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and sufficient conditions on the order of the plant, reference model, and controller

Department of Mechanical and

industrial Engineering,

University of 1llineis at Yrbana-Champaign,
Urbana. IL 61801

are obtained for the existence of causal and stabilizing exact model matching so-
iutions. The resuits are applied to robust repetitive coniraller design, in which a
delayed feedback is introduced in the reperitive controller for rejecting periodic
disturbances while simultaneously achieving input-output model matching. Fur-

thermore, the 2-D model matching method also renders computationally efficient
solutions. Also addressed are some subtle points on the selection of a low-pass filter
required for robust stability. Finally, the approach is experimentally applied Jor
turning noncircular shapes.

1 Introduction

Exact model matching control is attractive as a means of
performance design. One chooses a reference model that meets
specified transient and steady-state specifications, and then
determines a controller which matches the system closed locp
transfer function to that of the reference model. When the
plant, reference model, and controller are all represented by
linear rational transfer functions, the problem is called that
of 1-D model matching, and is currently well understood (Ku-
cera, 1979). Model matching design when the plant is time-
delayed does not conform to the 1-D theory as the plant is
now of infinite order. However, it is often still desirable to
choose a rational reference model so that lumped linear system
theory may be applied in performance evaluation. Such a prob-
lem falls under the category of 2-D model matching.

As it pertains to delay-differential systems, the most general
form of the 2-D modet matching problem allows the plant,
controiler, and reference model to all be represented by rational
mappings in two operators: the Laplace differential operator
s, and the Laplace delay operator ¢ ™. Eising and Emre (197%)
investigated this problem in the multivariable case and pre-
sented some possible solutions utilizing a so called generalized
dynamic cover. Sebek (1983, 1985) determined necessary and
sufficient conditions for solution existence under the restriction
that the plant be strictly causal. Johansson {1986) formulated
a direct adaptive control scheme for the 2-D probiem, but did
not further address solution existence properties. This paper
is concerned with a special case of the 2-D model matching
control problem where the reference model is restricted to being
a rational transfer function, and the plant belongs to the class
of single-input single-output systems represented by
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yis) B{s}
u(s) Ay(s) +Ax(s)e™™

The plant class (1) is directly pertinent to machining systems
with regenerative feedback {Merritt, 1965). Such a plant class
may also be obtained when designing repetitive controllers. In
this case, one approach is to form an augmented open loop
system as the series connection of the plant and a repetitive
signal generator. The basic transfer function of said generater
is of form 1/(1 — e~ ™), and thus the resulting augmented system
is of form (1), Hara et al. (1988) presented sufficient conditions
for the stability of repetitive control systems in the continuous-
time domain. It will be shown in this paper that both input-
output exact model matching and repetirive disturbance re-
jection can be simultaneously met by solving a corresponding
2-D model matching problem, with the resulting controller
being computationally efficient. It will also be shown that for
certain cases, the repetitive controller does not offer better
repetitive disturbance rejection performance than integral con-
trol.

The ability to obtain a rational closed loop system starting
from a distributed open-loop system motivates the present use
of the 2-D model matching control. From a design point of
view, it is a standard matter to choose a rational reference
model to meet a wide range of performance requirements by
applying lumped linear system theory. Additionally, not all
performance specifications need be met by the model matching
controller alone; an outer contrel loop is easily designed using
conventional techniques once the closed-loop system is of
{umped rational form. I[n this paper, the existence of causal
stabilizing controilers for proper and strictly proper plants will
be given by use of the polynomial appreach. Since the existence
conditions are described in the system polynomial orders, their
evaluation is more straightforward than previous works.

The remainder of this paper is organized as follows. Section
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2 gives the polynomial formulation for the 2-D model matching
problem. Section 3 presents conditions under which there exists
a causal and stabilizing controller. Application to repetitive
control is shown in Section 4, with continuous-time domain
examples studied in Section 5, and discrete-time domain ex-
amples studied in Section 6. Section 7 presents experimental
results for the turning of noncircular shapes using the presented
2-D controller for tool metion control. Finally, conclusions
are presented in Section 8,

2 Problem Formulation

Consider a single-input single-cutput plant with transfer
function given by (1). The objective is to design a distributed
feedback and feed-forward controller of proposed form

Ris)u{s)= —[Si(s)+ S2(s)e” "Iy (s) + T(s)u (s} (2}

where R(s), 5i(s), 5:(s), and T{s) are polynomiais, such that
the resulting closed-loop system matches some desired rational
transfer function '

ym(s) - Bm (5) AO(SJ
(3) Ap(s) Agls)

The cancelzbie ratio of 4, polynomials represent the fact that
a non-minimal reference model may be required if a model
matching solution is to exist. Henceforth, the Laplace notation
(s) will be dropped. Substituting (2) into (1), the closed-loop
system becomes

[(Ar+A; e ™IR+B(S,+ 5, e ™) ly=BTu, @

Factor B = B’ B™, where B’ contains all the stable (cancelable)
roots of B, and B~ contains all the unstable (uncancelable)
roots of B. Note that it may not be desirable 10 cancel roots
with smail negative real parts or low damping ratios, and thus
technicaily stable roots may not necessarily be cancelable from
a practical viewpoint, Now, 2’ is 1o be canceled in (4), so it
is required that 8° be a factor of R. Furthermore, it may be
desired to incorporate asymptotic disturbance rejection into
the controller design via the internal model principie. Let the
disturbance signal have a rational Laplace transform of form
X{(5)/D(s) where X(s) and D(s) are both constant coefficient
polynomials in 5. It is then required that D{s) also be a factor
of R(s). Thus:

(3)

R=B"DR’ (5)

which, after the stable pole-zero canceilation of B', reduces
the closed-loop system (4) to

(A, +4: e )R D+B (§;+S: e ™Yly=8"Tu. (6
The reference model (3) may be rewritten as
ApAy = BnAgu. (7}

and then the corresponding sides of (6) and (7) equated. Noting
that the delay terms in (6} must additively cancel, the following
three equations are obtained:

ADR' + B S, = Andg €]
A;DR +B~5,=0 (9
B~ T=B,4, (10}

Equations (8), (%), and (10} will henceforth be considered the
general formulation of the 2-D model matching design being
investigated here, Note that one can always choose D = 1,
which would not design for any disturbance rejection prop-
erties. A causal and stabilizing solution to these three equations
thus solves the proposed model matching problem. If these
equations are solvable, then solutions to (9) and (10} may be
found via simple polynomial division. One solution technique
for the Diophantine Eq. {8) is polynomial coefficient matching,
which may be posed as a linear set of algebraic equations by
use of the Sylvester matrix (Astrom, 1990),

The 2-D medel matching controiler consists of feedback and

Journal of Dynamic Systems, Measurement, and Control

feedforward compensators. The feedback part is required to
move any unstable open-loop plant poies into the stable region.
Feedback can also be used to move already stabie open-loop
poles te more desirable locations. The controller obtained by
solving the above fermulation of the 2-D model matching
problem is such that the feedback compensator places all open-
loop plant poies to exactly match the reference model poles.
The feedforward compensator adjusts only the stable plant
zeros. An infinite number of possibilities actually exist for
controller designs that meet the model matching criteria. Tt is
also possible, for exampie, to design a feedback controller to
arbitrarily place the open loop plant pales into the stable s-
plane region, and then use feedforward compensation to locate
these now stable poles to the desired reference model maiching
locations using pole-zero cancellation. Such controilers are
casily obtained by modifying the reference model poles to
match such arbitrary stabie locations, and then adjusting the
feedforward compensator to achieve the necessary pole-zero
cancellation.

3 Stabilizing and Causal Solutions

The existence of the solution to the proposed model matching
problem is based upon the solvability of the polynomial Dic-
phantine equation. Two well-known preliminary results are
needed, here given without proof:

Lemma 3.1: (Kucera, 1979) The Diophantine equation 4X
+ BY = C, where A, B, and C are known polynomials with
real coefficients has a solution (X, ¥)if and oniy if the greatest
common factor of 4 and B divides C.

Lemma 3.2: (Kucera, 1979) If a solution exists to the Dio-

phantine equation AX + BY = C, then there exists a solution
such that deg{X} <« deg(B), and also a {possibly different)
solution such that deg(¥) < deg{A).
Since the resulting closed-loop systemn is to exactly match (7)
after a stable pole-zero cancellation of the factor B', it is clearly
necessary and sufficient for closed-loop stability that 4,, and
Ag be chosen as stable polynomials. A stabilizing solution thus
refers to a solution [R{s}, Si(s), S:(s), T(s)] of the form (2)
which solves (8}, (9), and (10} under the constraint that A,
and Ag be stable polynomiais.

Theorem 3.3: A stabilizing solution to {8} exists if and only
if 87 and A,D are factor coprime.

Proof: Immediately follows from Lemma (3.1).

Theorem 3.4: If a stabilizing to (8) exists, then a stabilizing
solution to {(9) exists if and only if B™ is a factor of A,.

Proof: Equation (9) gives §; = —{A.DR)/B™. Since DR’
and B~ are factor coprime by Theorem 3.3, B~ must be a
factor of A,.

Theorem 3.5: A stabilizing solution to {10) exists if and only
if B™ is a factor of B,,.

Proof: Equation (1)) gives T = B,A4,/8" . Since A, is stable,
B~ must be a factor of B,,.

Necessary and sufficient conditions for the existence of a
stabilizing solution to the model matching problem have now
been given. However, such a solution (controller} need not be
causal. Causality is a necessary property of a controller from
a practical point of view. In the continuous-time domain, im-
plementation of a noncausal controller requires signal deriv-
atives. In discrete-time, noncausal implementation requires
signal preview. In either case, such information is likely un-
available. Conditions for the existence of a causal (imple-
mentabie) solution to the 2-D model matching problem will
be developed next.

Fact 3.6: (Sebek, 1983} A plant of the form (1), with 7

=
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0, is causal if and only if deg{A4,} = deg(B) and deg(A4,) =
deg{A4,), and strictly causal if deg{4,) > deg(®) and deg(4))
= deg(Ad,). )

Fact 3.7: (Sebek, 1983) A controller of the form (2), with 7
= 0, is causal if and only if deg{R) = deg(§)), deg(R) =
deg(S;), and deg(R) = deg(D.

Theorem 3.8: Given a causal plant, if a solution exists to
(8) and (10}, then a causal solution exists such that deg(R) =
deg(s)), and deg(R) = deg(D if '

I. deg{Ag}=2 deg(A,) — deg(A,,) - deg(B ")+ deg(D) - §

where & equals 1 for a strictly causal plant, and 0 for a
praper piant

2, degl{An) — deg(B,,) = deg(A,} - deg(B)

Proof: Equation {8} gives DR’ + B~ 5, = A,,4,. Equating
the degree of each side, one obtains

deg(4\DR’ + B~ S))=deg(A,,) + deg(A,) {1

Also, direct expansion of 4, DR’ + B~ S, gives

deg(4,.DR "+ B~ 5;) =max|[deg({A4 ) + deg(D)
+deg(R )], [deg(B7)+deg(S)]) (12)
Lemma 3.2 allows the choice deg(S,)=deg(4,) +deg(D)—1.
Thus
deg(A, DR+ B~ 5)) =deg(4,) + deg(D)
+max{deg(R), deg(B™)-1} (13

Now, if condition 1 holds, define j = 0 and let

deg(Ag) =2 deg(4) — deg(A4)
~deg(B Y+deg{D-6+; (14
Combining (11), (13), and (14) yields
max{deg(R "), deg(B™)— 1} =deg(d,)—deg(B)-5+/ (15
Now suppose deg{B~) — 1 > deg(R ). Then (15) yields deg
(A)) — deg(BY — & + j + 1 = 0. This can never be true with
6 as defined in condition 1. This supposition deg(B™) — 1 >
deg(R ') must therefore be incorrect, and it must be true that
deg{R’) = deg(B87) — 1. Thus, (15) gives:
deg(R ") + deg(D) +deg(B ) = deg(A,) — & + j + deg(D)
Substituting yields
deg(RY=deg(S,}—6+j+1
Hence, deg{R) = deg(S)). It remains to show deg(R) = deg(T)
Equation (10) gives
deg({T} = deg(Aq) +deg(B,,) —deg(B™) (16}
For 2 causal plant, and using the resuit deg(R) = deg(5;), one
obtains deg(4,R + 8BS} = deg(4,R). Equation (11} may now
be rearranged to give

deg(R) =deg(B ')+ deg(A,,) + deg(4o) — deg(4,)  (I7)

If condition 2 holds, then deg(A4,,) - deg(8,) = deg(4)) —
deg(B") — deg(B7), from which it follows that

deg{Ao) + deg(d,) + deg(B) — deg(A,) = deg(A,)
+deg(B}— deg(B™)
Substituting in Eqs. (16) and {17) gives deg(R) = deg(7).

Theorem 3.9: If a solution exists to (9), then a causal solution
exists such that deg(R) = deg(S,) if and only if deg(®) =
deg(A5).

Progf: Equation (3) gives A; R + B S, = 0, and thus deg(R)
= deg(S;) + deg(B) — deg(4,). If deg(B) = deg(A,), then
deg(B) — deg(4;) = 0. It follows that deg(R) = deg(S:). To
prove the reverse, suppose deg(R) = deg(S,) and thus deg{R)
— deg(Sy) = 0. Again, (9) gives deg(B) = deg{4,) + deg(R)
— deg(S,). Hence, it follows that deg(B) = deg(A.).
Combining Theorems 3.3-3.5, 3.8, and 3.9 results in the fol-
lowing summary theorem:
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Theorem 3.10: 2-D Model Matching Causal and Stabilizing
Solution Existence. Given a causal plant and reference model
of the forms:

y(s) _ B{s) YmiS) _ B, (5) Ag(5)

ui(s) A(s)+Ax(s)e™™  uls) An(s) Ap(s)
there exists a causal and stabilizing model matching controller
of the form

R(SU(s) = = (851 (5) +S:2()e™"1Y(s) + T(s)Ue(5)

if all six of the following conditions hold:

. B™ and DA, are factor coprime

. B™ is a factor of A4,

. B is a factor of B,

. deg(B) = deg{dy)

. deg{dy) = 2 deg(A,) — deg(A,) ~ deg(B’) + deg(D) — &
where 5 equals 1 for a strictly causal plant, and O for a
proper plant

6. deg(Am) — deg(By) = deg (A)) - deg(B)

In addition, said controller cannot exist if any of conditions

1 through 4 do not hold.

Proaf: Immediately follows from Theorems 3.3-3.3, 3.8,

and 1.9,

W o L b —

Thus, given a minimal reference modei 8,,/4,,, one may find
a solution to the 2-D model matching probiem, if one exists,

by choosing:
deg(4,) =2 deg{Ad,) - deg(4,,) —deg(RB ') +deg(DYy— &
deg(R ") = deg(A ) + deg(Ao) — deg(A) ~ deg(D)
deg(5,)=deg(A,) + deg(Dy—1

The degrees of S; and T follow immediately from Eqs. (9)
and (10).

Implementation of the controller may be achieved by em-
ploying an arbitrary stable polynomial E(s) with deg(E} =
deg(R), as shown in Fig. 1. If it happens that R{s) is itself
stable, one may make the choice E£(5) = R(s), considerably
reducing computaticnal expense.

Extension of the 2-D model matching technique to the dis-
crete-time domain is straightforward, simply requiring a re-
examination of the causality definitions. The discrete-time do-
main plant, controller, and reference model are of the forms
(I, (2), and {3} respectively, but with the Laplace variable s
replaced with the Z-transform variable z, and also with 'the
Laplace delay operator e™™ replaced with z~™:

¥(z2) Biz)
- 18
w(z) A +A (7Y (18

RiDu ()= —[SUD + S22 ") + TiDu ) (19

ym(Z)zBm(z) ‘AD(Z)
uA{z) Am(z) Aol2)

Since z~ " is not an infinite dimensicnal operator, {-D model
matching can of course be applied as well as 2-D model match-
ing. However, the 2-D approach has an advantage over the 1-
D approach. When the delay N is large, the derivation and
implementation of the 1-D solution, the order of which is in
general comparable to &, becomnes rather difficult. In contrast,
the 2-D solutions are low-order compensation along with the
easy to implement pure N-step delay. In other words, the 2-

{20)

plant
e(s) | Trs) - Ets) B} ] yis}
" By R [ A Afsie —

5,05} Sylzpe™
—
Efs) Eis)

Fig. 1 Imptementation of the 2-D model matching controller
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& bt}

Fig. 2 Continucus-time ideal repetitive signal generator
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uis)
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Fig. 3 Modei matching repetitive control scheme

D solutions force to zero most coefficients of the approximately
Nth order controller,

It will be assumed that N = deg(4;), and therefore the plant
is causal if and only if deg{4,) = deg(B). For controller caus-
ality, it is {irst needed that deg{®) = deg(5,), and second that
deg(R} = deg(S:) — M. Following a similar proof to that of
Theorem 3.9, it is easy to verify that the second requirement
is always satisfied. Condition 4 of Theorem 3.10 has thus been
relieved. The remaining conditions of Theorem 3.10 apply
directly in the discrete-time domain, as can be easily verified
analogous to the continuous-time formulation.

4  Application to Continuous-Time Domain Repetitive
Control

Any periodic signal with a known period, say 7, can be
thought of as generated by a dynamical system with positive
feedback around a pure time delay, as shown in Fig. 2. The
Lapiace transform of the periodic signal w(s) may thus be
expressed as
(21)

1
W(s)=——=75 wo(s5)
e

l -

where wyls) is the Laplace transform of a signal composed of
the first peried of wi¢), and zero for t > r. If the control
system is to reject the periodic disturbance, it must be capable
of generating a periodic signal itself. A repetitive signal gen-
erator (RSG) must therefore be included in the control loop,
as stated by the internal medel principle (Francis and Wonham,
1975}). However, it has been shown that strictiy proper plants
cannct be exponentially stabilized when the ideal periedic sig-
nal generator (21) is used in the control loop (Hara, 1988).
Thisis due to the unrealistic high-gain demand on the controller
of handling the infinitely-high frequency modes of the periodic
disturbance. Hara showed that this difficulty could be relaxed
by including a suitable low-pass filter in the RSG to reduce
the feedback gains at high frequencies. Even though asymptotic
stability can be obtained when using the RSG in (21) with a
proper plant, the system will still suffer from poor robustness
against unmodeled dynamics, obviously due to infinitely-high
gain feedback. The low-pass filter also improves high-fre-
quency robustness. The proposed control scheme with the
modified repetitive signal generator is depicted in Fig. 3. The
cascade of modified RSG and plant combine to form a new
open loop system of form (1):

yr(s} - B{s} - A(5)B,(5)
w (8} A(s)+Ax(s)e”™ Af)AL(5) = Br(s)A,(s)e” ™
(22)

Equations (22}, (2), and (3} combine to form a 2-D model
matching problem, The low-pass filter Br{5)/A,(s) must be
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chosen so that the new plant (22) conforms to the solution
requirements of Theorem 3.10. The following corollary results:
Corotiary 4.1: Given a causal plant B,(s)/A4,(s), define a

2-D model matching problem (with repetitive disturbance re-

jection) by Eqgs. (22) and (3), and factor B, = 8,B, where

B, and B, contain the cancelable and uncancelable roots of

B,, respectively. There exists a causal and stabilizing solution

of form (2) if all six of the following conditions hold:

I. {a) Ayis stable
(&) B, and A,D are factor coprime

. B, is a factor of By

. By is a factor of B,

. deg(A,) — deg(By) = deg(A,) — deg(B,)

. deg(dg) = deg(d) + 2 deg(d,) — deg(An) — deg(B))
+ deg(D) — & where é equals | for a sirictly causal plant,
and 0 for a proper plant
6. deg(A,) - deg(B.) = deg(4,) — deg(B,)

In addition, said controiler cannot exist if any of conditions

1 through 4 do not hold.

Proof: Each condition follows from direct application of

the identically numbered condition in Theorem 3.10.
Condition 1a reflects the intuitive expectation that the low-

pass filter be chosen stable, while condition 2 requires that the
filter zeros contain all unstable plant zeros. Condition 4 shows
that the relative degree of the filter must be at least as great
as that of the plant. Based upon these necessary conditions,
the low-pass filter may be appropriately designed with a band-
width encompassing a suitable number of Fourier frequencies
of the periodic disturbance. Now, the following closed loop
transfer functions result from the design:

y(5) By AoByA;  y(s)_B;R (l_ge_,,) 23)
u(5) Am ApBpAy  d(5) Andg\  A;

As expected, the mapping y/u, depends only on the choice of
reference model {after stable pole-zero cancellations), while
the mapping y/d contains the modified repetitive signal gen-
erator.

W L b

5 Continuous-Time Domain Repetitive Control Design

Exampie
Consider the following simple illustrative exampie:
B, 1 B, 2
—-e = — —mﬁ—""-" 24
A, s A, 5+2 @9

For comparison, model matching will be achieved via three
different designs: 1-D model matching with integral action
only, and 2-D model matching with either a first or second
order low-pass repetitive generator filter.

Design 1: 1-D Model Maiching With Iniegral Action: This
design does not include the RSG (i.e., Bf = 0), but rather
provides integral action by choosing D(s) = s in Eq. {5}. The
polynomial choice A; = 5 + 20 has been used in the design,
resulting in the following controller:

T=a(s+v,) R=s5 S =(a+uv)s+arn 5:=0
parameters: a=2 v = 20
yi{s) $

dis) (s+a)(s+u) (25)

Design 2: 2-D Model Matching With First Order Low-Pass
Repetitive Filter:

B_f=b1 Af:.5'+b1 Ag=5+1v,
T=a(s+uv;) R=s+b S=i(g+u—bs+av, S;=8;5
parameters: a=2 =20 5=
Y _(stb)-be ™ 26)

d(s)  (s+a){s+uv)
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Flg. 4 Disturbance rejection magnitude responses of continuous-time
domain exampies

Design 3: 2-I Mode! Matching With 2nd Order Low-Pass
Repetitive Filter:

Br=mhb; A= (s+ ) (5+8)
T=a{s+v,)(5s+t;} R=(s+b)){s+5:)

A= (5+ 2} (5+ 1)
Sy={bb)s
—5)5" + [@ €Uy + 12)5 + Uiy — by ba)s + avy s
D=2 10,2625 by=5 by=5

=(G+L-‘1+U;—

PArameters: &,

¥(5) 18+ (bt ba)s+bib] = bibe ™ -

2{s) {s+a)(s+u)){s+uv) @7
The periodic disturbance ¢/(s) has a discrete frequency spectrum
containing only those Fourier series harmonics given by w; =
2iw/r, i =10,1,2,....Thefrequency response 1y/dl at these
distinct frequencies provides a measure of the repetitive dis-
turbance rejection capabilities of the controller designs. The
frequency response of {26) reduces to that of (25) at the fre-
quencies w = w; regardless of the choice of the RSG low-pass
filter pole. For this example then, the use of the first order
repetitive generator filter cannot improve steady-state repeti-
tive disturbance rejection performance over that of integral
action.

The above observation on the disturbance rejection simi-
larities between integral action and the first order filter re-
petitive control displayed in the example may in fact be
concluded for a specific class of plants. Equation (23) may be
rewritten as

y$)_BD o

do) A R A Be (28)
For a given reference model and with specified disturbance
rejection properties in {s), the terms By, D, A,, and A, will
be commaon to all model matching designs. Only the terms R,
By, and A, vary among designs. For a first-order low-pass filter
(B = b, A; = s + Bb), the frequency response of the repetitive
signal generator becomes independent of the filter parameter
b at the Fourier harmonics:

JA;— B~ il =g, (29)

If the plant is such that deg{A ;) — deg{B,) = 1{i.e., aminimum
phase relative degree 1 plant, or a relative degree zero plant
with one unstable zero}, a solution may be found which gives
deg{R'} = 0. Examination of Eq. (8) reveals that this scalar
R’ is completely independent of the low-pass filter choice,
regardless of the filter degree. Therefore, for plants conform-
ing to the above relative degree condition, a first order filter
repetitive control design provides exactly the same magnitude
characteristics at the Fourier harmenic frequencies as an in-
tegral action design. The response relations at other frequen-
cies, however, cannot be conclusively predicted.

Returning to the example, and with some abuse of notation,
Design 3 (27) reduces at the harmonic frequencies to

yis} B 5 s+ (b +b)
d(s} o, ST@MsH D) S+,

(30}

Fe
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Fig. 5 Return ditference function magnitudes of continuous-time do-
main examples

Equation (30) is seen to contain (25), and also an extra pole-
zero combination. This pole-zero combination can be inde-
pendently designed to attenuarte the response |y/dl through
some suitable bandwidth. Therefore, the exampile 2nd order
repetitive filter design offers superior repetitive disturbance
rejection capabilities over the two simpler designs.

Figure 4 shows the frequency response !y/dl for the three
parametrized designs with + = 2x. Note that v/d is equal (o
the system sensitivity function multiplied by B,(s)/A,4(s). This
plot confirms that [y/d! of Designs 1 and 2 coliccate at w =
w = 1,2, 3, ....Itis also seen that the response magnitude
of Design 2 is greater than that of Design ! at a majority of
other frequencies, and therefore the ‘‘Energy’’ of response
(i.c., the integral area) of Design 2 exceeds that of Design 1.
On the other hand, the placement of the extra pole-zero in the
RSG low-pass filter of Design 3 has produced significant re-
sponse reductions at not only the Fourier frequencies, but also
at all other frequencies. This demonstrates the potential ad-
vantages of using a higher than minimal order RSG low-pass
fiiter, as well as the possible performance improvements of
repetitive control over conventional integral action.

Any phase lag introduced by the RSG low-pass filter shifts
the magnitude response of the entire modified RSG so that
the minimums do not occur at the desired harmonics. The
effect of this on the closed loop design is evident in Fig. 4,
where the periodic depressions in |y/dl of Designs 2 and 3
have similarly been shifted away from the Fourier harmonics.
Since the response valleys are extremely narrow band, even a
slight shift can result in a significant increase in system response
at a Fourier frequency. Generally, the effects of this frequency
shift become more pronounced as frequency increases. [t will
be shown in Section 7 how this difficulty may be alleviated.

The return difference function for the three designs are shown
in Fig. 5 {i.e., the ““Robustness’’ to a stabie multiplicative plant
perturbation A(s)). For robust stability, it is necessary that
IG(jw)l < |1/Al. An expected result is that Design 3 has
sacrificed some high frequency robustness in order to achieve
its better disturbance rejection properties. The figure also shows
Design 2 with less robustness than Design 1 at most frequencies.

Simulation resuits are shown in Figs. 6 and 7, with excitation
provided by a square wave disturbance of +1 amplitude and
period 2x, beginning at ¢ = 10 seconds. Examining the tran-
sient plant response in Figs. 64) and 6(5), one sees those of
Designs 2 and 3 as respectively being on the order of 10 times
greater, and 40 times smaller than that of Design 1. The steady-
state response of Design 2 is essentially identical to Design |,
which is to be expected since they have identical disturbance
to output closed loop transfer functions. The steady-state re-
sponse of Design 3 is again seen on the order of 40 times less
than Design 1. The spiked appearance of all three design curves
is due to the inability of the controllers to respond to the higher
frequency components of the square wave disturbance. Finally,
Figs. 7(a) and 7(b) show little difference between designs in
control input demands, and thus similar actuating hardware
would be required in all three cases.
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6 Application to Discrete-time Domain Repetitive-
Control

The discrete-time domain modified repetitive signal gener-
ator is given by

1
w{z) =——————— wy(2) (3

_ Br2) o
Af{z)

Unlike in the continuous-time case, the RSG low-pass filter is
not needed in discrete-time for achieving exponential stability.
Tomizuka et al. {1989} developed a method for synthesizing
repetitive controllers without using the low-pass filter, and
under the assumption of a stable plant. In implementation,
the low-pass filter is typically included in order to improve
high frequency robustness (Tsao and Tomizuka, 1988). The
2-D model matching-repetitive control problem does not as-
sume a stable open loop plant, and is formuiated parallel to
the continuous-time case previously presented in Section 5.
Since condition 4 of Theorem 3.10 need not hold in the discrete-
time case, it follows that condition 4 of Corollary 4.1 need
not hold either. The remainder of Corollary 4.1 may be easily
shown applicable in its entirety.

Design in the discrete-time domain offers the advantage of
choosing BAz}/A{z) with a zero phase frequency response at
all frequencies. In view of (23), the output to disturbance
magnitude ratio, at those Fourier frequencies of the periodic
signal, is proportional to

ll—-B((Z}

3D
A;{Z) (

bz =i

Among low-pass filters which have similar magnitude ratio
responses, the one with zero phase response will render a min-
imum in (32). In addition, the periodic disturbance rejection
response minimums will coincide exactly with its Fourler har-
monic frequencies. Therefore, a zero-phase low-pass filter of-
fers better periodic disturbance rejection. This may be
accomplished by choosing (Tsao, 1988)
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where m = deg(P), and P(z”) is P(2) with z replaced by z .
Although (33) is noncausal, the complete modified RSG (31)
is causal. Also, the discrete 2-D model matching assumption
that N = deg(4,) requires that m =< [N — deg(A,}]/2. Finally,
note that 2" is a common factor of B and A4,, and can be
absorbed into z V. Therefore, controller complexity may be
reduced by multiplving the resultant new open loop system
(22) by £™™/z"™. The delay operator for 2-D model matching
design then becomes z~ ™™,

The example plant and reference model (24) has been sam-
pled with a zero-order hold, vielding:

By__h By l-e”
A, z-1 A, z—e ™

33

(34)

where k is the sampling period. Two example designs wiil now
be given, each utilizing a different RSG low-pass filter.

Design 4: Tustin Approximation of b/{s+ b) Low-Pass Fil-
ter;

bii=bh/(bh+12) by = {(bh-2)/(bk+2)

Bi=b(z+ 1) Ar=7+ by Ag=z+u
T=(l-e")(z+v) R=h{z+b) Si=b(F-1)
Si= (v —e M= b+ Dz + (br—vie”
parameters: a=2 v =e % b=100 h=x/300

Design 5: Zero-Phase Discrere Low-Pass Filter:

1 -
Lz bz +B)
p, (L+0)
—= Ap=z+y
Ay z
T={l-e ™ (z+v) R=hz S3={(b7+7 —z-b)/{1+b)

S}: {Ul_e_ﬂh_ I}Z—Uze_ah

parameters: a=2 u=e X p=1 h=x/300
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Figure 8 shows the frequency responses of the RSG low-pass
filters used in the above two examples, Although the magnitude
responses are quite similar, Design 5 shows zero phase for all
frequencies while Design 4 displays increasing phase lag with
frequency. Figure 9 shows Bode magnitudes of the resultant
closed loop transfer functions y/d. The overall responses look
similar, being of the same order and wave form. However,
closer examination at the Fourier harmonics reveals that the
periedic valleys of Design 5 occur exactly at the harmonics,
while those of Design 4 occur at a frequency prior to each
harmenic. This, for example, increases the actual magnitude
response of Design 4 at the first harmonic of w = 1 rad/s by
45 dB over its locaily minimum response at approximately
0.9985 rad/s, as shown in Fig. 10,

7 Application to Noncircuiar Turning: Experiments

The utility of 2-D mode] matching repetitive control is il-
lustrated in this section by the lathe turning of two different
noncircular shapes: a heptagon (7-sided polygon), and an el-
lipse. To achieve this, the 2-D mode! matching design must be
adjusted to result in asymptotic repetitive tracking. This may
be accomplished by a straight forward open-loop system ma-
nipulatien. The input-cutput equation of the open-loop system
is represented by

A, y=B,u (35)
The control goal is 10 asymptotically track a desired repetitive
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reference signal y;. The error system is formed by defining e
= y ~ Vs The system may now be manipulated as follows:
(Apy— Apya) + Apys= Byt {36)

Ape=Bou— Ay 37

The term A,y,; may be treated as a periodic disturbance to the
error system. With a stable closed-loop system design, asymp-
totic rejection of this disturbance is equivalent to asymptotic
tracking {i.e., e — 0}. In this tracking design, the feedforward
part of the 2-I) model matching controller is not utilized; only
the feedback part is needed. Thus, the 2-D controller becomes

& pole-placement tracking algorithm driven from the error
signal:

Ri{s)u(s) = —[S1(s) + S:(5)e” "le(s) (38

A profile resolution of 144 points per workpiece revolution
was chosen to generate a digital repetitive reference signal.
Any N-sided polygon may be synthesized by some continuously
differentiable profile in a finite number of revolutions {(typi-
cally only 2 or 3 revolutions are needed) (Tsao, 1990). The
heptagon synthesizing profile in the X-Y plane is shown in Fig.
11, requiring 2 workpiece revolutions to complete the shape
for a total of 288 points. The ellipse is itself a continuously
differentiable profile, and is thus machinable in a single rev-
olution. Major and minor axis diameters of 30 and 28 mm,
respectively, were chosen. Synthesizing profiles in the -8 plane
are shown in Fig. 12 for both noncircular shapes.

A direct drive linear motor was used to actuate the tool
position, as shown in Fig. 13. Tool position was obtained using
an optical encoder of 2 um resolution mounted to the motor
slide. A Texas Instruments TMS8320C30 processor, accessed
through an [BM-AT host, performed controiler implementa-
tion, Since synchrenization of tool motion with workpiece
angular position is desired, control time-step advancement is
triggered based upon workpiece angular position. This infor-
mation was obtained from a 1440 pulse per revolution rotary
encoder artached to the lathe spindle. Spindle speeds for the
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heptagon and ellipse were chosen as 450 and 600 rpm respec-
tively, with corresponding effective sampling rates of 64800
and 86400 samples per minute.

At the above spindle speeds, the synthesizing profiles display
the power spectral densities shown in Fig. 14. Note that the
DC component is not shown, The ellipse contains harmonics
at integer multiples of twice the spindle speed, whereas the
heptagon contains harmonics at integer muitiples of 3.3 times
the spindle speed (i.e., half of 7 sides). The power of the
harmonics at higher frequencies {not shown on graph) rapidly
diminishes for both profiles. For robustness, a 14th order zero-
phase RSG filter was chosen of the form:

Bi(z) @+ '+1)
Af(z) - 2]4z'.'

With the above spindle speeds, the bandwidth of this filter is
4563 and 6084 rpm (i.e., samples per minute) for the heptagon
and ellipse, respectively. Workpiece material was 6061-T6 alu-
minum.

Tracking errors for a typical workpiece revolution are shown
in Figs. 15(z) and 15(b), and are seen similar under cutting
and non-cutting conditions. The heptagon shows maximum
errors of about 4 percent reference peak to peak, whereas the
ellipse shows only one percent maximum error,

(39)

8 Conclusions

Solution existence requirements have been developed for
exact 2-D model matching control of a class of linear distrib-
uted plants. The attractiveness of this controller stems from
its ability to form a rationai closed-loop input-output mapping
starting from the distributed open loop plant. It has been shown
how 2-D model matching may be applied to design a repetitive
controiler for a rational plant, such that both reference model
matching and asymptotic rejection of a periodic disturbance
of specified period may be simultaneously achieved. This ap-
preach does not require the plant to be first stabilized. Further,
the resulting controller is computationally efficient, being a
low-order filter with time delay. The discrete-time domain
design offers the advantage of selecting an RSG low-pass filter
with a zero phase frequency response at all frequencies. Chosen
as such, the disturbance rejection response minimums will co-
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incide exactly with the Fourier frequencies of the periodic
disturbance. Finally, experimental results have been presented
for the turning of two noncircular shapes, using the 2-D model
matching approach to achieve asymptotic tracking.
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