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been studied using the beam s exact transfer function model without mode rruncation
or finite element or finite difference approximuation. The combhination of viscous
and Veoigt damping is shown o map the open-loop poles and zeros from the imaginary

axis in the undamped case into a circle in the left half plane and into the negative
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real axis. Whife active PD collocated control using sky-hooked actuators is known
to stabilize the beam, it is shown that the derivative action using proof-mass (re-

action-massy aciugtors can destabilize the beam.

1 Introduction

There is often a strong temptation to rely on computationally
intensive methads like the finite element method when studying
the dynamics of distributed systems neglecting those methods
that may be more analytically based. The superiority of the
former over the latter is unguestionable if the geometry of the
structural system is complicated. However, this may not be
true for *‘simple’’ systems like uniform Euler-Bernoulli or
Timoshenko beams, where the anaiytical approach yields exact
solutions and the finite element results are approximate. In
analyzing large space structures, where beams are abundant,
analytical methods may be more appealing since they can pro-
vide accurate, and even exact, solutions with a minimum of
additional effort. Much of what will be reported herein involves
the use of Green's functions, which can be transformed to the
s-domain 1o give an exact transfer function for the distributed
parameter system. Such a distributed transfer function will be
desirable from the standpoint of control system design and
stability analysis.

The use of Green’s functions in structural dynamics has been
explored by Bergman and coworkers (Marek and Bergman,
1985; McFarland and Bergman, 1985, 1986). This previous
work has been done in the time domain, thereby restricting
the scope for structural control. This paper extends the analysis
to the frequency domain, as did Butkovskiy {1969, 1983), and
more recently, Yang and Mote (1991) and Yang (1992), in
order to study the problem of discrete control of a continuous
Euler-Beraoulli beam and the effect of distributed damped on
system polca. The use of proof-mass actuators for structural
control is also investigated. Unlike similar work by Inman
(1989, 1990), Politansky and Pilkey (1989), and Miller and
Crawley (1988), where a lumped beamn model is used, this paper
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analyzes the structurai control problem utilizing a distributed
model without mode-truncation. Utilization of a closed-form
distributed mode! for the structure aflows an accurate analysis,
particularly of the higher modes and how they are affected by
control effort targeted at the lower ones.

The effect of distributed damping on the system’s epen-loop
poles and zeroes and its interaction with controllers has re-
ceived little attention in the recent literature, even though it
can significantly affect the dynamics of the system (Vidyasagar
and Morris, 1990; Yang, 1991). Two types of distributed damp-
ing will be considered here: distributed viscous damping and
distributed Voigt damping. The effect of both types will be
analyzed in conjunction with the proportional and derivative
controllers.

The derivation of the Green's function for the beam and its
transformation to a distributed transfer function are discussed
in Section 2. The open-loop poles and zeros of the damped
beam are related to those of the undamped beam in Section
3, and the effect of PD control in the “‘sky-hooked’’ config-
uration is briefly mentioned. The distributed transfer function
model of the beam with a proof-mass actuator is derived and
used for PD control root-loci analysis in Section 4.

2 Transfer Function of Fixed-Free Beams

Green’s function formulations in the time domain inevitably
run into the problem of *‘non-self-adjointness’” of operators
if distributed damping is included, as the damping terms give
rise to first derivatives in time in the governing equations of
the distributed system. The condition of seif-adjointness is
desirable when formulating the discrete-continuous preblem
using Green's function methods. To avoid this, previous work
with Green’s functions in the time domain has been restricted
to the case where the unforced distributed system is undamped.
The nondimensionalized governing equation in free vibration
is thus confined to the category

wYix, H+wix, =0
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When then system is damped, the computation of the system
eigensolution is usually quite involved and necessarily ap-
proximate in the time domain. Though neglect of distributed
damping is often justifiable based on relative magnitudes, it
would be interesting to study the effect it has on the system'’s
overall dynamic properties. This insight will provide a better
understanding of the relationship between damping and system
stability and also facilitate a more intelligent selection of struc-
tural properties to produce certain damping characteristics.

However, where the time domain proves barren, greener
pastures can be found in the frequency domain. Since damping
invariably produces complex eigenvalues, the frequency do-
main is better suited for handling damped systems. Futher-
more, self-adjointness previously not available to operators
with time derivatives is now assured, since the time derivative
is simply replaced by the Laplace variable, s, which is a pa-
rameter in space.

With this in mind, the Euler-Bernouili beam can be more
accurately modeled by

W (x, ) +agw’ (x, ) +agw(x, D+ wix, D=f(x, ) (D)

Here, g, is the distributed viscous damping factor, and a; is
the Voigt damping factor.

In the time domain, the Green’s function G(x, {3 A) is the
response of the system at ““x”* due to a harmonically varying
point load applied at ‘*{.”* This response is the superposition
of the responses of the infinity of modes of the distribuied
system excited by that single input. When the Laplace trans-
form of the Green’s function is taken, the result is essentially
an infinite order transfer function, G{x, {; s).

There are many ways for obtaining the transfer function,
G(x, &; 5}. The method of Butkovskiy (1983) yields a transfer
function comprised of an infinite series in the modes of the
distributed structure. Yang (1992} adopted a method that casts
the distributed problem into a set of spatial state space equa-
tions. However, since the closed-form Green's functions for
Euler-Bernoulli beams for varicus boundary conditions are
available, it would be desirable to find a way of transforming
these results in the time domain into closed-form transfer func-
tions in the frequency domain.

For an undamped Euler-Bernoulli beam subjected to a dis-
tributed load, the governing equation is given by

wix, D+ wix, ) =f(x, 1) (2

Letting f(x, £} be a point harmonic force of frequency A at

¢, and separating variables, w(x, t) = W(x) e”\ i. the spatial
part of (2) vields

WY =AW () =8(x- ) 3
where ) is the system eigenparameter and & is the Dirac delta.
Applying the appropriate boundary conditions and using the
method of initial parameters (McFarland and Bergman, 1985,

Shah 1967), the Green’s function for the clamped-free Euler-
Bernoulli beam is found to be:

1 (NPZix 5N xstg

Gex & }‘)’D(M [)\"322(;:, ON x=¢ @
D(A\) =4(1 +coshh cosh)
Zix, 5 N =
(AT = (W) — (M1 = DO () +
{201 = D) — & (M1 = DA alx)
Zy(x, G N=
{¥aNO (0 = AN (M1 - X)) +
[PV = LN (WM ~ X))

¥ila) = cosha + cose
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Yoo = sinho + sina
¥a{a) = cosho — cosa

ale) = sinha — sing

The same procedure is followed to derive the transfer func-
tion except Eq. (2) is now replaced by its Laplace transform

w (x, 5) +8w(x, s)=f(x, 5) 5)

The resulting transfer function for the clamped-free Euler-
Bernoulli beam has the same exact form as Eq. (4), with the
X replaced by **( —s*)4.”

Thus the distributed damping are drawn into the inertia and
stiffness operators and the system operator becomes self-ad-
joint once the Laplace transform is taken, giving

wi¥ (x, 5) + aasw!¥ (x, ) +aswix, 5) +&wix, s¥=F{x, 8) (6)

Inclusion of Voigt damping modifies the boundary conditions
at the free end of the beam (Inman and Banks, 19859},

wW(1, s} +agw'(1,5) = — Js' w1, 5) (7a)

:_x (Wi(x, 5) +aesw' (x, s)|=Msaw(x, §), x=1.  {(7b)
where J;is the rotational moment of inertia of the point mass,
M, at the free end. It is assumed that the point moment at
the free end is negligible. The boundary condition of Eq. (7h)
can also be simplified by treating the contribution of the point
mass as an external, pointwise forcing function {with accel-
eration feedback) in Eq. (6). With these treatments, the bound-
ary conditions of Eq. (7¢) and (7b) can be reduced to the
usual form,

wil(1,51=0 (7c)
wii(l,s) =0 (7d)
Equation (6) can be written in a form simiiar to Eq. {3
wl\"(x‘ s1+ (S"-#—_{_I_Q._S‘) wix, 5) =ﬂx,_s} (8)
a,s+1 a5+ 1

Just like & in the undamped case, the factor (5 +aos/dss + 1)
is a parameter in the spatial domain of x and is analogous to
—»* of Eq. (3). Applying the method of initial parameters as
before, the transfer function can be found to be of the same
form as Eq. (4) with A replaced by

A= (__524‘0'05')1;4 (9)

as+1

The function thus obtained is the distributed transfer function
from (fix, s)/a,s+1) to wix, s).

While this transfer function can be used to relate distributed
output to the distributed input, it also characterizes the re-
sponse at the point x due to point force at {. Thus, if we
consider a collocated actuator/sensor pair piaced at the beam
free end, the transfer function is

% (sinhcoshh — cosA sinhh)

e 10
Gll, 1} 5} (1 + coshcoshi) (@S + 1) a0

It can be shown, using L'Hopital’s rule, that the term,
17X}, is not responsible for any poles at the origin.

3 Effect of Distributed Damping on Open-Loop Poles
and Zeros

1t is well known that the open-loop poles and zeros of the
undampes beam (ao=da, =0} lie on the imaginary axis, where
the poles are interlaced with the zeros. In this case the open-
loop poles and zeros, denoted as “‘s,’”” are related to the roots
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of the denominator and numerator of Eq. (10}, denoted as A,
by

5i= - {an
With distributed viscous damping, A is replaced by
M= —5 = — (s +ap5), or (12)
iy “ 002+ 4.5“2
§= - E—— (13)

1t can be seen that viscous damping shifts the poles and zeros
on the imaginary axis into the left half plane by 4y/2. It also
lowers the undamped natural frequencies, wyg, to w,y according

to
2
a2
g = ’w”dz——:;'- (14)

The influence of this form of distributed damping is uniform
for all modes. A similar observation was made by Vidyasagar
and Morris (1990).

With Voigt damping, the A term in the characteristic equa-
tion is changed to

4 ) -5
N=-5"= 15
245+ 1 (13)
The damped poles and zeros may be expressed as:
ey N s ads + 4
S=—;‘s—:l:—"¥—) (16)

2 2

From Eq. (16), it can be seen that the effect of Voigt damping
is not uniform for all modes, unlike viscous damping. The
higher modes, identified by larger A values, are more highly
damped than the lower ones. It fact, beyond a certain A value,

the modes become overdamped. Vidyasagar and Morris (1990)
mentioned that the open-loop poles of the infinite-order modes
modes are at negative infinity. Analysis of Eq. (16) indicates
that there are actuaily two branches of the “*open-loop locus.”™
The locus returns to the real axis and breaks up into two
branches, one approaching negative infinity, the other ap-
proaching — 1/a, on the real axis. Voigt damping also imposes
an upper bound on the imaginary part of the open-loop system
at l/a,. In fact, it can be easily verified that the mapping forms
a circle centered at (— 1/a,, 0) with radius 1/a,.

With both viscous and Veigt damping, it can be verified
that the open-loop poles and zeros lie on a circle and the interval
(-, —1/a,) on the negative real axis. The circle is centered

1 — apaa

ay

at {—1/ay, 0} with radius Sl — agay > 0,

This open [oop pole-zere mapping result may be useful for
the identification of the distributed damping factors, in which
a set of open-loop poles and zeros obtained from experimental
test results is used to fit to a circle. The mapping can also be
used for root-loci analysis. For example, consider P control
using sky-hooked actuators. For an undamped beam, open-
loop poles and zeros are interlaced and are located on the
imaginary axis. The closed-loop poles with P contro! will still
lie on the imaginary axis with increase in natural frequencies.
Therefore for & beamn with distributed damping, the closed-
loop poles with P control must lie on a circle determined by
the mapping. Since sky-hooked P.action and D action are
equivalent to adding a discrete spring and damper to the beam,
instability cannot occur. This is not necessarily true if we use
proof-mass actuators, discussed next.

4  Active Damping Using Proof-Mass Actuators
An infinitely large reaction mass is not always available for
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electrical damping, G, frm'w generator

proof -mass. M,

T
* lumped mass of frame, M,

electrical stiffness, K,
aructure

AN

Fig. 1 Beam and proof-mass actuator combined system
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g. 2 Root-loci of the combined system under P control

the controller to act on as in the sky-hooked configuration.
Such is the case for control of tall structures or spaceborne
structures. En such sitnations, the controller will have to carry
its own reaction mass, also known as a reaction-mass. The
controlling force comes from the reaction in accelerating the
reaction-mass. Actuators that are based on this principle of
action-reaction are termed proof-mass {reaction-mass) actua-
tors; hence, PMA. Figure | shows the combined system. In
the diagram, M,, C,, K, are the actuator parameters, with C,
and K, providing the restoring force for the subsystem. The
lumped mass, My, is due to the dead mass of the PMA, ie.,
mass due to the stationary electromagnetic coils and frame.
Considering the resultant of the control force F, the Myinertial
force and the Ca, Ka restoring forces as the external force to
beam, the transfer function for the open {oop combined system
can be obtained as

Wils) A B(s)

Grmals) = F(s) =A()

_ N(s)M,s’
(DAY + N(SIMSTIMS + Cus+ K]+ N(OM, 5 (Cps + K}
a7n

where N{s) and D(s) are, respectively, the numerator and
denominator of G(1,1:s).

Consider a proportional control scenario. Figure 2 shows
the root loci plot of four modes of system vibration: the first
three natural modes ¢f the beam and the mode caused by
interaction with the PMA dynamics. The “mede’” caused by
the PMA will, hence, be called the PMA mode.

The above plot, obtained by a Newton-Raphson numerical
iteration procedure for solving the transcendental equation,
assumes that distributed viscous and Voigt damping factors
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Fig. 3 Root-oci of the combined system under O control

are both 0.01 The frame mass and the reaction-mass are as-
sumed to be ten percent of the beam mass, and the PMA is
tuned critically damped.

Coupling the ¢ritically damped subsvstem (o the beam adds
damping to it. The open-loop poles of all beam modes are
shifted down and slightly to the left. The PMA-coupiing exerts
a stronger influence on the lower modes than cn the higher
ones. After the first two modes, the amount of displacement
in open loop poles caused by the PMA-coupling is gradually
reduced. The locations of the beam’s zeroes are unchanged,
as can be seen [rom the open leop transfer function of the
combined system. The root-loci piot indicates that the PMA
mede of vibration imparted to the system by the motion of
the proof mass is initially overdamped, both open-loop poles
being on the real axis. The actuator dynamics add two origin
zeroes to the combined systern. These two zeroes draw to it
the loci of the first mode, The pair of zeroes that the first
beam mode loci approached in the ideal case are now ap-
proached by the loci of the PMA mode. As the proportional
gain is increased, the PMA mode starts to become under-
damped. The higher beam modes become more stable with
large K, due to the more negative real parts of the closed-loop
poles. The natural frequencies of these modes are also raised
at the same time. Unlike these higher modes, there is a drop
in frequency of the first mode as the gain is increased. With
a PMA attached, the scope of controller design for the first
beam mode is very limited since its loci do not venture far into
the left half plane.

Use of D control on the PMA-beam system runs the risk of
instability, though this might seem a little counter-intuitive.
Inman (1990} has shown this to be true using a lumped model
of the beam. By showing that the symmertric part of the damp-
ing matrix is negative definite if K, is greater than a certain
value, he has shown that the stability of the PMA-beam system,
under a derivative control law, is not guaranteed. This con-
dition of positive definiteness, however, is only necessary and
not sufficient. If the condition is not satisfied, no conclusion
about the system’s stability can be drawn. A more conclusive
study of the system’s stability can be made by root-loci analysis,
as shown in Fig. 3.

The above plots indicate that the instability associated with
use of dertvative control is solely due to the fundamental beam
mode. The loci of the higher beam modes are all situated safety
in the left half plane. The fact that their locations are succes-
sively further from the imaginary axis is attributed to the pres-
ence of Voigt damping. However, even if the beam is
undamped, these modes will still be stable under a D control
since the departure angles of their loci point to the left. The
PMA mode is also stable. It is overdamped due to the presence
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of the third zero at the origin, which draws to the origin the
right branch of the PMA loci.

On the other hand, the departure angles of the first mode’s
loci point to the right. Any increase in D gain from zero
immediately reduces the stability of the mode and eventually
destabilizes it and the system therewith. For a combined system
that has no damping, a locus departing to the right immediately
implies instability. If the system is damped, the open-loop poies
will be shifted to the left. Here, a rightward departing locus
does not immediately imply instability; however, instability
still sets in once the gain is large enough to drive the first-
mode loci bevond the imaginary axis.

Since the departure angles of the first-mode loci point to
the left for P control and to the right for D control, there is
a critical ratio of derivative to proportional gain below which
the first-mode loci will remain in the left half plane.

By checking the definiteness of the damping matrix, Inman
(1990) has defined a set of «'s that will make the lumped
parameter system asymptotically stable. The similar approach
for finding «, for a distributed parameter system will be dif-
ficult. For the continuous system, «. can be found by express-
ing the departure angle of the first mode as a tunction of o
and then setting it to 90 deg or 270 deg. With the PD control
expressed as

G (5) = K(1 + as) (18)
The departure angle is given by

3s _ —(1+as)B(s) -
oK d4(5)
ds

Evaluating Eq. (19) at the open-loop pole location of the
first mode and then solving for & by setting the real part to
zero (Lo get a stationary point for the real part with respect to
changes in X) gives

o.=0.318 (20)

The impact of & on system stability is shown in Fig. 4. Below
the critical «, the system is always stable for all gains but
beyond the critical «, there exist high gains which destabilize
the system.

The first mode becomes less damped with larger values of
«. This might prompt one to ask if a D action is at all desirable
in a PMA system. The answer to this wiil not be complete if
the higher modes are not taken into account. Though the
derivative feedback has a destabilizing effect on the first mode,
its effect on the higher modes is exactly the opposite. This is
reflected in Table 1, which shows how the pole locations of
the first four beam modes of a system without distributed
damping shift under the P (& = 10) and PD controt {k =10,
o = 0.2).

The implication of this study is that when the PD control
is used, damping for the high frequency vibrations of the
closed-loop system is higher than when the P control is used
(since the poles of the higher modes have more negative real
parts when the former is used). While the P control is more
effective than the PD control in damping out low frequency
vibrations caused primarily by the first mode, it is not as
effective as PD control in damping out high frequency vibra-
tions of the closed loop system. This is illustrated in the impulse
response plots in Fig. 5.

5 Conclusion

By working with a distributed plant model, accurate con-
clusions can be drawn about how the different modes respend
to a certain control effort. This is best described by the various
root-loci plots presented. The s-plane analysis of distributed
damping has provided a detailed picture of how each of the
two forms of damping affects the individual modes. Viscous
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Fig.4 Raot-loci for the first beam mode of the combined system under
PD control. The ratios of B gain to P gain are (a) & = 0.2, (b) o = 0.318,
and {c) o = .35, respectively.

damping maps the undamped, open loop poles and zeroes from
the imaginary axis onto a vertical line in the left-half plane,
thereby imposing a lower bound on the system damping. Voigt
damping, on the other hand, maps the open loop poles and
zeroes onto a circle in the left half plane, thereby making the
h_igher modes more stable than the lower ones, and at the same
ume, imposing an upper bound on the system’s natural fre-
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Table 1 Closed-loop pole locations for the lirst four modes under P
and PD control

1st mode Ind mode 3rd mode 4th_maode

P Contral - -0.2083+2.1598) | -1.0246+18.880) | -0.7443+55.379} { -0.5160+110.65;

P-I: Contred | -0.0600+2. 1570 | -1 1848+ 17.825] { -1 525+54.7820) | -1 1790+ 114355
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Fig. 5 Impulse responses of {a) open-loop system, (b) P control with
K = 10, « = 0, (¢} PD control with K = 10, « = 0.2
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quencies. With Voigt damping, the stability of the system can
be improved with just 2 P controiler alone since the various
root-loci move leftwards along the circular trajectory, It is
obvious, therefore, that these forms of distributed damping
provide a certain level of safeguard against spill-over instability
in structural control, especially Voigt damping. Alse, con-
trollers of the types discussed will never run the risk of insta-
bility as long as positive gains {negative feedback) are used.
The addition of a critically damped PMA shifts all the open
loop poles and zeroes down and to the left slightly, with the
lower modes affected more than the higher ones. The risk of
instability in a PMA system using derivative feedback has been
addressed, and is attributed 10 the first mode only. Derivative
feedback has to be used in conjunction with a proportional
feedback, with due regards for the critical gain ratio, in order
to avoid instability. In controlling high frequency vibrations,
a PD control is more effective than a P control, and the reverse
is true in controlling low frequency vibrations.,

The work reported can be extended to the problem of struc-
tural control with noncollocated actuator-sensor pairs, since
it is only a matter of changing the **x™* and *‘{*’ variables of
the distributed transfer function. The control in the noncol-
located case is more complicated due to the system nonmini-
mum-phase zeros. The exact transfer function model used in
this analysis can also be used as a basis for comparison of the
various model reduction techniques commonly used in struc-
tural dynamics (Pang et al. 1991).
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