Control of Linear Motors for
Machine Tool Feed Drives:
Experimental Investigation of
Optimal Feedforward Tracking
Control'

David M. Alter™ and Tsu-Chin Tsao?

This paper investigates the use of optimal [, and H. model
reference optimal feedforward control to enhunce the racking
peformance of « linear motor drive. Expevimenal work is pre-
sented which studies the effects of signal preview, tracking con-
siraing, and reference model choice on 1racking performance.
Suboptimal 1; control where the closed-loop svstemt Has o zero
o the unif circle due fo integral action in the feedback control-
ler is given special antention, and (s seen 10 give near optimal
performance for the svstem under study here, For the specific
trajectory emploved here, the best performing feedforward con.
troflery were experimentally seen to reduce by more than half
the maximum and rmys tracking ervors of the H. optimal feed-
hack closed-loop svstems,

1 Introduction

Direct electric teed drives have come under study relatively
recently for usc in next generation high-speed machine tools.
T exploit the high-speed and acceleration of direct linear drives
lor machine tool apphications, the drive control must achieve
ax high as possible tracking performance and dynamic stiffness.
By sugmenting the A. optimal position {eedback loop for maxi-
mium dynamic stiffness { Alter and Tsao, 1996, this paper pre-
seits an experimzental investigation of the /| and /. opumal
feedforward tracking control from ( Tsao, 1994} to improve the
tracking performance, with the two optimal nom cases being
presented in parallel, Special attention is given w a practically
important case where the feedback controller has integral action,
n this case, an optimal solution to the !, problem does not
menerally exist duc to the existence of a unit circle zero in the
model matching formulation.

The {; norm of a transter function tmpulse response is the
induced norm of L. (i.e.. bounded) signals. Hence, mimmizing
the I} norem of the tracking erroe system minimizes the maximum
error vulue over all bounded relerence trajectories. Alternalely,
the H.- norm of a transfer funciion is the induced notm of L
tic., {inile energy ) siyoals, and is also equal to the input-output
ratio of tms signal power, Thus, minimizing the .. norm of a
tracking error systemn minimizes the worst case nms error ratio.
The {; norm scems particularly applicable to machine tool appli-
cations since it provides a dircet and aseful measure of the part
geometric tolerance.

Some notation used in thts paper will now be clarified. Con-
sider the discrete linear time-invariant system whose impulse
response s denoted as A(k), &£ = 0, 1,2, ..., =, Its induced
{, systcm norm may be computed as
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Also, the Z-transfomm of k(L) is denoled as H{g):

Hizy:i= 3 bkt

Lo

For optimal design purposes, it s most convenient o define
system transier functions in the A domain, where A 15 related
to the conventional Z-transtorm variable z by A = ¢ . Denoting
the set of proper stable rational functions by #.., it is clear that
a systern in the A domain is BIBO swble if and only it its
transfer function has all of its poles oufside (he unit circle in
the complex planc,

2 Optimal Feedforward Problem Formulation

Figure | depicts the block diagram of feedtforward controfler
implententation., where Py ks the phant, Cprand Cpy, are the feed-
forward and feedback controdlers, and My 18 o reference model
with a desired tracking property. The model following error
¢lk}is

k) = (MY GCtrh) ()
where
M =M, —(PCuH{1L - P
and G =P+ PG (27

Note that M7 and & are known afier the design of Cr.

It will be seen in the next section that the solution methods
to {1, and {, optimal feedforward problems depend upon Lhe
unstable zeros of . The zeros of (7 contain the vnslable plant
reras (e, zeros of P} and unstabie fecdback controlter poles,
Although other feedforward control configurations exist, an ad-
vantage of this one is that the tracking crror signal (e} is pre-
served in the block diagram. and the proportion of the control
input signal atributabte to the feedforward and feedback con-
trollers cun be readily determined. Also, the unity de gain,
it the feedback controlier is designed with integral action, is
preserved for any feedforwarnd controtler.

Since C is required stable for obvious reasons, the optimil
tracking performance, based upon the induced norm of the error
system, may be defined in linear affine Jorm over the stable
free parameter Cpp:

Sro=inl M7 — GGl

A

Led
S

gt ra

where (-] represents in this casce the [, or H. nommu [f the
infimum Is achieved by some G il 15 colled the optimal
tracking controller.

Because the {. or H. induced norm used in (3) i mininuzed
over a large class of reference nput signals, namely norm
bounded signals, the resulting feedforward tracking conwroller
is usually overly conservative and does wot give good tracking
performance. as will be scen from the experimental resalts pre-
sented in a buter section. To achieve belter tracking performance
for practical input reference signals such as those with speed

M, |

|
Fig. 1 Block diagram for feedforward formulation
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or acceleration limit, Tsao ( 1994) presented means to limit the
reference signals (o smaller clusses. The remainder of this scc-
tion briefly reviews the methods formulated therein. Notation
will be given for the /, optimal problem, The . optimal prob-
lert can be obtained by simply replacing in the appticable places
the signal norm L. with 4, and the transfer function norm (-
with ..

Reference Trajectory Preview., This gives the controller
the ability to anticipate trajectory behavior, and to compensate
for the dynamic delay of the plant. The optimal leedforward
tracking problem is solved by simply using r(k + N,) as the
trsjcctory input 1o the system and by replacing M, with
}\;-, :"'r'fn.

Reference Trajectory Constraint.  The reference signal 1s
assuined generated by filtering an unknown signal v through an
enstable ransfer function 774

r=T v where T & £,

but 77 g R, and v € L. (4}

When formulating the construined optimization problem, the
error svstem is defined as £ .= A" — Gy and one seeks G,
so that £ = E°T for some £ € #,. Mintmiving the induced
norm of the constrained ercor system F' leads to the following

result:

sup GErl. =

A =0

sup | E'u

el

L FNE - (3)

E"Frl, = sup |

In this way, it is possible to minimize the model following errar
tor a class of relerence trajectories with limited velocity or
Himited acceleration by choosing 7 = (1 — XNyor F = (1 - a3
respectively. Such speed limirs are of interest in machining since
they may be adjusted at the path planning stage of the machining
process. Referring ta (5}, one sees that if the velocity or acceler-
ation bound is [, = @, then the maxinum model following
etror is e E°|,. . This result may be used o perform mechanical
tolerance control if desired.

The constraint £ = M' — G,y = TE' is incomporated into
the framework for optimal feedforward tracking by rearranging
it into the Diophantine equation GGy + TE' = M’. Provided
that G and 7 arc coprime, all selutions 1o the Diophanting
cquatmn are

(Co BT = IXM" + TQ, YM' — GQ|, ¢k (6)

where X, ¥ € L. are solutions to the Bezout identity GX + 7V
= L. Therefore, the constrained optimal wacking problem may
be written a3

J® = iaf M - GO,

[

(7

where M = ¥M', and C,, is obtained from (6} after solving
(7). Note that the chosen preview length and reference model
wre embedded in M and that the actual racking error differs
from the model following error unless M, = | A weighting
tilter W could also be placed in (7) for frequency weighted
optimization but it is not uscd here because the relercnee model
M, has a similar effect,

3 Optimal Feedforward Problem Solutions

Solution techniques for linear alfine optimization problems
of the form (7) are well established (ot the H.. and I, norms,
In general, these methods do not allow G to contain any unil
circle zeros One technigue for obtaining the ne wnir circle zero
solution in the H. case may be found in {Zames and Francis.
1983). A general solution for the no unit circle zero [, problem
may be found in (Dahleh and Pearson, 19873, 1t can be shown
that if ¢ has enly one unstable ( nou-unit circle ) root, the solu-
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tions to the {| and F., minimization problems are identical, e,
QF = g and JM = Jo (Vidyasagar., 1991}, Note that any
number of origin zeros common to both G(A) and M{X) may
be factored out of etther minimization problem. 11 only one
nonotigin unstable vero of G remaius, the /) and F, solutions
are identical in this case too.

The lincar motor continuous-time dorain transfer function
is of relative order 3. The zero-order hold A domain transfer
function of a relative order 3 system always has one unstable
zero at the origine and another unstable zero approaching
—0.2679 as the sampling period approaches zero. Depending
upon the position leedback controller used in the servo-loop,
the previous paragraph suggests that it is possible 10 design
a feedforward controller which simultaneously gives optimal
tracking in both the {, and H.. sense. This imphication is applica-
ble to many electro-mechanical servo systems, which may be
modeled similar to the linear motor,

The above solution methods are not directly applicable when
(7 contains umi circle zeros, which is a casc that is of some
practicat interest, For exampie, scrvo-loops which asymptoti-
cally reject step disturbances {i.e.. integral action) will contain
a zero at A = | duc to the pure integrator in the controller.
Special treatment of this case, where G contains a zero at A =
I will be based upon the Tollowing observation: if the reference
model My has unity D.C. gain, then M’ s defined in (2) will
contain the same unit circle zero at & = 1 that & does. This is
a subcase of the more general situation where all unit circle
zeros of (¢ are common o M {lermed the common unit circle
TErO CUse). )

The optimul H. solution in the common unit circle zero cuse
may be found by solving a sequence of problems where the
unit circle zeros are perturbed (o the stable region, with the
perturhalions converging to zero ( Vidyasagar, [9835). The opli-
mal /; problem is more dilficult however, and. in fact, no general
solution method is currently documented. The /[, problem was
investigated in ( Vidyasagar, 1991). a work that produced sov-
eral results of interest here. First, a methad was given for com-
puting the optirmal cost J™. Second, it was shown for the
common unit circle zero case that the perturbation method used
fr the Ff. problem docs not in generai converge to the optimal
solution in the , case. However, a conventent method lor com-
puting the sub-optimal cost of the converged controtler was
presented. A measure of suboptimality is thus available, from
which it might turn out that the sub-aptimal controller obtained
vig the perturbation technique will provide sufficient perfor-
mance,

Referring to the definition of (7 given in {2). and assuming
an integral action {but otherwise stable) feedback controller
Ciy. it is seen that G will contain an unstable origin zero, a
single vait circle zero at & = 1, and { provided that the sampling
rate s suffictently fast) a single negative unstable zero. Tt will
be assumed that the reference model and preview length combi-
natton have been selected so that ,\}fM., =0at A =0, and that
the resulting single zero al the omigin common to both G and
M’ has been factored ot ot the norm. The following coroliary,
praduced by applying the results of Vidyvasaga's work. charac-
terizes the /) optimal cost and the sub-optimality of the perturba-
tion method solution:

Corallary 1. Consider the following optimization problem:

JP = inf |M - GOy,

(AR
where M(1) = 0, and G(A) = (A — 13{(A ~ 63/(1 — BN G,
with b < 0. ib' < 1, and G;' & Fe.

M, G Qe R

TR
Define G, = 270
(1 — &Br)
X
and construct Q. = &
(th —1 - e)
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where ¢ = (0 and @, denotes the unique optimizing solution o
the problemn with G in place of G. Finally, let J§ = |M —
G . Then

2
Ji = ﬁ [ M} and lm 45 = 21 M(bY].
: a—sit

Proof: See Appendix.

The degree to which €2, is suboptimal 15 thus determined
solely by the location of the single unstable zero of . On one
extreme we have /= —1 which produces a worst case sub-
optimality factor of two. On the other hand, it is seen as b —
07 that ¢, docs indeed converge to the optimal solution. This
last observation represents a borderline case of a result pointed
out by Vidyosagar, where he states that {J, converges to the
optimal solution if the single unstable vero of (7 is positive.

4 Experimenial Results

The hardware used here is the same AURA HFA-L00/6 linear
motor utilized in Alter and Tsao {19967 and the reader is there
referred for hardware and modeling information, The two H.
optimal feedback comtrollers, controller design A and B pre-
sented therein, are used in this paper and referred as the same.
Controller A does not have Integral action while controller B
has integral action, resulting in a unit circle zero for feedforward
controfler design. At the same sample rate of 2000 He, the A-
domain zero-order hold equivalent of the model P (5) contains
an unstable onigin zero, and another unstable zero at A =
—0.3075. The reference model M, and constraint T have been
chosen ag

M, = 0250+ 24 0 Tl =Y
along with a preview tengih ¥, = m. M, is & zero-phase low-
pass filter of order m, while 7 represents the fuct thar the N*
difference of the reference trajectory is bounded by some known
value. Note that the noncansal M, reguires a minimum preview
length of &, = m.

The reference trajectory chosen for tracking performance
evaluation is composed of step. ramp, and parabolic elements,
and is representative of a type commonly used in machine tool
drives. The wave forn and its first difference are plotted in Fig.
2. The trajectory was actually implemented as a repetitive sig-
nal, such that this plot represents a single cyele from a periodic
wave form. Subscquent result plots have their time step axes
aligned with that in this figurc. The trajectory has a maximum
values of displacement at .0266 m, speed at (.38 m/s, accelera-
tion at 7.6 mfs” and jerk at 15200 m/s?, respectively.

At this point. tracking results using optimal feedforward con-
trol designed from Eq. (7) in combination with feedback con-

30j . E 02
w3 U L 0.5
] For E
20, : <
E 17 Feds g
=15 4 |ttt e E— 0 g
- e £ 5
= o] : [ -.05 é
] 1st difference — F -
1 E -0
5] E
1 E 0.5
] . . — - —F 32
0 220 440 660 830

- time step
¥ig. 2 Reference trajectory
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Table 1 Tracking resulis using optimal feedforward control designed

for feedback controllar A

Design max. tracking tracking error
Parameters error {m) rms {m)

# | m | Np| N § exper theor. exper. theor,
1 0 0 4] 2.6600c-2 | 2.6600e-2 Y| 1.7552e2 | 1.7582e-2
2 [ 1 0 R 2.6600c-2 | 2.6600c2 || 1.7552¢-2 | 115522
k] 0 2 0 §.178¢-3 3.17%¢-3 339603 539603
4 3] 3 { 2.524e-3 23153 1.63%e-3 1.95%e-3
5 o] 4 o T.17e-4 7.73¢-4 3.08e-4 5. 10e-4
6 Q 3 0 24804 2.38e4 1.57e4d 1.57e4
7 0 i )] 8.1le-5 7.31e-5 4.e-5 4.82¢-5
8 4] 7 0 3.2e-5 2.25¢-5 1.6e-5 1.48¢-5
9 1] 8 ] LS5e-3 6.91e-6 8.le-H 4 56e-6
10 0 2 0 | G¢-5 2.12e-6 [ ] t Ale-6
11 0 0] 8 1.9¢-§ A.5%e-7 6720 4317
2ol ol 1 3.33¢c-4 3.35¢-4 1,614 1.65e-4
13 0 1] 2 2.6e-3 44786 7906 KRS
14 0] 0 3 3.8e-3 J.42e-46 R.7e-6 3.72e7
154 0 1 1 1.4%e-4 i 45e-4 6.7e-3 7.45¢-5
Ji:] 1] 1 2 2.1e-5 1.1la-6 7.le-6 7.4%e-7
17 0 1 3 2.3e-3 8.56¢-7 T.he-6 §.13-8
18 1 2 0 31.194e-3 3.1900e-3 | 2.ie-3 2. 14503
5 1 3 0 3.8de4 9.81ed 6.46c-4 64724
208 1 | 4 1 0 3iled 3.02e4d 2 (e-4 1.99¢4
A rvi2; oz 2.0e-5 3.42e-7 6.8e-6 2.30¢c-7
] 1 3 2 l.6e-3 5.17e-7 6.60-0 3.48e-7
23 1 4 2 1.Be-3 4. 80e-7 6.7¢-0 3.12e-7
2w 2] 3| o 39%4 3.83e-4 2 5de-t 2.53e4
25 2 2 2 205 49727 7.4e-6 3.3e-7
26 2 3 2 1.5e-5 9.34e-7 6.8e-6 . 20e-7
2702 4 2 1.7e-5 9 56c-7 6.7e-h 6.42e-T
28 0 2 2 30c-5 Fdted THeh 2.31e-7
29§ condrol A only 4.da-5 5.24e-3 1.Be-5 2.12e-5

wroller A are presented in Table 1 and will be discussed in the
rext few subsections. The theoretical tracking resolts shown in
the table were generaicd by simulation using the discrete lime
model. Note that all racking error results presented in the
remainder of this paper represent actual tracking errors. as ap-
posed to model following etrors. Note also that the tecdforward
controllers for {, and A. optimality in Table 1 are actually
the same, as discussed in the previous section. Tt is only the
interpretation of the tracking data that differs. Experimenial
resulls are gcnerally shown to the nearest micron { the position
sensor resolution is = 2 pm), although a mintmum of 2 signifi-
cant figures is always given. A minimum of 3 significant fipures
is given for theoretical results. As a baseline for performance
comparison, the feedback controllers A and B were first evahi-
ated without feedforward control (line 29 Table |, and line 33
Table 33,

4.1 Fffeet of Preview Length. “‘Optimal’” feedforward
controllers have been designed with m — ¥ = 0 and different
values of Np in order to study preview length ¢ffects (lines |-
113, The optimal costs obtained trom the soluton of (7 are
here identical:

1, N, =0

J\iupz - J:;p[ — .-
tAn—
(i

P8
N, =1

Since m = N = {, the model following error is equal to the
actual tracking error, and it may be easily shown ihat tracking
errors predicted using (8) fully agree with the theoretical errors
obtained from simulation on lines 1-11. Good agrecment be-
tween theoretical and experimental results is shown for Np =
6 although divergence due Lo unmodeled dynamics {including
coulomb friction) oceurs for larger Np values. While increasing
Np theoretically continues o reduce tracking errors according
to (§), experimental improvements were seen only up to Mp =
10, with greater Np values providing no additionai benefit.
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For the reference trujectory utilized in this work, the addition
of optimal feedforward control to the closed-loop feedback sys-
tem actually increased both maximum and rmy tracking errors
for Np less than 8. This is explained by noting that the feedfor-
ward controllers are optimal over the entire ¢lass of bounded
reference signals such that performance for any particular trajec-
tory need not be improved. Indesd, the optimal feedforward
controller for preview lengths of 0 or | tums out to be exactly
the negative of the feedback controller, making the net control
input to the plant zero. The plant response is thus zero for all
time, giving a tracking ewor identically equal to the reference
trajectory,

4.2 LEftect of Tracking Constraint. The first significant
point about the comstrained optimal tracking problem is that a
controller utilizing the presented (A} constraint 10 only a few
exponential degrees along with & single preview step ean pro-
vide equal performance to a 9 or 10 preview step controller
alone. This may be seen for example by comparing lines 11
and 16, wherte experimental maximum and rms results are nearly
identicul. Theoretical results, while not in s close agreement ay
their experimentul counterparts, do show that the two controliers
provide similar levels of performance,

Sccond, it is clear that increasing N theoretically improves
tracking performance for the chosen trajectories. This trend may
be followed in lines 12-17. Experimentally, however, this trend
does not always hold and the reverse may in fact be true. For
example, line 12 with ¥ = 1 shows cxcellent agreement between
experimental and theoretical results. Increasing N by one in line
I3 shows dramatic performance improvements, although the
experimental and theoretical results have begun to diverwe.
Now, line |4 shows the results of a further unit increase in -
theory shows an error decrease, while experimental errars have
increased under hoth maximum and rms performance measures,

Finally, it might wrongly be expected that the ¥ = 3 case of
lines 14 and 17 weuld provide perfect theoretical trucking since
the reference wave form is seemingly parabolic (i.e., comprised
of step, ramp, and parabolic components). ‘TThis is not the case
however, since the trajectory is really a periodic signal and does
not represent un infinitely long parabola. For perfect tracking,
the constraint should he chosen as 71h) = 1 — &), where &
is the number of sampling periods in one Uajectory cycle (e
880 for the trajectory used here). Such a constraint choice
would likely make the solution of the Bezout identity (6) ex-
cecdingly difficult und prone te numerical round-off sensitivity.
I addition. the resulting controller would be of high order and
computationully inefficient in that none of the transfer function
coefficients will in gencral be zero. A feedback approach to
repetitive control that results in fess complicated controllers iy
preserted tn Alter and Tsao (1994},

4.3 Effect of Reference Model and Miscellancous Qbser-
vations. Reference model orders of m = 0. 1, and 2 were
employed in this stdy, and at & sampling rate of 2000 Hz give

—_ = b3
= W o

salaandoon

BITUT ({m}
L
R

5

if experimental - solid
theoretics] - dasned

n
M

20 40 860 880
time step

[=
b3

Fig. 3 Tracking error, {m, N,, N) = (0, 9, 0} with controller A
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Table 2 Cost values for feedforward controllers

Design I = IM-GOU
Paramclers !
i E 1pL o g
m{Np| N irn 11 "1 1M
£}
910 1.60e-4 1.22e-4 2,54
f 2 1.171 {.895 5657
ilz N4169 0.012% 2,205

a4 —3 dB reference model bandwidth of 364 11z form = 1, and
261 Hz for m = 2. The results show that in some ¢ases. a unit
increase in the reference model order produces theoretical and
expenmental performance improvements simitar o those that
would be obained by a unit preview increase. This may be
obscrved Tor example in lines 19, 20, and 24. In olher cases.
IRereasing m causes an increase i theoretical and experimental
crrors (compare, for example, the followmmg line pairs: (2},
253, (22, 26), and (23, 277). This is to be expecled since
tncreasing m decreases the ubilily of the reference model o
ttsell track the high frequency trajeclory components,

As a general observition, the optimal controller design for
line 28 i3 equivalent to the rero phase error tracking controt
{ZPETC) previously proposed in Townizuka {19873, This zen-
erally nonoptimal controiler happens to be optimal 10 the sense
of (m, Np, NY = (002, 2) for a one unstable zero system such
as the one here.

The acteul trucking error time ploe for o particular feedfor-
ward design w shown in Fig. 3. Noteworthy here iy the stimifi-
cant experimental D.C. error which, as in the feedback only
case, 15 being caused by coulomb friction. This D.C. error will
be handled in the next section.

Finuily, note that an analvsis of plant unmedeied dynamics
has expluined well the mismateh herween theoretical und experi-
merial results in Table 1, although brevity precludes any discus-
slon here, The reader 12 reterred o Alter (1994 Tur a presentu-
tion of this as well as additional results.

5 Feedforward Designs With Integral Action Feed-
back

In this section, three optimal feedforward designs are pre-
sented for the linear motor servo loop using teedback controlter
B. The Corollury 1 reguirement that (1) = 0 is satisficd
provided that M, (1) = 1, The relerence mode] should theretfore
be chosen wilh unity 120, gain, which would typically be the
case even for non-optimal trucking design. The zero-phase refer
ence model being wsed in this rescarch meets this requirement.

Preview and reference model dogrees have been chasen 50
that the H. and {, controllers obtained vsing the perturbation
technique arc the same. However, as the perturbation is reduced
o gero, the feedforward controller does become H., optimal.
while remaining suboptimal for the {, norm. The [, suboptimality
of the fecdforward controllers has been summarized n Table
2. The last column of the table represemts the /) norm with
@ = 0 {ie. no feedforward control action), giving a global
perspective on the suboptimality of the pertucbation design tech-
nique. From this viewpoint, the presented suboptimal { control-
lers appear nearly optimal.

Table 3 Tracking results of optimal feedforward control designed for
feedback controtler B

Besign max. tracking tracking errur
Parameters ercor {m) rms {m)
#4m [ No| N caper. thear, EX]OT, theor,
g a 9 [1] | %e-5 §.4e-f et 3198c-8
Ml e 112 1.8e-5 iliet 566 7. 49e7
I IFNEEE | 5e-5 9 3de7 .06 6. 2507
33 || conrel B oniy 4.3e-5 ] 1525 | 5523
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Fig. 4 Experimental tracking error, {m, N, N} — (0, 9, 0] with cantroller B

Tracking error performance is given in Table 3, and may be
compared with similar conrol A based designs in Table L
Theoretical errar values for the designs (m, Np. N1 = (0, 1,
2yand (2, 3. 27 are seen identical between the controiler A and
B cases (up to the number of significant digits shown), although
marked differences do occur in the (0, 9, 0) design, Experimen-
tally, the controller B designs show similar error values o the
controfler A designs. The motivation for using an integral-action
feedback controller was the efimination of D.C. error, and the
experimental error time response is shown in Figure 4 for one
feedforward design. Clearly, the control B system has here
achieved zero DLC. error, Experimental eliminstion of T.C. er-
ror has thus been achieved without a substantial increase in
MAXUAUM QU 1S STTor.

6 Concluding Remarks

The implementation of optimal f, and H.. digital fecdforward
trucking control has been presented for a linear motor drive.
The effects of preview length, tracking constraints, and the
reference model have been illustrated in the experimental re-
sults. Prudent choice of these design parameters is important
since it restricts the reference signals to a smaller class and
results in tighter optimal wracking performance. For the practi-
cally important case of teedback conirollers with integral action,
a suboptimal I, solution has been detived and compared Lo the
quantificd optimal performance. Inevitable unmodeled dynam-
ies make achicving arbitrarily small tracking errors impossible.
Therefare, it makes no sense to design a feedforward tracking
controller with arbitrarily higher bandwidth than the acceptable
range ot the unmodeled dynamics. An explicit relation between
feedforward control bandwidih selecuon and the unmodeled
dynarrics is thus desirable and is of further research interest.
For the specific trajectory employed here, the best performing
feadforward controllers were experimentally seen to reduce by
more than half the maximum and rms tracking errors of the
optimal feedback loop.

The optimal feedforward control combined with the optimal
feedback controllers given in ( Alter and Tsao. 1996) represents
a viakle design approach lor the control of linear motor teed
drives for both high dynamic stiffness and optimal tracking
perlormance.
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APPENDIX

Proof of Corollary 1

The proot for Corollary | involves the direct application of
results previously published in Vidyasagar (1991). Although
those results will not be reviewed here, similar potation has
been adopted where possible o simplify referencing. We first
find the optimal cost value by applying Theorem 3.6 of that
work., We have the unit cirele zero of G{A) detined by & = 1,
and the unstable zero of G(A) defined by 1 = b. From the
corollury statement we note that M(A ) = M (1) = (. Theretore:

= max | e MM + B oMz — max | By oMb

EIEU i

subject 1o the constrant
Vaydy, — bghclh, = 1

where &, und b . are real numbers. and the sequences ¢, und
B, arc given hy

(1.b.b™, ..}

The constraint thus simplifies to: 'a, F fgb’| = L7 =001,
2. .. Sinee & = 0. and |A| < 1, consteaints other thau for §
=0,i=1,and i - = are redundant. The region satisfying
the active constraints is graphically shown in Fig. A1, The
maximizing choice of by, is determined from the intersections
of the i = O and { = 1 constraints:

-

o= sgn [ M{P}}

1 -h
where sgn denotes the sign function. Hence Jy= 2/
By M(bY].
We next utilize Ddahleh and Pearson (1987} to solve the
related optimization problem where €7 has been replaced with
G, , tesulting in

1,8
S h1,0 :(-1~al)fb

Fig. A-1 Geometric region satisfying censtraints
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M\ — M(B))]

and P, 1= M - G0, = Mby.

Finally. lemma 4.3 from Vidvasagar's work is applied to com-
pute the limit of Jy:

Mol 4 | y( 1y

fin: 1M — GQ.1\ = | M(B)| + | M(b)]
£

2 MBI,

Contact/Impact in Hybrid Parameter
Multiple Body Mechanical Systems—
Extensions for Higher-Order
Continuum Models

Alan A. Barhorst®

In recent work the anthor presented a systemalic: formulution of

hybrid parameter multiple body mechanical systems { HPMBS )
undergoing comtact/impact metion. The method rigorousiy
madels alf motion regimes of kybrid multiple body systems (e,
free motion, contact/impact motion, and constrained motion I
urilizing minimal sets of hybrid differential equations; Lagrange
multipliers are not required. The contact/impact regime wos
modeled via the idea of instantaneousty applied nonholonom,.:
canstraints. The technique previously prexented did not include
the possibilite of comtingum assumptions along the lines of 1i-
mashenko beams, higher order plate theories, or rational theo-
ries considering intrinsic spin-inertia. In this 1echnical brief,
the above-mentioned method is extended 1o include the higher-
order continutm assumptions which eliminares the continueum

shortfulls from the previous work, The main contributions of

this work include: 1) the previous work is ri porously extended,
ared 2) the fuct thut coefficients of reseitution are not required
Jor modeling the momentum exchange between motion regimes
of HHPMBS. The field and boundary equations provide the
needed extra equations that are wsed to supply post-coflision
pointwise relationships for the generalized velocities and velpe-
iry fields.

Introduction

There is a considerable amount of work on contact and impact
being recently reported in the literature. Researchers are exam-
tning the viability of coefficients of restitution in rigid body
collisions; examining friction duting contact and impact; exam-
ining three-dimensional nigid-body collisions with friction: and
cxamining general contact problems { Nasser, 1992: Stronge,
1994 Kishore ct al., 1994; Park and Kwak, 1994: Laursen and
Qancea, 1994; Yen and Wu, 1995: Marghity and Hurmuzlu,
1995; Bhatt and Koechling. 1995a; Wang et al,, 1995, Bhar

Assiztanl Professor. Mechanical Engincering, Tuxas Tach University, 1ub-
bock, Texas TYS(H- 1021 Menl, ASME.

Conmiributed by the Dynamic Sysieims and Control Division of THE AMERICAN
SOCIETY o MECUANICS). BNGINFRS, Manuscrpt receivixl Sy the Dynumic Sys-
o and Conlrol Division: Nowvember 12, 1996, Associate Technical Editor
R. Rudfield.
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and Koechling, 1995b; Badle. 1990; Villazgin, 1996; Stoiano-
vici und Hormueht, 1996).

In this technical brief, the modeling methodology deseribed
in Barhorst and Cverett, { 19950 and Barhorst ( 19978} will be
used to extend the hybrid parumeter nuliple body mechanical
systems ( HPMBS ) contact/tmpect model presented in Barhors;
and Everett (1993a}. The extension to the previous work is
required because it lacks consideration for inteinsic inertia prop-
erties of continuum bodies in the multiple body system. The
adjustments needed are straightforward to implement, but thiy
simplicity obscures the true advantage of the extension; namely,
it provides other impulse-momentum equalions for determining
the afler contact/impact velocity field. These extra cquations
delete the shorrcomings of the inodeling method presented in
Barhorst and Everett (1993a).

One of the advantages ol using the approach described earlicr
and completed herein is that rarely are coefficicnts of restitution
needed to describe the collision, because, in this technigue the
field equations of motion supply the needed extra equations of
tmpact.

Derivation

In this section a résumé of the tormulay that extend the pre-
viausly mentioned less generul method are provided. The details
of the derivation are not significunily different from the deriva-
tion details of the previous less general set of equations, and
thus are not provided. However, the intermixed discussion
should allow the interested reader o generate the equations.

Ordinary Impulse—Momentum Equations

The ordinary dilferential equations (ODE) of motion that
modcel the overall motion of a HPMBS can be written as shown
previously ( Barhorst and Everett, 1995b: Barharst and Everedl,
1995a; Barhorst, 1997b).* By exumining the lime ntegral of
the ODE as time shrinks o the time of contact/impact results
in the following generalized momentum equations. The evilua-
tion of the parial velocities at the time fust before impact £, is
Justificd via Taylor series expansion of the partial velocity

terms.” The equations are:

0=3 { D

F, =Lty = Eie
s, | 1]

r

d ‘\-’LLI i

+ = AT = (HA) —H,(r:;)}J}
i, o
AL . o
- [— | TF - (L) = BT
I3 I8 o
EJ"“:L'BrJ . - .
k oI = (H(e)y — H.(17 )] th

vt

The individual terms are defined as follows:
F. = Resultant active impulse af foree on body r.
L. = m?.i*r, lincar momentum of body .
T, = Moment of all non-constraint impulses of forces
ahout the point s including impulses of couples.

o R o= T{ LN
H, = “F* xmi o + [ 7

“The Nomenclature also fallows the previous work.
See the discussion relarive to instantly appticd aonhalonomic constrnts it
the zection tille *““Cormments.””
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