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A receding time horizon linear quadratic optimal control ap-
proach is formulated for multi-axis contour tracking problem. The
approach employvs a performance index with fixed weights on qua-
dratic contouring error, wracking error, and control input over a
Juture finite horizon. The problem is then cast into a standard
receding horizon L( problem with time varying weighting matri-
ces, which are functions of the future contour trajectory within the
horizen. The formulation thus leads to a solution of time varving
state feedback and finite preview gains. Stabitity is proven for the
linear trajectory case, Experimental and simulated results for an
X=Y motion control problem are presented, which demonsirare
the effectiveness of the conrrol scheme and the effects of the key
controtler design parameters. [S0022-0434(00)01202-8]

1 Introduction

Contour tracking is an importam motion conirol objective in
such applications as multiaxis free form machining/inspection and
vehicle lateral contrel. Contour error i3 the minimum distance
between an output peint and the desired output path. This is in
contrast to tracking ermor which is the distance from an output
peint to a particular desired output point. A traditional tracking
controller attempting to make an output follow some desired path
would use racking crror to drive the controller. A contour track-
ing controller uses a combination of the tracking error and the
contour error, with a stronger emphasis on the later.

Conteur errors become more significant when the dynamics or
disturbances of the axes are different [1]. Traditiomal controllers
have atlempted to reduce contour error by improving tracking
performance on each axis independently or by trying to match the
dynamics of each axis. Cross-coupling controller [2] was devel-
oped to deal with the problem more directly. A cross-coupling
controller calculates the contonr crror from axis crror measuore-
ment and attempts to compensate for this error by adding a cross
coupled leedback to the single loop axis controllers.

Kulkarni and Srinivasan [3,4] introduced an optimal cross cou-
pting controller that used a linear guadratic regoiator (LQR)
scheme to correct the contour error with a proportional controller
being used for tracking. A weighting matrix was placed on the
contour crror and the states were sugmented so that the penalty
tunction had the standard form of quadratic weighting on the aug-
mented states. The LQR problem was solved with an algebraic
Riccati equation. This solution is only optimal if the weighting
matrices remain time invariant which is only the case lor a
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straight line contour. The solution 1s presented in an analytical
form, which requires a second-order model for each axis.

Koren and Lo [5] developed a variable gain cross-coupling con-
troller in which the feedback gains in the contour crror controller
varied with the contour. A nominal proportional controller cor-
rected tracking errors and an additional PID-controller comected
contour errors. For a particular type of contour such as lincar,
circular, or parabolic, an appropriate transformation from racking
error 10 contour error exists. This nonlinear translation varies
along the contour, amounting to varying feedback gain on the
tracking errors. Another approach is to perform coordinate trans-
formation from the machine axes to the wrajectory (task) coordi-
nate and design the controllers on the directions normal and tan-
wential to the contour [6-9].

The control approaches mentioned above are offective in reduc-
ing the contour error, however none explicitly use preview and
feedback information together for motion synchronization. Tomi-
7uka and Whitney [10] presented the finite preview LQ tracking
controller, where the solution is optimal 1n the sense of infinite
lime horizon and the missing information beyond the preview
window is considered as random. Deterministic extension over the
signal in the preview window was also considered [11,12]. Tsao
[13] considered optimal leedlorward digital tracking control de-
sign as a mode! matching problem, where the solution is optmal
for the signal induced nonms. The preview length and practical
constraints like maximum velocity can be conveniently included
in the design by properly assigning the reference model and
weighting functions. These existing optimal tracking conirollers
are however time invariant and do not account for time varying
contour tracking.

In order 10 account for both contour tracking and finite preview
in the same problem framework, McNab and Tsao [14] formu-
fated the contour tracking as a receding horizon LQ problem,
which uses finite preview and allows time varying welghting mu-
trices, and presented preliminary simulation results. The selection
of the weightings on tracking error, contour crror, and control
cffort determines the controller performance and robustness. The
weighting matrices in this suboptimal control problem are time
varying, and comrespondingly the controller gain matrices are time
varying. A new feature of this controller is that it combines con-
tour tracking and preview action in a single framework. Unlike
some other contour control schemes, the proposed scheme does
not need to be reformulated for different contours nor is a closed
form equation describing the contour reguired. An arbitrary con-
tour can be used if a number of future desired output poinls are
given o calculate both the feedback and previewing feedforward
controller gains. This paper presents the formulation, stability
analysis for a limited cases, simulation, and cxperimental results
of the above approach.

The rest of this paper is organized as follows. Section 2 formu-
latey the contour tracking control as a receding horizon L) prob-
lem with variable state weighting matrices. Section 3 discusses the
stahility conditions for the proposed scheme. Section 4 gives the
sirnulation and experimental results and discossions on a X-V
motion platferm foilowed by conclusion in Section 5.

2 Receding Horizon LQ Formulation

Typical optimal control for tracking problems uwse a perfor-
mance index that penalizes the wacking crror and the controt ef-
tort. For contour tracking control. a weight on contour error will
be added. Figure | shows the geometric relationship between the
tracking crror, the contour error, amd the cstimated contour error.
The tracking error, ¢{4). 15 the vecior from the actual position,
¥(&), o the desired position. v, (&), The mue contour error,
£ L&), 15 the vector from the actual position to the point on the
contour nearest the actual positon. [n other words, contour error
is the distance from the output poinl to the desired path, while
tracking error is the distunce from the outpul point o a particular
point on the path. The comour error may be small while the track-
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Fig. 1 Definition of tracking error and contour error

ing crror is quite large, although il the tracking error 15 smatl the
comtour error will also be small. If the goal of the control i3 to
reduce the contour crror, this can be accomplished without insist-
ing on a small tracking error.

The actual contour error is in general a nonlinear functon of
the tracking error and the desired contour, which may be inelli-
cient o calculate in real time. A good approximation may be
obtaincd by using a projection ol the tracking crror in the direc-
tion perpendicular to the contour. In Fig. 1, r{4) 1s the unit veclor
tangent 1o the contour at the desired position. The projection of
the tracking error, e(&), in the direction of r(k) is given by

{(k)=(e(k)-r(k))r(k). (n

The contour error is approximated as the difference between the
tracking error and £(£).

elky=e(ki—{e(k)-r(k))rik}, (2)
reformulating gives
e(k)=W(kle(k).
Wik)=I—rik)rT(£).

Naote that W (k)= W(k) and W2(k)= W(k).

A lincar quadratic penally (unction that penalizes contour error,
tracking eror, and control cffort, over the length of a preview
window N, . is given by,

(3)

J=keN,
Jy=e (N )S(k)e(N,)+ D e Qik)eik)
=k
+ el O (k) elk)+uT(RIRUO (k)] 4
Substituting for =(&) yields,
j=k+NP—1
J(y=e (N)SheN, )+ 2 TR,k
F—k

+ WA Q) Wk e (k) +uT (K Rue(k) |, (5)

or,
P=ktN, -
JEy=eTINYSKe(N )+ D [eTthQ(k)e(k)
-k
+uTtkYRu(k)]. (6

To explicilly weight tracking and contour error, consider
Jok N,

R =eTIN)SKetN)+ 2 [ale(®]P+Bleth)]?
i=k

+pflu (€))%, {7
then

Qik)=lal+BW(k)], O=a.B. (%)
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To improve contour tracking performance, contour error infor-
mation has been combined with tracking error infermation into a
linear quadratic penalty function with a time varying crror weight-
ing matrix. Several optimal control salutions to lincar quadratic
penalty functions are presented and discussed below,

Consider a system 10 be controlied given by its slate space
representalion:

Xk 4 1Y=Ax(k)+Baik), (9)
vik)y=Cx(k).

where v{k) is a vector of the state vector x(k) for which there is
a desired tragectory v (f).

The basic L tracking problem is the finite horizem LQ tracking
problem by Anderson and Moore [15]. The penalty lunction,

i=k-1
= TNISe(NY 4+ > [T (D00 e+  (DR(u().
=N
(10)

is minimized over the entire time of the trajectory and its solulion
involves the Riccati difference equation (RDE). The controller
requites information about the desired output and weighting ma-
trices over the entire time of the problem. Often this is not avail-
able and this approach cannot be applied. The finite preview L{Q
tracking problem by Tomizuka and Whitney [10] is an approach
allowing optimal tracking without a priori knowledge of the entirc
trajectory. This formulation combines finite preview information
with the solution of the infinite horizon LQ regulation problem,
using the algebraic Riccali equation (ARE}. The infinite horizon
problem is solved by assuming stochastic information beyond the
preview horizan,

The receding horizon [} racking problem in Bitmead et al.
[16] uses the same equations as the finite horizon problem except
that at cach time step &, the index 7 in Eq. (7) is sel w0 zero and a
finite time horizon problem 15 solved over the preview length.
This finite time horizon problem uses a final time, &, that 1
much smaller than the entire time of the problem, . This means
knowledge aboul the desired output and the welghting matrices is
only needed for the time steps included in the preview, but a new
finite time horizon problern must be solved at cach time step. The
resulting solution for each of the finite 1ime optimal control at the
time step & 18 obtained by cvaluating the following differcnce
equations (Egs. (12} and (14)) backward [rom the final time at &
+ Np with the given final conditions w the current initial time at
£

wP Y= [BTH (K)B+R,(k)] "BT[H (K Ax(K)+g (k)]
(an
H{k)=AT{H, (k) H,. \(k)B{B'H, (k)B

(kHA+CEKC, ()

i
+R(K)]TIBTH,
Hy, (kY= CTS(R)C.

gk ={A—B[B'H, | (NB+R(k)] 'BTH,, (k)AL g, (k)

—CTQ (kyy 4tk + j), 03
gaplky= CTSUR)y kN,
where
Qk)—QU+k), (14)
Ry (k) — RG+K). as)

This approach is suited for the contovr tracking problem in that
the contour error is absorbed into the time varying state weighting
matrix. In contrast, the finite preview controller [10] has fixed
controller gain and hence is unable to incorporale confour
tracking.
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3 Stability Analysis

Consider first a standard LQ control problem. The algebraic
Riccati equation {ARE) associated with an infinite horizon LQ
control problem js:

H=AYIH-HB[BTHB+R] 'BTHIA+CTQC  (1&)
If [A,8] is stabilizable, [4,0"2C] is detectable, 0=0, and R
=0, then there exists a unique, non-negative definiie symmetric
stabilizing solutien H,, ie.,
A-B[B"HB+R]) 'R7H A (17
has its eigenvalues all strictly within the unit circle.

To determine the stability of the receding horizon controller,
the solution (i.e., H,) of the Riccati difference cquation (RDE} in
Eq. (12) must be stabilizing. Equation (12) can be reformulated in
the form of the ARE for determining the stability, Define P ;
=CTQ;C-(H;—H,,,) then write the RDE as

H; o =AYH, \—H,_\[BTH,, B FRITIBTH, A+,
{18)

‘The ARL stability criteria can be applied to the above cquation,
known as the fake algebraic Riccali equation (FARE) [17.18]. In
other words, for the receding horizon problem, if [A,B] is stabi-
lizable, [A,P{?] is detectuble, P}%=0, and R0, then H, is
stabilizing.

When the desired output trajectory is a straight ling, the weight-
ing matrix ¢ is time invariant, The stability for the time invariant
receding horizon LQ contreller has been a long standing problem
attracting much research, ¢.g.. Bitmead et al. [19,16]. One ap-
proach is 1o have a zero terminal state condition in the penalty
function. That is equivalent o having an infinitc weight for the
selection of 5. The drawback Lo this approach is a signilicant loss
in performance due w overly emphasizing the terminal state.

A useful properly of RDE for invariant weighting matrices £
and Q is the menotonicity of H; [19,20]. That is, if the non-
ncgative definite solution H; of the RDE is monotonically nenin-
creasing (nondecreasing), i.e., H,=il,, ) (H,=H_,,)). lor some
p. then H, is monotonically nonincreasing (nondecreasing) for all
previous tmes: H,  <H, .., (H = H,_ ), for all m
#(). [n vicw of the FARE in Eyq. (18), the monotonicity property
suggests that il the solution of an RDE is stabilizing for some time
hotizon “p," then the solution for any longer horizon length with
the sumc weighting matrices and final conditions is also
stabilizing,

Utilizing the above FARE and the monotonicity property, we
seek (o find conditions that the resulting control will be stabilizing
for any direction of straight lines with any horizon length. The
rationale is w find weighting matrix that is larger than the weight-
ing matrix corresponding to any particular angle. The ARE solu-
tion corresponding to that weighting matrix is then used as the
final value for the receding horizon RDE solution. To find (?
such that @, = a. 8.0 for the two-axis case:

max

‘1 .
cos” § cos fsin 8

Qe B —al+ BW, where W= .
sin” &

(19

cos &sin @

since =W, @, may be selected as (e b )1,
theorem 1.1
[A.B] is stabilizable,
[A.Q{ea, B.4H"C] is detectable for any angle #,
R=0.0{ece. 8.0,
Hy, = H ol Qraek. the ARE soludon for A, B, @ und K. where
Q= 20, 8,8 Tor all @,
then, the closed-loop cigenvalues for tracking a linzar trajectory of
any fixed angle & and any N, are within the unit circle.
Proof. From the final condition above, Hy,, is the solution of
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HN.?J=AT{H.'\-'::_ ”NpBi—BTHNpB + R]_ ]B?HN;P}A + CTQmaxé-[})

The first step of the Riccati differcnece equation is given by
Hyp-1=AY{Hy,— Hy B[BTH BE+R] 'BTH, A
+C'Qupe (@ B.OVC.
Simple substitution produces

HNp ; H.’\"p 1= C; Qmax(-" - CTQNp[ a-ﬁv 9) C=0

21)

(22}

The monotonicity of H; is thus established for all i =), Further-
more  the detectability of [A,Q(a.8,6)"C] and P,
=Q(a. 8. HC implics that [A,Py] is detectable [16]. There-
lore, H| is stabilizing in view of the FARE in Eqg. (18}, where
F,70. That 15, the eigenvalues of

A=A—-B[B"H B+R] 'BTH,A (23)

are all strictly within the unit circle. #

The original penalty function uscs a final weight on the tracking
error, e{k t Np)TS{.’(_k +N,). However, using Hy,=HJ(Q,.)
corresponds with u final weight on a state error, (x(k N
—xCk+ N ) TH Qx4 Ny =tk +N,)). xk+N,) is not
assumed to be known, and in general it is not available, This is not
a problem in terms of feedback gains or stability, but in the origi-
nal formulation, the calculation for the feedforward terms hegins
with the terms 7Sy (k+ N} replaced by Hx (k+N,). Al-
though x,(k+N,) is unknown, it can be estimated by a state
observer described in the Appendix,

The above stability condition is for any lincar trajectory and
preview length. For a general nonlinear trajectory, the frozen-time -
stability is conjectured by viewing the solution of the RDE as &
form of interpolation of al] the stabilizing solutions at different
angle and preview length. In addition to affecting stability, the
selection of Hy, also has a strong effect on the performance.
Improved performance may be obtained with selections for Hyp
that do not meet the suflicient stability condition in Theorem 1.
This does not mean that the system is unstable since the condition
of Hy, is not a necessary once for stability. One such selection is
Hy,=CT0y,C. This has been the choice for some GPC control-
ler designs. Some of these designs have been shown to have sta-
bility depend on ¥,. Ax N, increases, H, approaches H, and
(H,~ Hy) approaches 0. As a result, P, approaches €70 ,C, and
the system is thus stable.

4 Results on an X—¥ Motion System

The theoretical developments in the previous scctions are gen-
cral and can be applied to any system where it is important o stay
on a path. An application for these developments is a two-axis
machining process. This is the application for which most of the
previous developments in cross-coupling contour control were
developed.

The experimental system used to obtain these resulls is a
Bridgeport Discovery 300 vertical machining center. The position
feedback sensors arc cncoders with resotutions of 0.8 um/count.
Conerol is implemented on a Spectrum digital signal processor
board utilizing a Texas Instruments TMS 320C30. Due to the high
sampling rate, 2 kHz, and the high model order, &th, real time
calculution ol contred gains is not possible for this application. All
the gains are calculated before the trajectory starts. This is only
posstbic hecanse the entire trajectory is known. The nominal
Bridgeport controller is broken at the position loop. Feed drive
models for each axis are made by collecting frequency response
duta from velocity command 1o velocity measurement signals
from tachometers. With the addition of an integrator to obtain
position output, the resulting curve-fitted transfer functions pro-
duce the following state space matrices:
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[ —-0.2916 02755 - 08029 0 0 0 0 0
—0.8890 1.6565 —0.8540 0 0 0 0 0
0.0000  1.0343  0.3324 0 0 0 0 0

0 0 0 0.5100 05102 L1644 09037 —09856
A= 0 0 0 —07566 07378 07638 09284 - 15212
0 0 0 00000 00344 00227 090665 —(.2304
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0 0.2104 . ‘o0 1 0 0 0 0 0
B2l ozess |0 Cz{o 000000 1]
0 0.1732
0 (0.6884
L © 0.0332 )

The contour that is examined is a circular trajectory with a 1
mm radius thai is traversed with a feed rate of 3 m/min. The circle
is tracked at 8 Hz. The majority of most machining paths are
smooth with large radii of curvature. This path is used as an
example of a difficult contour that demonstrates a situation where
contour control becomes important. The sampling rale is 2 kHz.

The parameiers that arc examined are o—-the tracking error
weight, f—the contour crror weight, and N,—the preview win-
dow length. [n addition. two choices for the final error weighting
matrix are examined, Hy,=C Qp,C and Hy,=H (Qp). The
former penalizes the final errors in the same way that all the errors
in the previcw window are penalized. The latter weighs the final
error more heavily in order 1o obtain better stability properties.

Another related controller is examined for comparison. The [i-
nite previcw controller [10] is a receding horizon approach in
which the weighting matrix must be time invariant and the final
condition on the RDE solution is the ARE solution. This control-
ler is similar o the onc presented in this paper because it has a
preview window and uses an LQ optimal approach, however it is

0.52 T T T ' T - T
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0461

0421

04

1

o s ) \ s . .
-3¥‘93 -1.92 -1.91 -13 -1.89 -1.88 -1.87 -1.86 -1.85

Fig. 2 Points along a circular contour, path is toward lower

feft
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different in that it cannol account for contour error. In fact, this
controller is the same as the contour tracking controller presented
in this paper for the particular case of B=0. and Hy,
=—H(Opn). In this case, the weighing matrix is fixed. ic.,
Q= Qax - Both controllers use state leedback, and so full state
observers are needed for implementation.

Tigure 2 shows several data points along the circular conteur.
As weight on the contour is added, the output moves toward the
desired trajectory. Note that although this is a small radius (1 mum)
curve, because of the spacing of the reference points. the lincar
approximation for the contour error ditection is quite accurate.

Figurcs 3-8 arc bar graphs showing tracking and contour crror
with Hy,= CTQ\y,C or Hy,= H(Q ) lor different selections of

N
RS
4560 \\s
40,00 1 EQ\
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e 2500 R
r QNN
£ 1500
2 1000
e 5.00 40
. 28
Contow Weight

Fig. 3 Experimental RMS tracking error H,(Qyy)
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Fig. 4 Simulated RMS tracking error H{ Qup)

tracking weight and contour weight. The preview length is 10
steps and the control effort weighting is 2e-9. Both experimental
results and simulation results are shown. The crrors shown are Tor
RMS error over one cycle of the circular trajectory and the unit is
m ITCTOnS.

Generally speaking, increasing the tracking weight decreases
both the tracking error (Fig. 3), and the contour error (Fig. 5).
Increasing the contour weight had liwle etfeet on the trucking
error, but decreased the contour error.

The main difference between simulation and experimental re-
sults 15 that in simulation larger weights resuit in smaller errors as
seen in Figs. 4 and 6. However, experimentally the crror decreases
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Fig. 5 Experimental RMS contour error H,( Qup)
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Fig. 6 Simulated RMS contour error H.( Q)

al firsl and then starts to increase again when the weiphts become
too large, Figs. 3 and 5. A larger weight results in large feedback
eains and il the feedback gain is too high then unmodeled or
mismodeled dynamics begin to disrupt the performance of a
controler. So there s a limit to how much the errors can be
penalized. The advantage of the contour racking coniroller is that
some of the weighting can be shifted from wracking crror to con-
tour error. This reduces the contour error al the expense of in-
creasing tracking error.

TFigure 9 shows the ellect of changing the preview window
when there is only tracking error weighting and Fig. 10) shows the
effect when there is contour weighting, The tracking error de-
creases with iereasing preview length up to nine preview steps

RMS Tracking Error gm

Tracking Weight

Fig. 7 Experimental RMS tracking error for H.{ Qnay)
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Fig. 8 Experimental RMS contour error for H,(Q ..}

and then remains constant. The contour error is roughly the com-
stant for most ol the preview lengths. This may be somewhat
dependent on the choice of error weights.

Figures 7 and § show tracking error and contour error with the
more conservative final crror weight of Iy, =H (Qna). The
wrends are the same as for when H,, = C TQNI,C, bul the perfor-
mance is not quite as good. Table T summarizes the best results
oblained with the two different final cerror weighting schemes.
Performance is slightly improved by using a final condition that
has no stability assurances. Regardless of which final weighting
matrix is uscd, the use of & penalty against contour errors has the
desired result of reducing them. To obtain best performance in
terms of contour error, the penalty against the tracking error must
be reduced, increasing the tracking error.

40 T T - T T - T 1 T |

35 4

- [*3 [ [ %3
= =] o (=3
T T T T
L : L L

RMS Tracking Error — microns

-

=]
T
*
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0 2 4 € B 10 12 14 16 18 20
Preview Langth

Fig. ¢ RMS tracking error versus preview length, a=4, =0
(slmulated, +, and experimental, X)
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Table 1 Tracking and contouring errors for five different sets
of parameters
Case H, @ @ P RMS te pr | RMS ce um
1| CNC wir oa B X
I u COMN T 12 204 war [ o
T HiCht 30 WO 1 4ab 178
v HiGLD 025 R TREs | T
Finite HO,) EX T Ents 378
IProvacw |

5 Conclusion

The receding horizon LQ controller has been applied to im-
prove contouring accuracy by lormulating a penalty function that
includes contour crror, tracking crror, and comrol ¢ffort over a
finite future time window. Simulation and cxperimental results
show that this controller improves contour accuracy at the ex-
pense of tracking error as intended. The design parameters neceded
1o adjust performance arc limited o weights on conirel elfort,
tracking error, and contour error, preview length, and choice of
final crror weighting. The design is cflective for arbitrary
contours.

Two limitations of this scheme are the computational complex-
ity and the lack of stability proof for general nonlincar contour. At
each time step, 4 number of recursive matrix computation 1% re-
quired over the preview length. This should not pose a stgnificant
limitation with the increasing real-time digital processing speed.
The second suggests that common stability guidelines vsed in re-
ceding horizon optimal, such as the relation between the preview
length and the system’s tise time, may be applicable 10 the present
problem. While the proposed approach has been tested to render
stable response for various nonlincar trajectorics in simulation and
experiment, whether the stability conditions in Theorem 1 for any
linear trajectory can be exlended and proven for nonlinear trajec-
tories remain unsolved.

Appendix

An estimate for the desired state vector can be obtained if the
desired trajectory is assumed to continue with constant velocity
beyond the preview window. First definc

Ay =y lk+N,)—yk+N,—1), and so
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yd(k-i-NP-i-j-i-l)—_\;d(k N v iY=Ay,, for F=0.

Recause the system has g single frce integrator, a constant veloc-
ily is generated by a constant control signai, &. It is computation-
ally simpler 1 consider onc axis at 4 time. Consider a third order
system, although the procedure is similar for higher order SY5-
tems. From the system equations, one can obtain;

Yalk+ Ny =Cuytk+ N
yalk PN, T 1)=ClAx tk+N,) + Bir)
Yalk+ Ny +2)= CAS (k) + (CAB + CB)7
YAK+N, +3)=CA'x {k)+(CA?B +CAB + CB)Z

which can be written

bkt N) ¢ 0
¥lkA Np}+i}__\,i _ CA ch XK+ N
Yalk PN, )+ 24y, 1 L €A? cra+np A

Ykt N, ) +34y, CA’ C{A’+A+1B

Il the matrix is nonsingular, then a solution can be obtained for
xgz. This is likely if the NYSIem is observable hecause the lower
left portion will have full rank and the upper right elemeny is 0,

but this must be checked for any particular system.
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Modeling of Flexible Robot-Payload
Systems Through Component
Synthesis

T. Zhou, J. W. Zu, and A, A, Guldenberg

Department of Mechanical and Industrial Engineering,
5 King’s College Road, University of Toronto,
Toronto, Ontario, Canada M5S 3G8

In this paper, ¢ new modeling method is developed for analvzing
the dynamic behavior of @ system consisting of a rigid robotic
manipulator and a flexible sheet metal payload. The component
mode syathesis method is applied to reduce the degrees of free-
dom af the pavioad and to model the interfaces between the robor
gripper and the pavioad, Using nonlinear compatibility fimetions,
the method is madified to synthesize the dynamics of the entire
rohot-payload system. Fxact madels are developed capable of de-
seribing both large and smatl rigid-body motions. A modular SJorm
is derived and the coupling dynamics is formulated in a compi-
tutionally efficient manner. Numerical examples are presenied 1o
demonstrate the effectiveness of the modeting method.
[80022-0434(00)01 102-3]

1 Introduction

Recently. there has heen a growing interest in manipulator 8¥S$-
tems handlifng flexible payloads due (o their potential applications
in industry [1-3]. Most of the current work teats the payload as a
flexible beam; whercas in reality. the payload can have an irregu-
tar shape and the interface between the anipulator and the pay-
load is complex. A generic system tackied in this paper is shown
in Fig. 1, in which the robot and its gripper are considered vigid
while the payload exhibity significant flexibility. The gnipper can
be reconfigured 10 accommodate the varying sizes and shapes of
different payloads.

A major performance concern for such a robot-payload system
is the vibration of the payload duoe o its flexibility and accelera-
tion while in motion. The vibrational behavior is caused by dy-
namic coupling effects between rigid-body motions and clastic
dellections. CGenerally, the nonlincar coupling dynamics s con-
figuration dependent and computationally expensive (e.e. Cuad-
rado et al. [40). A similar system has been modeled in a previons
study [S] The coupling cffects were neglected for practicality
reasons. and hence the vibratdon problem couid nor be considercd.
However, for the performance and accuracy requircments desired
for high-speed flexible systems, the vibration is significant and
can no lenger be ignored. The coupling elfects are vital for vibra-
tion concerns and dynamic formulas with both accuracy and vim-
plicity are cssential in practice. Yet, the dynamics of the tackled
system hus not been exactly modeled by any other researchers in
a compurationally efficient manner.,

Thus. the ohicctive of this werk is to obtain an ccnrare and
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