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Fig.6& Tha sensitivity of the maximum puat stress, normalized by (o)ma
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In order to understand the sensitivity of the solution to v,
{Zo)max Eq. (2) is normalized by (0)max ror smir
(00)max
{Fo)max far v={
32 1 sinh 2A, ~sinh 2\,
__ 2 sinh 2\, +sin 2\, ° k sinh 2A, +sin 2,
2 1 sinh 2N —sin 2)\+ k’ cosh 2h +cos 2)

2 sinh 2x+sin 2X T & sinh 2X\ +sin 2\
where A, =X (1 -4, Equation (15) is then plotted against
A in Fig. 6. It is shown that increasing » leads to reduced
{Oodmax-That is, for A>3 and v=0.3~0.4, Eq. (3) without the

Poisson effect (v =0) gives five ~ seven percent more for (0, max
than Eq. (7).

ﬁ cosh ZX, + ¢cos 22,

(15)

Conclusicns

It has been shawn, through inspection of the original de-
rivation, equilibrium considerations, and numerical analyses,
that the original Goland and Reissner sclutions for adhesive
peel stress, which has been misused and misquoted by several
researchers, is correct, even though there were some errors in
the derivation. However, there are still some minor discrep-
ancies in the peel stress equations, which are related to ne-
glecting the Poisson effect, and accurately determining edge
shear farce, V,. It has been demonstrated that Poisson effect
should be included so that Eq. (3) should be replaced by Eq.
(7). It is also suggested that the edge shear V, expression in
Eq. (8) be used in Eq. (4).
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A Sufficient Stability Coundition for
Linear Conservative Gyroscopic
Systems

Jinn-Wen Wu® and Tsu-Chin Tsao™S

A sufficient stability condition for linear conservative Zyro-
Scopic systems with negative definite stiffness matrices is given.
The condition for the stability is stated in terms of the coef-
fictents of system matrices without solving the spectrum of the
entire system. An example is given for comparison with existing
results.

1 Introduction

One interesting phenomenon for gyroscopic dynamic 5ys-
tems is that unstable conservative systems can be stabilized by
increasing the gyroscopic forces. Criteria to determine rea-
sonably small gyroscopic forces for stabilization are important
for practical problems, for example, in the spacecraft attitude
control prablem, the artillery shell moving problem, and the
flexible rotating shaft problem (Chetayev, 1961; Hughes, 1984).
Recent results (Inman, 1988; Walker, 1991) have stimuiated
new interest in providing simple stability conditions for such
systemns without resorting to eigenvalue calcuiation.

Linear conservative gyroscopic systems can be described by
a set of ordinary differential equations satisfying

(O +CGx () +Kx(1) =0, (n

where G7 = — G, K7 = K. The special case of interest here
is when K is negative definite and (7 is nonsingular. The stability
used here is in the sense of Lyapunov (see, for instance, Bell-
man, [953).

It is well known that the system described by Eq. (1) is stable
if and only if the latent values associated with (1) are purely
imaginary and nonzero (see, for instance, Huseyin, 1978) since
if X is 2 latent value so is — A. It has also been known that
dissipative damping can easily violate gyroscopic stabilization,
Hence in a practical sense, since dissipative forces almost al-
ways exist, the gyroscopic stability is only temporary.

2 Previous Results

It has been known that when the determinant of G is suf-
ficiently large, Eq. (1) is stable (Miiller, 1985; Roseau, 1987).
However, so far only a few criteria to determining the strength
of the gyroscopic force for stabilizing the system are availabie.
Summaries of results to date are given in Inman (1988) and
Walker (1991).

For a two-degree-of-freedom system, Teschner (1977)
showed that the stability for negative definite X results if 4K
- G is positive definite. Inman and Saggio (1985) showed
that the stability results if the trace of 48 — G? and the de-
terminant of K are both positive and appiied the result to the
desigr: of a dynarnicaily tuned gyroscope. In fact, for a two-
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degree-of-freedom system, eigenvalues can be evaluated di-
rectly. Thus the foilowing necessary and sufficient condition
not appeared in the literature previously can be derived:

[det(G)}* + tr(K) > 2v/det(K) > 0. @
Our main interest here is to provide simple stability criteria
for n-degree-of-freedom systems. Huseyin (1983) obtained the

following result: Suppose GK = KG. Then Eq. (1} is stable
if and only if

4K - G*>0. (3)

When G and X does not commute, the construction of stability
conditions becomes much more difficult. Inman (1988) pro-
posed that the system described by Eq. (1) is stable if

4K — G* = €I>0, where 2€ = Apa{ — G). @)

However, a rigorous proof was not given as pointed out by
Walker (1991). Based on the Lyapunov approach, Walker
(1991) derived that the system described by Eq. (1) is stable if
there exists a real number o such that

KK—-ah>0and K—af—aGT(K-anN~'G>0. (5

The evaluation of this stability condition requires searches of
the « values. Our main result of this paper is a simple sufficient
stability condition with a rigorous proof.

3 Main Resuits

Lemma 1: (Huseyin, 1978): Consider the system described
by Eq. (1). The system is stabile if and only if for every latent
vector g the following is true:

4¢Kgq, @) - (Gq, g)*>0 and (Kq, q) #0.

Proof:  The solution of Eq. (1) is stable if and only if every
latent value A is purely imaginary, Let C” be the n-dimensional
complex Euclidean space and for all z, w € C" define the inner
product {z, wd = L} z7w; and norm 1z1® = (z, z}. It is not
difficult 1o verify that ¥ x € ", {Gx, x} is pure imaginary
and (Kx, x} is real. Suppose X is a latent value of Eq. (1} and
¢ is the corresponding latent vector, where A € C, g € C". Then

x(1)=€evg (6}

is a fundamental solution of Eq. (I}, Substitute Eq. (6) into
Eq. (1). It follows that

Ng+NGg+Kg=0. M
Take the inner product to the both sides of Eq. (7) with g:

N{gq, @Y +MGq, ¢) +(Kq, g¢)=0. (8)

Assume that the latent vector ¢ has unit length, i.e., Igh =
. Then

N+ N Gg, ¢y +(Kg, g) =0. )]

Let A = iw, k = ~(Kq, q) and {Gq¢, g) = iff. Then Eq.
(9) becomes

W Bat k=0 (10

To show that X is purely imaginary and nonzero is equivalent
to showing that « is real and non-zero, which is true if and
only if

B —dk=—(Gq, q)*+4(Kq, gy >0and k=0. QED.

Aljthough Lemma 1 gives the necessary and sufficient con-
dition for stability, it requires the knowledge of a system latent
vector and hence it is not useful for the stability investigation
when the system dimension becomes large. A sufficient stability
condition which does not require the calculation of system
latent vectors or values is given next.

Theorem 1: The system described by Eq. (1), with K < 0
and det. & = 0, is stable if

716 1 Vol. 81, SEPTEMBER 1594

3K+%K’-—G’>0. (11)
where 3 < 0 is the maximum eigenvalue of K.

Proof: Suppose there exists a latent value A = iw and the
corresponding latent vector g, satisfying 3° « 4k = - {Gyg,
gyt + 4 Kg, g} = 0. Then the roots w of Eq. (10) are compiex
conjugates and lwl® = & > 0. A contradiction is verified ip
the following.

By Eq. 9), {Ggq, > = —1/\ ({Kq, g} + A}). Then

-{Gq, ¢)*=1{Gg, ¢»!*

(Jk—)\zi)zi(k—)\z)(k—?)

Al Ixl?

_K—2Re(\k + IN*
- I

=ﬁ (i + 2Re(whk + twl].
By Eq. (7), it follows Gg =

(-G, ¢ =(Gq, Gg>

{12)
—1/A (Kg + 2g). Then

_/1 2, 1 2
= <)\ (Kq+»g), T (Kg+ X\ q}>

1

NATNE: (Kg+ Mg, Kg+Nq)

1
=m [HKQHZ

+N(Kq, @) +N<Kq, g>+ (Mg, Ng)]

=Tii_|3 {1Kq1?— 2Re(A)k + IA1%)

‘T—I—F [BKgI? + 2Re{wik + lw ).
et
Since 3K + 1/5 K% = G* > 0,

(13)
I
—XHKe, 5 (KPq, @y~ {-G%q, ) >0

2
-- 3k|m12+1"~;—'— IKgl* + RKgl* + 2Re(whk + lw!*>0.

(14)
. fwl? k  ~(Kq, @)
Noting that 3 "5 Max (Kx, x)ﬂ R
xec"
— =32~ BKgh? + IKgh + 2Re(wVk + 2> 0.
—Re(whk> k2. (15)

Then by Eqs. (12} and (i5) we have
-{Gq, ¢)* +4{Kq, q)

_ 2Refodk - 24
- K

>0,

Transactions of the ASME




€2

-5 1} ]
el
Fig. 1 Stability region predicted by varlous stability criterla

A contradiction is concluded. Therefare, every latent vector
must satisfy 4(Kg, ¢) - (Gg, g)* > 0 and the system is
stable by The Lemma, QED.

Since for the case that GK = KG, the stability condition is
4K —~ G* > 0, it is natural to ask whether the premises could
be refaxed. The following stability criterion does not require
K and G be commutative.

Theorem 2: Consider Eq. (1) in the following form:

¢ B ki o 0
G= Sy K=
[“BT 0} [0 sz

where B is an arbitrary nonsingular 1 X 1 matrix, ki, ks, are
nonzero positive real numbers, and 7 is the n x n identity
matrix. If 4K — G? > 0, then the system is stable.

Proof: Let

(16)

¢ = det(\ s, + AG + K). an
It follows that
¢ =det((\’ ~ k) } det((A} — ky) T+ MNBTB(M=k)"'n
. N—k YN —k
= Adet ((—-—‘g"—-ﬂ I+ B?’B) (18)
since
—G*+4K >0 implies BBT - 4k,/>0 and 878 — dkyI>0 and
(19
since 887 and B”B have the same eigenvalues,
B> Main(B7B) > Max 4k, 4k, ], (20)

Wwhere 4 is any eigenvalue of B7B. From Eq. (20, every root
of ${A} = 0 rmust satisfy

(A= k) (M= k)

7 +u=1, cn
Let w = X% Then Eq. (21) is equivalent to
W (= (g + k) Jw + ey = 0, (22)

Then the roots of Eq. (22} can be expressed as

et~ e (u k) - akk
E ] 2 .

By {20), it follows that
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kit ko~ p <0, and (u— (k; + k1)) — 4k ey > o2
= 2u(ky + k1) >0 ~ dp(Max(ky, k) >0. (23)

Therefore w, are negative real. Therefore, ali roots are purely
imaginary and hence the system is stable, QED.

4 An Examgple

Consider a simplified model of a mass mounted on a non-
circular weightless rotating shaft (Inman, {991). The equation
of motion in the rotating reference frame is (Huseyin, 1976)

v ¢ -1]. [e-g=y 0 _
x+2?;'[1 0}x+[ 0 C‘z—fz—n}c_o’ (24}

where x represents the displacements of the mass in the rotating
reference coordinate frame, £ is the shaft angular velocity, n
is the axial compression force, and ¢ = ¢; = 0 are elastic
rigidities in the two principle directions. Using the same pa-
rameter values as these in Inman’s example (1988), £ =4, n
= 3, Fig. | shows the stability regions for ¢y and ¢, obtained
from various stability criteria. The wing shape enclosed by the
solid curve and lines ¢, = 7 and ¢, = 7 is the stability region
predicted by the necessary and sufficient condition for two-
degree-of-freedom systems per Eq. (2). The triangular shape
enclosed by the dashed line is the stability region predicted by
Inmar and Saggio’s (1985) sufficient condition for two-degree-
of-freedom systems. The square enclosed by the dash-dotted
lines is the stability region predicted by Teschner’s (1977) suf-
ficient condition for two-degree-of-freedom systems and also
by the sufficient conditien for n-degree-of-freedom systems
per Theorem 2. The football shaped dotted curves enclose the
stability region predicted by the sufficient condition for -
degree-of-freedom systems per Theorem . The 45-deg straight
solid line represents Huseyin’s {1983) necessary and sufficient
condition for the case GK = KG. The smaller square enclosed
by the salid line is the stability region predicted by Inman’s
(1988} sufficient condition for n-degree-of-freedom systems
per Eq. (4).

Since the simple stability conditions developed herein are
meant for systems of large degree-of-freedom, where direct
eigenvalue evaluation becomes cumbersome, this two-degree-
of-freedom example is only for the purpose of graphical il-
lustration of varicus stability conditions,
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