal processor (TMS320C30),

For system identification purposes under noncutting comn-
ditions, an external disturbance o, representing the cutting force
wasintroduced as a voltage input to the power amplifier. Figure
5.3 shows the experimental servo loop frequency response v,/
d, for a particular PD control law. It is observed that the
stiffness (i.e., inverse of frequency response magnitude) in-
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creases as frequency increases and a ditch of stiffness at the
resonant frequency does not exist because of the imposed large
active damping. The experimental data fit well to a 2nd order
transfer function:

5

—'0 04095 11019
d . £+503.8 s+52171.9

(m/N} (5.2)

Note that the zero may be reasonably neglected. Equating the
characteristic equatiens of (3.16) and (5.2) {i.e., under non-
cutting conditions, K, = Ky = 0), the following effective
system parameters have been determined:
m,=19.5 kg B, =2007 N-s5/m

Figure 5.4 shows the experimentally obtained achievable
static stiffness data as a function of the digital control sample
rate. For a given damping ratio, peak stiffness occurs in the
range of 1500 to 2000 Hz. A sample rate of 1800 Hz has

therefore been chosen for all control implementation. Some
perspective may now be made on the utility of the motor as a
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Table 5.5 Minimum required stalic stitfness for PD-control cutling sta-
bility of difterent materials

Materizl Specific encrgy * Kewal ** i, roquired stacic stiffness:
uy dor=2mm eqn, (3.10) cqn, (3.18)
(approximae) u=1, £=1
{Nim?) LT (N/m) {Nfm}
aluminum alloy 0.7 x 108 070 x 10 1.40 x 106 018 x I8
free-machining brass 1.06 x 107 §.06 1 10% 212 x 1 027 x 108
mild steel (AIST 1018} 20 x 107 20 % o8 420 % 108 153 x 16
suindess sizel (416F) 276 & 1F 116 & 108 552 x 1¢8 065 = 108
high-temp. alleys 459G x 109 450 ¢ 1¥ 9.30 % 10% 123x 108

[MHior Co based)

* Spesific encrgy data taken from (Shaw. 1984}, e2cops 416F stainkess smed, which was £x penmentatty denrmined.
T Ko = (U0 % deud/Z

feed drive under PD control. Tabie 5.5 gives the minimum
static stiffness requirements for stability with a particular set
of cutting coenditions, as independently determined by Eqgs.
{3.10) and (3.18). When interpreting the application of {3.10),
static stiffness may be treated equivalent to dynamic stiffness
if it is assumed that the servo loop has no resonant peaks in
its frequency response. Comparison with Fig. 5.4 shows the
minimum required stiffness values to fall below the maximum
achievable stiffness of the hardware at hand (=6.0 x 10° N/
mlor{ = 1.0). Itis interesting to note that under the specified
conditions, sufficient only condition (3.10) computes a re-
quired stiffness value 8§ times larger than that of necessary and
sufficient condition (3.18).

Cutting tool regulation was alternately performed in both
the axial and radial directions of motion, with the lathe drive
used to feed the workpiece past the tool. In order 1o simplify
analysis of the contrel system performance, it is desirable to
minimize variation in the cutting process during experimental
testing. The axial cutting configuration, while not actively ef-
fecting radial surface finish, exactly imposes ¢ = | regardless
of feedrate or cutting insert geometry. It thus offers analysis
advantages over the radial configuration, for which u is typ-
ically uncertain. Except where otherwise noted, all experi-
mental cutting (axial and radial) was performed with the
following commen conditions:

material: 416F stainless steel, free machining
cutting velocity = 2 m/s

tool side rake = + 5 deg

workpiece chucked one end only

cutting insert: Carboioy TPG 322

motor static stiffness = m,-w?=1e6 N/m
tool back rake = 0 deg

effective workpiece length ~ 88 mm

The static cutting stiffness was estimated as a function of
cutting velocity by a series of dynamometer tests (not shown).
For simplicity, the dynamic cutting stiffness, K., was assumed
to be zero. For a cutting velocity of 2 m/s, the following
material cutting stiffness was calculated for the axial direction:
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Fig. 5.6 Stable cutting too! response for two damping ratios, PD con-
irol, feedrate = 0.031 mmirev, spindle speed = 1100 rpm, d,,, = 2.03
mm

axial direction cutting force

=2.76e6 N/m

K fed .
i feed per revolution

PID control gains may now be chosen according 10 (3.1% to

achieve desired closed loop properties. Spindle speed is set so

that the cutting velocity (v) is at the specified value of 2 mss

at the radial center of the cut:

cutting velocity B v &0

spindle speed = (rpm) {5.3)

workpiece radius  d,—d., 2x
3

For d,, relatively larger than .. the effect of cutiing velocity
variation along the (radial axis) edge of the tool is negligible
since the cutting velocity profile is essentially constant. How-
ever, as workpiece diameter is reduced, large variation exists
in the velocity profile (e.g., for the worst case of d. = 2d.,,
the velocity profile varies from 2v at the radially outermost
point to zero at the innermost point!). Therefore, the above
computed cutting stiffnesses lose accuracy. Although this in-
herent difficulty cannot easily be remedied, it should be re-
membered when interpreting cxperirental resulis.

3.1 PDand PID Control—Axial Configuration Regulation
Results.  Figure 3.6 shows (ool vibration under stable cutting
for two different tool damping ratios, in which the static tool
displacement has been removed from the figure. The higher
damped case has an rms vibration level § times less than that
of the more lightly damped case, This is due to the fact that
increasing the damping increases the minimum value of dy-
namic stiffness. The rms value has been calculated after re-
moval of the sighali DC component (as will be the case

. throughout the remainder of this paper), Note that the squared

shape of the { = 1.1 response is caused by the finite resolution
of the position encoder.
The following control cases will now be investigated:

Case A: PD control, feedrate=0.1 mmrev, F=1.1

Case B: PD control, feedrate=0.2 mm/rev, =1.1

Case C: PD control, feedrate =0.1 mm/rev, {=0.28

Case D: PID control, feedrate = 0.1 mm/srev, {=1,1, g is de-

tailed in results

Figure 5.7 illustrates the chatter control capabilities of acrive
damping. While Case A shows stahle cutting, the lighter
damped Case C displays chatter, Figure 5.8 shows Case C over
alonger time window. The modulated growth of cutting chatter
is here more readily visible, Case B demonstrates the cffect of
doubling the feedrate over that of Case A, generating a three
fold increase in tool rms vibration. Power spectral densities
are shown in Fig. 5.9. The strong power components at the
spindle frequency and twice this frequency suggests the pres-
ence of spindle runout or workpiece out-of-roundness. [n ad-
dition, the unstable Case C displays a highly dominating power
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component at the chatter frequency, and lesser peaks at integer
multiples of this frequency.

Figure 5.10 shows rms tool vibration as a function of spindle
speed for Cases A, C, and D. This graph is qualitatively related
io the stability chart of Fig. 3.3 in that teol vibration is sensitive
to spindle speed, and more so for the lower damping ratio
Case €. Equation (3.18} predicts the following asymptotic
limits on X, for stable (PD) cutting with m,-w;=1e6 N/m:

r=1.1-K,<4.626 N/m [=0.28=K.<0.72¢6 N/m

Since K, o Was estimated at 2.76e6 N/m, it is 1o be expected
that the lower damping Case C chatters at certain spindle
speeds, while the more highly damped Case A (and I3} does
not. Additionally, it is seen that at most spindle speeds, the
PID Case D has less vibration than the related PD Case A.

If one follows the heuristic argument that operating with a
larger stability margin leads to less tool vibration, one would
expect the vibration sensitivity to spindle speed for Case C to
be reduced for speed ratios greater than about 1.1 {see Fig.
3.3). However, Case C displays continued vibration variation
in the speed range of 1.2 to 1.4, This may be attributed (o
lathe/workpiece dynamics, as suggested by Fig. 4.1, and also
due to the fact that relatively small workpiece diameters are
necessary to achieve this speed ratio, and thus cutting velocity
is no longer constant across the tool face (as discussed in
Section 5).

Finally, as a means of model verification, the dominant
chatter frequency of Case C for various spindle speeds is com-
pared with the predicted theoretical values, shown in Fig. 5.11.
Theoretical values were obtained as the phase-crossover fre-
quency on the Nyquist chart of Eq. (3.17), and thus correspond
to a system operating at the lobed stability limit. Even though
the K. value of the lobed limit will not generally equal the
actual value of X, the limiting case provides a good estimate
since chatter frequency is relatively insensitive to changes in
K.. The experimental data is best predicted by a theoretical
model with stiffness value of 6e5 N/m, rather than with the
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actual servo stiffness of le6 N/m. One possible explanation
for this lies in the lathe/workpiece flexibility previously ne-
glected by (3.17), which will reduce the effective stiffness of
the system.

£ PD and PID Control—Radial Configuration Regula-
(ion Results. As previously stated, the radial cutting config-
uration directly affects final surface finish, and is thus of
primary interest for industrial applications. Figure 5.12 shows
the cutting time response for three different integral mode
valuesof “'a’'. Witha = 0(i.e., PD control), the tool undergoes
a steady-state static deflection eguivalent to 4.7 percent of the
nominal cutting depth, The other two cases, having the integral
mode active, display zero steady-state deflection. As expected,
the integral mode of control is desirable for precision ma-
chining. It is also seen that rms taol vibration is greatest for
the @ — 0 case, although a comparable vibration level exists
for ¢ = 100, In practice, the integral mode gain (i.e., “a"’)
should not be made too large if robustness is to be maintained,
and to avoid integral windup.
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6 Conclusion

The purpose of this paper was 10 investigate active control
of direct drive linear motors for the turning process. The fol-
lowing conclusions can be drawn from this study: (/) A cutting
system dynamic model, comprised of three feedback loops,
has been developed for stability analysis purposes. {ii) The
interaction of the cutting process with the tool servo loop has
been shown to have significant instability consequences in sys-
temns with small drive gear reductions. (#) Various necessary
and sufficient conditions for stability have been derived and
have been used to study the effect of damping and gear re-
duction in system stability. (fv) The stability advantage of the
active hnear motor cutting system stems from its ability to
increase system damping while still maintaining sufficient static
stiffness.

Experimental results bave shown the promising potential of
linear motors as feed drives in the turning process. The specific
lincar motor direct-drive used in this research is clearly able
to maintain stability in the servo/cutting process loop, and it
may be expected that such capabilities are reflective of this
type of actuator in general. The present experimental choice
for closed loop static stiffness of le6 N/m is rather conserv-
ative. Significant margin exists in the hardware to increase this
stiffness value if cutting conditions so demand. In addition,
more advanced servo controllers than the PID type may be
able to achieve even higher stiffness capabilities.

Stability 3s thus not a problematic issue in using linear motor
drives for turning, and attention may now be turned to the
yimportant performance issues of disturbance rejection and tra-
jectory tracking. Such issues are of industrial significance in
the production of precision machined parts, and it is in these
areas that direct drives will really be able to exhibit their ad-
vantages and worth.
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’ APPENDIX A

Derivation of Eq. (3.14)

Let the complex number K. T(jw):=a¢ + jb. Then (3.13)
vields the condition

s 1 2
(az_‘_ﬁ;}];z{_[(1_1_“)24_'52]”", O=p=t (a1
I
= wed+ B < 1+ 2a+ o+ 87 (A2}
1 2a+d
= @B+ la 720
2 3 2 ! ! 2
=N o+ 3| "+ BT+~ 2 >0
2 1—pt | 1-g
) 1 1. .
. [a% 2 h+5_>[ “ 2}2 (A.3)
l—p“ I—p

from which (3.14) immediateiy {ollows.
APPENDIX B

Derivation of Eq. (3.18)
Arrange the characteristic equation of (3.17) into the form

K,

e
1y

1+ ):I+G{S)e_”=0 (B.1)

£+ 2iwas+ (wﬁ-f——r
"y

Since both G{s) and e~ ™ and e~ ™ are stable transfer functions,
the small gain theorem gives the necessary and sufficient sta-
bility condition that the Joop gain be less than 1. If this con-
dition is not met, then there exists some 7 (i.e., spindle speed)
which makes the system unstable. Since the delay term always
has magnitude 1, the condition reduces to 1G{jw}! <1, The
second order system G(s) has maximum magnitude

_ X,
#’Kc t wi':wf,-i——c

1
— e i T, o,
oo o 2 Fopn

If7T > 1/\/5, the maximurmn magnitude is gKf/mEf,, which
may be shown less than the lower damped case. Assume that
the critical X, value gives the lower damping ratio case, and
equate the transfer function maximum magnitude to unity:
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TYLT 2= — .___..1—
oS- _chf.Zm'rw,, Iy =¥ E“—l“ = ¢ W q—}-..
= =

" Kl:' L 1'"-
er After substantial manipulation, one obtains the following: V2 wnt Ko/ 2
FoR WK = dmetr K+ dmiet T = 1) =0 (B.2) Substituting {3.18) into the above yields the condition
ol 2 2 b 2 42 2
m The quadratic formula shows that (B.2} always has real roots Q0= et =207 24w + (- Y (B.3)

in the g range of interest (0 = u = 1). Manipulation of the larger  For0=spu =<1, the left-hand side of {B.3)is always = 2{72, which
of the two roots vields Eq. {3.18}. It remains to show valid 4t in turn is always less than or equal to the right-hand side. Thus,

Tow the critical K, value the assumption the inequality holds, and the assumption is valid.
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