Tsu-Chin Tsao
raduate Student.

Masayoshi Tomizuka
Professar.

Department of Mechanical Engineering,
University of Caiilornia,
Berkeley, CA 94720

Adaptive Zero Phase Error
Tracking Algorithm for Digital
Control

This paper describes an adaptive feedforward controller to let the outpul o f a plans
with siable and unstable zeros track a time varying desired outpui. The dynamics of
the closed loop svstem consisting of the plant and the Seedback controiier are as-
sumed unknown or slowly varying due to changes on the plant parameters. In the
conirol scheme proposed in this paper, the feedforward controlier is adaptive while
the feedback controller is fixed under the assumption that the closed loop system re-
mains stable ot all times. With a few samples of future reference input data
auailobie, the preview action of the adaptive feedforward controller cancels the
phase lag caused by the closed loop dynamics and attains the zero phase error track-
ing performance {i.e., the plant output is in phase with any sinusoidal desired ous-
put) asymptotically.

1 Introduction

The design of adaptive controllers for nonminimum phase
systems is not straightforward because the stability considera-
tion prohibits direct applications of self-tuning and model
reference adaptive control algorithms which cause pole-zero
canceilations. Clarke (1984) conducted an extensive review
and simulation test on existing adaptive control methods for
nenminimum phase systems and concluded that with ap-
propriate modifications and by using as much prior informa-
tion of the process as possible adaptive control is viable even
for nonminimum phase systems. However, while avoiding
cancellations of unstable zeros, the tracking quality is usually
sacrificed in most of the modified algorithms because the
unstable zeros remain in the reference model transfer function
from the desired output to the plant output and they cause
significant phase errors over a broad range of frequencies.

This paper describes an adaptive feedforward controller to
let the output of a plant with stable and unstable zeros track a
time varying desired output without any phase error. The
dynamics of the closed loop system consisting of the plant and
feedback controller are assumed unknown or slowly varying
due 10 parameter changes in the plant. It is further assumed
that the closed loop system with a nonadaptive feedback con-
troller remains stable at all times. For achieving a good track-
ing performance, the feedforward controller is made adaptive.
This assumption certainly needs some prior knowledge of the
plant to design a robust feedback controller.

The adaptive feedforward controller is based on the zero
phase error tracking controller proposed by Tomizuka (198%)
which compensates the phase error caused by the dynamics of
uncancellable zeras. A normalized least squares algorithm is

Contributed by the Dynamic Sysiems and Conirel Division for publication in
the Tourkar oF Dysamic SysTems. MEASUREMENT, AND CONTROL. Manuscript
received by the Dynamic Systems and Contro! Division November 1985,

Journal of Dynamic Systems, Measurement, and Control

used for identifying plant parameters. The identified
parameters are used for calcuiating the parameters of the feed-
forward controiler and successively the feedforward control
inputs. Therefore, the proposed adaptive algorithm is an in-
direct adaptive contro scheme.

The remainder of this paper is organized as follows. Section
2 describes the zero phase error algorithm and the parameter
adaptation algorithm (P.A.A.). Section 3 analvzes the system
stability and the convergence of the plant output to the
reference signal in the deterministic sense. Section 4 presents
the simulation results and verifies the validity of the
algerithm. Conclusion and future works are given in Section
5.

2 Feedforward Controller for Tracking Time Varving
Signal
2.1 Zero Phase Error Tracking Controller, Figure |

depicts the overall structure of the tracking control scheme
preposed by Tomizuka (1985). The closed Joop system, which
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Fig. 1 Zero phase error fracking system
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consists of a plant and a feedback controller, is asymptotically
stable and is described by
y(k) g 9Big”") _q “B-(g""HB* (g7 "
rik) Alg™h Afg™h

where g~ ! is a one step delay operator, r(k) and y (k) are the
refesence input and the plant output, respectively, A(g~'} =
l4+ag ) +...+8,9 " Blg-)=by+byg™' + ...+
b,g~", B(l) # 0, and B(q"):s factorized into B~ (¢g~') and
B~ (g~"), which will be explained below. The condition B(1)
# 0 implies that the closed loop system has a nonzero static
gain and is true in almost all the control problems. The zero
phase error feedforward controller (ZPETC)is

A(g-"B"(q)
B* (g-")B- ()]
where »,, (k+d) is a d-step advanced bounded desired cutput
signal, and B~ {g) is obtained by replacing ¢~! in B~ (g~")
by g. Notice that ZEPTC cancels all the closed loop poles and
zeros contained in B* (g~!). Therefore, B~ (g~7) defined in
equation (2.1) must include all the plant zeros outside and on
the unit circle of the complex piane and some of those inside
the unit circle.

From eguations (2.1) and (2.2), the overall transfer function
from the desired output y,, to the plant output y becomes

yik)y B (g"N)B" (g}
Ym (K} (B- ()

It can be easily verified that the frequency response of this
transfer function has 2 zero phase shift for all frequencies and
2 unity gain at zero frequency (Tomizuka, 1985). The fre-
quency response gain remains close to | in a low freguency
range. Therefore, if y, is smooth, k.e., no strong high fre-
quency components, the actual ouptut stays close 1o the
desired output. Specifically, if y,, a signal is of constant level
or constant rate of change, ¥ = y,, is achieved.

2.1)

rik)=

> ¥ (k+d) (2.2)

(2.3}

3.2 Adaptive Zero Phase Error Tracking Con-
troller. When the plant parameters are unknown, the feed-
forward controller (2.3) cannot be directly implementable and
is made adaptive. To consider a general case, the closed loop
system is separated intc a known part and an unknown part.
The numerator of the known part is further divided into
cancellable part and uncancellable part, i.e.,

yiky q 9B(g"")Bstg " )Biig™ "

rik) Alg N Ag™")
where A{g~ 'Y =1 +a,g~' + ...+ a,,]q‘"’ and A,(g"!)
is the dencminator of the unknown part and known part
respectively. B(g=!) = by+b,g™' + ... + b, g ™ is the
pumerator of the unknown part, and Bs (g™ ") fBO (= 0
and Bg {(g-') are the uncancellable and the cancellable por-
tions of the numerator of the known part.

The separation normally applies since the feedback con-
troller is known and the plant dynamics are ofien partially
known, Only the unknown part of the system is made adaptive
in the feedforward controller. Referring to the block diagram
in Fig. 2, the reference input 7{4) to the closed part is deter-
mined by

Aslg~M8s (q) u
Bi{g~"Mss (Y "
Alg~".K)B(g.k)

[B(1.5)F
A(g~' k- 1)B(g.k~1)
(BuLk- 1P
where A(g-!, k} and B{g~', k) are given by the parameter

2.4)

rik)= (k}),

U {k)= Ym(k+d) 2.5

(if Bum=0, u, (k)= y,,,{k+d))
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Fig. 2 Adaplive zero phase error tracking system

adaptation algorithm (P.A.A.} described below. Referring to
Fig. 2, the reference model for the P.A A is,

vik+d)==Ag yk+d=-D+B(g ")y (k) @2.6)

a1

where A*(g Y =g, + 237 + ...+ a,¢ and
Bo(q-]}
rrlky=————r{k),
} Aglg™"

(Bolg~') = Bglg~") By (g ')- Equation (2.6) can also be
represented as

yik+dy=8T¢(k} (2.7)
where 87 = (@, ..., dnp, bor .- .4 by )and o7 (k) =
(—y(k+d=1) oo, —ylhk+d=n), ri(k) ...,

r'{k=mMn.
Let n{k), ¢ k) and ¥ (k) be respectively defined by n{i} =
max{le (i), 1),
(k) yix)
p{k) = d kY=
e(X) 7K and ¥(k) (k)
Then, the normalized jeast squares parameter adaptation
algorithm for adjusting the parameters in the feedforward
controtler is

F(k-1De(k—d)e’tk)
+¢7 (k—d)Flk-De(k—d)

where e (k)—}(k)—-e (k—lje(k—d)=-8"{k-1)o
(k—d) (Gtk) = #(k) — & is the @ priori adaptation error.
The adaptation gain F (k) is adjusied by

F-Y kY =XNKIF k- D+ o (k—dre” (k—d)],
O<hik)l=l, FO=F{01>0

é(k)=éu-—n+ (2.8)

ar

F{k)-W[F(k— 1§}

_ Flk—Dol{k—dioT{k—dVFlk- 1)]
I+ {k—d WF (k- Do{k—d)
where M{k} is the forgerting factor.

{(2.9)

3 Stability and Convergence Analysis

In the nonadaptive case, the tracking performance of
ZPETC is specified by {2.3). In 1his section, the overall sysiem
with the adaptive ZPETC is shown to be bounded-input,
bounded-output stable and its asymptotic convergence proper-
ties are obtained to understand the tracking performarnce.

The P.A.A. stated in Section 2 has the following properties:
if A(k) is selected such that 0 < m £ A{k) = !, and F(4) <
M, tk>0), then

7] ]1rn ek +dy=lim —8T(k+d-De{k)=0 (3.1
-
(i lim dcky==6. (3.2}
k==
Gin Wk sM < (3.3)
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The assumption on A(k} can be satisfied by setting A (&} =
I or by letting the trace of F{k) constant. The latter is ac-
complished by setting

1 o  (k—d\F k- 1o (k—d)
rF0) 1+o7 (k—d)F(k—-1)¢(k—d)

For A(k) = 1, the adaptation gain is time decreasing. The
adaptation gain with a constant trace is preferred for time
varying closed loop dynamics. The proof for the above results
is only a slight modification of Lozano and Goodwin (1985)
and is omitted here.

Based on (3.1), {3.2) and (3.3) the asymptotic relation of ¥
and v, can be obtained as follows. First, consider an auxiliary
ﬂgna}y,,, which is defined by

AMiky=1-

(3.4)

Alg " kyyntk+dy=B(g! k)r (k) (3.5)
or
ylk+d) = =A% g Kyt lk+d-1)
+Blg 1k (k) (3.6}

Subtracting (3.6) from (2.6}, we obtain after some manipula-
tions:

Alg L kY thk+d) —yn (k+d)) = =BT (K)o (k)
Biky=4ik)—6) (3.7
Comparing (3.7) with (3.1),
—8T (ke k) =[-8 (k+d-De(k)+ (§lk+d-1)
—é(k)yTo (k) In (k) (3.8

If (k) is bounded (i.e., N (k) = M, < =), then {rom (3.1},
{3.2) and (3.8), it follows that

lim —&7(k)o(k)y=lim A{g~ 'k} (y(k+d)
k= k=

—ynlk+d))y=0 {3.9)

To show that s#(k) is bounded, it suffices to assure that
r’ (k) is bounded since 4 {g~"') has all the roots inside the unit
circle. Note from (2.5) and (2.6) (see Fig. 2 also) that r' (k) is
nothing but the moving average of vy, (k+ d} except for the
stable regressive parts By * (g7 '}Y and Ay{g~'). Assuming that
},,,(k+ d) is bounded and [B(1.K)FF > & > 0, we conclude that
r'{k} is bounded in view of (3.3). Therefore, the system is
bounded input (v,) bounded output ()} stable and the adap-
tive control algerithm satisfies (3.9).

The asymptotic relation between » and ¥, can now be con-
sidered. First it should be noted that the following two time
varying operations have to be distinguished (Goodwin and
Sin, 1984): i.e.,

Alg= kIBlg - K ywik) = 3, Y6, 00b, (k) w(k—i=))

L

=B(g- " )A(g~ k)wik) (3.10

Alg ' k)Blg~ Ky wik) = 1, 36,0k b, (k=D wik—i=j)

[

#B(g 1 ky-A(g " k)w(k) (3.11)

However, because all the signals (¢, u,, r, r’, ¥} are bounded
and by thc property (3.2}, it is clear Ihal (3.10) and (3.]1) are
asymptotically indistinguishable: i.e., /1((;", k)B(q"
Kywlk) = B(Q : k)qu“ kyw(k) = A{g~', k)-B(g',
Kyw(k) = B{q" kKy=A{g ", kKyw(k) as k— . Therefore,
the following applies:

lim A(g- 'k)y,,,{k+d)—llm Big-1,ky (k)

f=-=

By (¢~ ")Bg (g)

=lim f?(q".k).[ T
o ;
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- -1 3
.(A(q K)B(g,k) ym(k+d))]=lim Alg=1.k)

[B(LA0°
Big-' k)Blg.k) Bilg~" )85 (q)
.[ [B(1,4)]* B; (D)° ym{k“‘d)} (3.12)

Then, from equations (3. 2) (3.9 and (3.12) the asymptotic
relation between y and ¥, 18

lim A, (g DN (k+d) =y, (k+d))=0 (3.13)
where -
Yotk +d)

B (g~ ")B=(q) Bilg~ 1)30 (g}

B(F EooE e Gaa

Notice that equations (3.14) implies that y_, is close to y,, in
the sense of the zero phase error whether or not the estimated
polynomial B{g~"', k) converges to B(g™').

Let y, (k) denote the plant output under a tuned ZPET con-
troller: i.e., the transfer function from y,, (k) to y,{k}is

yuik+d) _ B(g~")B(q) B; (g~ "85 ig)
Yo lk+d) [B(1))? [B5 (1))F

It follows from equations (3.13) and (3.15) that ¥y, (k) and
y(k) under the adaptive ZPET controlier satisfy

lim A(g k) lk+d)—y(k+d))
K-

Big~"8(q)
[B(1))*
_B, (q”}B,(q)) Bi (g~ 1585 g)

(B(1)? {B; (LY

(3.15;

= i -1
lim A (g7

Yk +d) (3.16)

Notice that

(B(f;“lB{q) _ B,{q")ﬂalq)) Bi (g~ )8y ()
[B(H)* [B)? [Bg (1)

is close to zero at low frequencies whether or not B (g~ "}

equals to B(g~').

in general, as long as A, does not have roots on the unit ¢cir-
cle, equations (3.13) implies

Fmlk+d}

lim plk+d) =y, (k+d}]=0, {3.173
ke

and (3.16) implies
Iim [y, (k+d)~y{k+d)j=0 (3.18
k==

Note that even if there exist unstable roots in 4. (g~ '), equa-
tion (3.17) still holds, because if this were not the case,
¥(k +d) would have to be unbounded which contradicts the
already proven boundedness of y(k).

To avoid the pathology of 4, (g~') having roots on the
unit circle, the constrained least squares method (Goodwin
and Sin, 1984} can be used to constrain the parameter space of
A(g-?, k) in a closed convex set which does not intersect any
point having roots (as a polvnomial) on the umit circle.
Another way is to make ¢ (&) persistently exciting such that
A_(g™"y = A(g-'} is assured. For least squares type
algorithms, ¢{k) is persistently exciting if there exist some A,
a, 8> 0such that

b+ N

alz Y, e(ieT (N =81 k>0,

k+

(Goodwin and Sin 1984), or, equivalently, {r’ (%)} has a spec-
tral distribution function which is nonzere at » points or
more, where 7 is the number of parameters to be identified. It
is possible that the time varying filter from ¥, 10 &, may sup-
press the spectral components of the signals. Therefore, the
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Fig. 5 Simu'ation result of adaplive ZPETC (plant zero varies from -2
ol siep 80 to — 2.5 ot step 180}
adaptive filter is kept fixed until sufficient excitation has been
obtuined (Bai and Sastry, 1986). The amount of excitation 1s
measured by

kN

3 eheT (.
k

In this case, the P.A.A. will update the parameters only at
lime instants ks, where kg = 0, k,,, = k,+3,and

6,= min &

&S

(3.19)

TR

5= [Al 2: ¢¢»Tzﬁl]
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Fig. & Simulation result ol adaptive ZPETC {unmodeled dynamics ()

In the stationary case when the parameter estimations con-
verge, the filler when y, to r' can at most Suppress n, + N, +
n, points of the spectral distribution function of the signals
where n,, n,, and n, are the orders of Atg=-1), B(g™'), and
B (g~"), respectively. Hence, if y, hasat least n + ny + A,
+ n, NONzero points in the spectral distribution function,
(e.2., ¥ is combinations of sine waves of (n + ng + 0, +
n,)/2 independent frequencies, where the factor of 2 is due to
generation of two nonzero points by each frequency), r’ has at
least n nonzero points in the spectral distribution function. 1n
this case, the parameter estimates cOnverge to the true values:
lim é(k) =6, (3.20)
k—o0
and the tracking performance of adaptive feedforward con-
troller is asvmptotically same as that of nonadaptive one,
namely:

-1 - -1 -
B(g "Blg)} B; (g B¢ (g) y,,,(k+d)]=0

tim [yk+) =507 Bz (D

k-
(3.213

To avoid parameter drifts due to disturbances from exogenous
noise of time varving, nonlinear, and unmodeled dynamics ef-
fects, the parameter space should be constrained or a dead
zone on the estimation error (Goodwin and Sin Sections 36
and 3.7) should be set.

4 Simulations of Adaptive Zero Phase Error Tracking
Controller

Alihough it would be unfair to compare the algorithm with
methods in Clarke (1984) which were aimed at sell-tuning
regulation, the Clarke's nonminimum phase open loop stable
plant is used 1o find how the algorithm improves the rracking
performance:

(1—0.7q")y(k}=(l+2q")u(k—l) 4.1}

The desired output signal y, has a series of step changes
between 20 and 50 taking place every 25 samples. The methods
in Clarke do not cance! the plant zeroes. Therefore, the track-

Ang error is

e(k)ymy, (K)=y(k}
Big™! 2
(1= 2LD); (= Ga D mrm kD) D
For ZPETC, the tracking error is

B(l)
Blg ' )B(q)

etk = (1= =5y

Ym K}
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9

For the specified v, {k), the maximum errors from (4.2)
and (4.3) are 20 and 6.7 respecrively. Figure 3 shows the
simulation result of the adaptive zero phase error tracking
controller. The maximum tracking error is confirmed te be
6.7. In the simulation, the feedback controller was omitied
since the open loop system is stable. The identifier was the one
described by equations {2.8) and (2.9) with A(k) = 1, and the
method to avoid pathology of A (k) as described at the end of
Section 3 was not used.

Figure 4 shows the simulation results for an overspecified
order for the adaptive ZPETC. The reference model was
overspecified to be third order. The 6 unknown parameters of
the mode! do not converge 1o the true values. However, the
control quality is still good. As shown in Fig. 4 the maximum
error is even smaller than tha in Fig. 3.

For slowly time varving system, the parameter adaptation
gain with a constant trace is suited. Figure 5 shows the simula-
tion results when the plant zero varied linearly from -2 at
step B0 to — 2.5 at step 180. The trace of F(k) wasset 1. The
result shows that a gpood tracking performance is maintained
even during the parameter variation period.

In order 1o examine the effect of unmodeled dynamics, the
adaptive ZPETC designed for the plant (4.1} was tested for
each of the following plants:

iy (1-03¢7")1-07¢" ")y(k)
=(1+2¢"ulk-1)
{(1-0.29¢"1 +0.25¢~)(1 - 0.7~ )y (k)

(4.4)
(i)
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=(1+2g Dulk-1 4.5
(i} (1-0.7g~ "1 -0.7g¢ "Wik)
={l+2g  u(k-1) (4.6

Simulation results in Fig. 6 (case {7, Fig. 7 (case {{}) and Fig.
8 (case (i) show that the scheme can tolerate moderately fast
unmodeled dynamics.

As an application to servo probiems, & mode! of a machine
tool carriage driven by a DC servo motor (Tomizuka er al.
1986) is used in the next set of simulations:

(1-0.35240g " — 0.34426g 2 — 0.303974 31 (k)
={0.01093 + 0.035034 ' + 0.02048g " k-0

A proportional feedback controller with the feedback gain &
= 16,7 results in a stable closed loop system:

(1-0.16987g ! +0.24074g - + 0.038035g " (k)
=(0.18253 + 0.58500g - ' + 0.34202g " u(k—1) (4.8)

Three 1ypes of reference inputs were tested: (7} a square wave,
(ify a single frequency sinusoidal wave, and (iff) a general
wave. Figure 9 shows the results for case (). The maximurm er-
ror observed at discontinuities of the square wave is about 30
percent of the step change and coincides with the va}uc
calculated from equation (2.3). For case (i), the identified
parameters did not converge to true values due to the lack of
persistency of excitation, As shown in Fig. 10, parameter
estimation errors drift slowly from 67(0) = {-0.330, ~ 0.241,
—-0.038, 0.317, ~0.585, —0.342) 1o BT{10000) = (—0.332,
~(.229, —0.012, 0.342, -0.572, —0.343). Figure 11 com-
pares the tracking error under the adaptive scheme and that
under the tuned ZPETC (with parameters known). The error
magnitude of the tuned ZPETC is about 0.05 percent of the

@7
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signal magnitude. The error of the adaptive scheme eventually
becomes smaller than that of the tuned ZPETC. This is
because the adaptive filter generates a more favorable
magnitude scaling factor than the tuned ZPETC for this
specific reference input. Figure 12 shows the results for case
{iii}. The parameters converge 10 the true values and the adap-
tive controller establishes the same tracking performance as
that of tuned ZPETC. The error magnitude is about 2.5 per-
cent of the signal magnitude.

§ Conclusions

This paper described the adaptive zero phase error tracking
controller, which generates a reference input signal to let the
output of a nonminimum phase plant follow time varying
desired outputs with a small tracking error. The features of the
proposed adaptive feedforward controlier include: (/) the feed-
back loop is unperturbed by the adaptation algorithm, and
hence, the adaptive feedforward controller can be easily
switched on or off as a module; (i) system stability is easily

354/ Vol. 109, DECEMBER 1987

established because of the moving average characteristics of
the feedforward controiler and because the feedback loop is
untouched; (iif} the preview action of the feedforward con-
troller upgrades the tracking performance by canceling the
phase lag caused by the closed loop dynamics.

Time varying or unknown aspect of the closed loop system
addressed in this paper was primarily due to variations of the
plant parameters. However, the simulation study included
other uncertainties such as unmodeled dynamics. Although it
was demonstrated by simulation that a superior tracking per-
formance is maintained when unmodeled dynamics are stable
and are moderately fast, this point must be further analyzed.

When adaptive regulation is necessary, the pole placement
approach without zero cancellation can be used {Lozano and
Goodwin, 1985). In this case, adding the adaptive feedforward
filter Blgq, k)/[B(1, kK)]* in from of the regulator foop, the
zero phase error tracking can be achieved asymptotically.
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