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Repetitive control schemes for asvmptovic tracking and distur-
bance refection of periodic signals with an unknown period are
presented. A sampled data recursive scheme for identifving the
period of a periodic signal with a resolution finer than the sam-
pling interval (s presented. Discrete-time self-tuning repetitive
controllers, which adapt both the periodic signal period and sam-
pling interval. are proposed based on the period identification
scheme. The fine adaptation of the comtroller sampling interval
makes the identified signal period an exact integer multiples of ihe
controller sampling imerval and renders o superior tracking per-
Sformance thun that of the conventional fixed sampling interval
repetitive controllers. Experimental resulls on a linear motion
system ure presented {0 demonstrate the effectiveness of the pro-
posed control schemes. [S(X)22—0434(0(}}[}]402—?]

1 Problem Statement

Repetitive control, which is based on the internal model prin-
ciple, has proven to be a useful technique for asympitotic tracking
and rejection ol exogenous periodic signals (Hara et al. [1], Tomi-
zuka et al. [2]). It has been successfully applied to areas such as
nen-circular turning (Tsao and Tomizuka [3]), mechanical ma-
nipulaters (Omata et al. [4]. Tsai et al. [3]), computer disk drives
{Chew and Tomizuka [6]), magnetic bearings (Higuchi ct al. [77),
spindle runout compensation (Tsao et al. {8], Tsao, and Pong [9]).
spindle speed regulation under periodic disturbances (Kobayashi
ct al. [10], Tsao and Pong [11]). and cte. In some situations, the
period of the repetitive signal is uncertain or slowly changing. For
cxample, the pertodic disturbances caused by inevitable dynamic
imbalance in rotational machinery may have uncertain period duc
to variations of machine rotational speed. I the angular position
of the rotating axis is available, the repetitive controller may be
designed and implemented by using the angular position as the
““time’’ variable 5o thut the disturbance period is always cxactly
one ratation regardicss of speed variations (Tsao and Pong [117).
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However, the angular position measurement may nol be acces-
sible or cost effective. Periodic motion generation is another ex-
ample found in numerous manutacturing processes, The motion
trajectory period may vary according to the changes of the trajec-
tary’s traversal speed, which is usually controlled by a higher
level supervisory control or an upper stream process operation.
Such sitwations require a repetitive controller which can seli-tune
the repetitive signal generator period o mateh the external sigmal
period elosely.

The performunce of the repetilive controt system relies on the
matching of the repetitive controller’s signal generator period with
the exogenous perindical signal period. The repetitive controller
generales 4 comb-filter shaped (in the frequency domain closed-
loop sensitvity functon. The notches of the comb-filer provide
substantial sensitivity reduction but they are sharply narrow. The
sensitivity function (e, the error magnitude) at the Fourier har-
munic frequencies {i.e., w=2ar/T,} of the periodic signal is pro-
pertional to the following:

{ F |
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where T, is the signal period and 'f'f, is the period assumcd by the
repetitive controller and £ 15 the period mismalch ratio. In the case
ol the exact matching, i.e., ’f'p= ¥, . the error magnitude is zero.
However, a slight mismatch of £ = 1% increases the error magni-
tode ratio to about 0.1 at the first harmonic frequeney (2 —1). The
error is even larger for larger # values, ic., higher Fouricr har-
monic frequencics.

Seclf-tuning of the digital repetitive controt period has been pro-
posed to adjust the repetitive controller’s signal generator period
{Isuo and Nemani [12]; Hu [13]} with respect 1o the exogenous
signal. Tsao and Nemani [12] proposed a recursive single param-
eter period identification scheme. The digital implementation of
the scheme estimates the period as integer multiples of the signal
sampling interval. Hu | 13] suggested the use of an ARX model,
whose order 15 as large as the upper bound of the period, and least
squares parameter adaptation algorithm for period esiimation. The
period is determined by inspecting the cocfficionts of the identi-
lied ARX. Of course, the signal period could alsa be estimated by
inspectng the signal’s power spectrum using Discrete Fourier
Transform, Al these methoeds, barring the computation issue,
have a hinite resolution on the estimated period limited by the
sgmpling imterval, and hence pose a hmitation on the period
matching precision. This paper presents a recursive period estima-
tion scheme. which significantly reduces the linite resolution
problem mentoned above and is computationally efficient. This
estimated period is then used to adjust the discrete-time repetitive
controller’s integer period length. Furthermore, by a fine adjust-
menl of the controller sampling period, the controller signal gen-
crator’s period is matched precisely with the identified signal pe-
riod. Finally, experimental results for the implementation on a
motor driven linear slide arc presented to demonstrate the cffec-
tiveness of the proposed control schemes.

2 Recursive Identification of Signal Period

Consider g continuous-time domain linear Ume invariant Sys-
tem in input-output model lfomm:

AADYelr)+B (D)= C (Dw(t), (2)

where A (D), B D), and C (D) are the time domain rational
transfer functions of the time derivative operator £2. Both the con-
trol wif) and the error e(#) are measurable and the disturbance
w(t} is a periodic signal that is in general unmeasurable. ‘Tracking
control of a signal y,(t) can be considered as the disturbance
rejection problem by defining {Tomizuka et al. [2[}
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el)=yd() - y(6), witi=ydit), CIDI=ALD)

Since only the knowledge of the signal period is needed in the
repetitive control system, it is not necessary to know the entire
cxact disturbance signal waveform. Therefore, even if the plant
model is not accurately known, one can use the left-hand side of
Eq. {2) or the steady-state waveforms of u(¢) and v(4) to estimate
the period since these signals are periodic with the same period as
wifl.

The period identification algorithm is bascd on the gradient
minimization of a quadratic energy function as described below:

Theorem I: Let f(£) be a periodic function with the basic
{smallest) period 7%, and £(1) is not identically zcro.

[ )
Let J{r)= 7 f Lfs)=fis 1]ds, where Fyz= T
1Ty
)

Consider the following gradient adaptation algorithms:

. . oodr Af( (1)) )
Continuous iteration; — = -y ———— =7, (5}
di aT
) N . af( (1)}
Discrete diteration: w{s~ 13— 7(¢t) -~ h T T0)=17q.
T

(6}

[f the initial condition 7, is close enough 1o 7, that is, there is
=0 and {75~ 7%| </, then there exist adaptation gains v, A
=0 such that the adaptations in (5) and (6) converges, i.c.
T T,

Proof: First, we note that 7 is a stationary point of the continu-
ously differentiable function J( T) since the first derivative as
shown in Eq. (7) is vero at 7—nt¥, n=0,+1.22, .

Further, these points are local mimima since the a.ccond deriva-
lives at these points are positive, as shown in Eq. (8). Therefore,
with small enough adaptation gains . /i, the gradient schemes in
(5} and (6) converge 1o the local mimima depending on the initial
condition. The adaptation converges to the hasic period 7% when
the initial condition is close cnough.

)y [ _ .
p '—=J’ fls) fls= ) )f(s—7)ds (7)

ofT

o

FIrny _ . Y
Ry _f LS = fla— DY s — 1)+ Fs— 7hdy
I 'Td

d“;"(nr )

j f {5)eds 0. : (%)

The cost funetion J is periodic and has local minima at integer
multiples of the base period. Any integer multiple, except tor
7ora, of the basc period may be used for repelitive control period.
Therefore, the initial condition of the period estimation is not
critical.

Since every periedic signal has a Fouricr series representation,
it can be easily verified that for the nth harmonic, the cost func-
tion s periodic with the same period. As (he harmonic number n
increases the convex region gets narrower for each local mini-
mum, Therelore, W ensure large enough convex region, low-pass
liltering of the signal enlering the estimation algorithm is neces-
sury. Further, the signal time derivative is required in the adapta-
tion. This noncausal dilierentiation is not a problem here since the
differentiation may be combined with the low-pass filter to render
causal filtering.

Discrete Implementation of Period Identification.  For pruc-
tical implementation purpose. this algorithm is more convenientiy
implemented using sampied data. Let the sampling interval of the
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Fig.1 Simulated results of period estimations with various ini-
tial conditions

data be T and the estimated period T=9T. Denote |5 as the
integer part of 7 The integration in Eq. (4) 15 carricd over a
period of length T, greater than the upper bound of the signal
penod 7= BT and the first derivative in Eq. (7) can be cvaluated
at Lthe following two intcger poinis:

. I+7 .
&J{LUJT) . - .}(i 7 _.f.f—|: -
a7 = D (fr fiopy) &
! i=x+l -
and
L5
I 7w+ 1T} f: ET f: -2

t T (]0)

P a_’zm Jo 0

Central differcnce is vsed to approximarte the signal partial de-
rivatives to avoid biased cstimalion when random while noisc
exists in the signal,

The partial derivative of J at the point 7 as needed in Eq. (6) is
obtained by the linear intcrpolation at the two adjacent integer
points obtained in (9) and (10):

\\' _______________
\ Delay
el M o 4 1l @ » Gp
+
-b(f .
{a)
Delay Operator
A
1-MG
(b} Q P}

Fig. 2 (Adaptive) repetitive control system, 2{a} is the block
diagram, 2(b} is the equivalent block diagram
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ATy &l ylD (| 9|+ D T)
Ty =y Unit et (7]
(1n
The discrete recursive period identification Eq. (71 s then
FHE b
7}(1"”'_]'—7?(”_;!!77] |h'=_—,| {12}
ar ! I

Figure 1 shows the numerical simulation results ol the period
estimation ol a pure sine wave of 0.503 second period. The signal
was sarrpled with (1L005 second sampling period. The period es-
tmate 7 eonverged o 160014, which is very close to the exact
value 10060000, The estimates converged w0 within (100,599,
1001601 in 2bout 23 iterations. Triangular wave was also used for
period estimation. The result had no significant difference from
that shown in Fig. 2. When a strong high frequency harmonic was
added (o the mangular wave, the cstimation counld not converge,
but a low-pass filtering of the signal solved the convergence prob-
leim as expected. As illustrated in Fig. 1, the iterations converge o
differcnt local minima depending on the initial conditions,

3 Self-Tuning Repetitive Control

The period identification scheme using sampled data may be
applied to both the continuous-time and discrele-lime repetitive
control systems. Herein, we consider the discrete-time repetitive
controlier (Tomizuka ct al. {2]), whose block diagram is shown in
Fig. 2{a). of the following lorm:

wl)=hpl Ve (u(t =N+t hy(r)xe(t N)). a®h

where ¢ is the time index, Ay, (r) and k(1) arc the impulse re-
sponses of stable linear filters M(z"1) and Oz 'y, which are
designed (o ensure closed loop robust stability, Particularly, if the
open loop plant is stable, M{z ') may be designed as the stabic
inverse (or stable approximate inverse for nonminimum phasc
system) of the plant and ((z ™) may be a low-pass filter, which
scarifies high frequency tracking/disturhance rtejection perfor-
mance for robust stability. Tt is well established (Hara ec al. {17,
Tomizuka et al. [2]) that the above repetitive control system is
stable for any fixed signal period N provided that the following
sufficient condition is met:

oGz "W1-M{z"HG (D=1

Let the discrete transfer function of the plant in Eq. (2) with a
zero-order hold and sampler be G (2" DWe=g(z "WAGz ") The
prototype discrete-time repetitive controller is (Tsao and Tomi-
zuka [3]. Tomizuka ct al. {2])

(14)

K, A(zTHB—(z) _
34{:1)}) 1 r
2z " N=Fiz""WF(z), {15

where Biz—1)=8"(z N8 (z "Yand B7(z7') contains all the
unstable piant zeros. For the self-wning repetitive control, cer-
tainty equivalence principle is applied to adjust the repetilive con-
troller period accordingly and frozen-time stability is cstablished
by (14} for any estimated N,

The period & mwust be an integer in the discrete-time repetitive
control implementation. The estimated signal period », , however,
is in gencral not an intcger. Without changing the digial control
sampling period, one can at best set the repetitive controller signal
period o the nearest integer of the estimated signal period:

Miz 1= bzmax|B (e )2

[Fie d)|=1, 0sw<m,

Nepr=|m+035] {16)

where & represents the iteration index. With this, the difference

between the identified signal period and the integer controller pe-
riod can be represented as
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(17

Equation {1} can then be vsed 10 determine whether the repetitive
control performance is acceptable with such period mismatching.
Ta further reduce the difference between the repetitive controller
period and the identified signal period, the digital control sam-
pling interval can be line wned around the nominal sampling in-
terval T The integer delay &, is updated according to (16} and
the sampling time 7., is updated according to the Tollowing
cquation such that their product cquals to the estimated period
( 7. T,) and that the new sampling time 7, . ; s minimally devi-
ated from the nominat swnpling period Tt

{18}

The deviation of the new sampling interval from the nominal sam-
pling interval T denoted as 8 s

i —T‘

5= 19
‘ - (19)

Since the change of sampling time § is typically small enough,
for cxample §=0.5% for N, ;= 100, the closed-loop system sta-
bility can be maintained without changing the repetilive controller
paramelers Lthal are designed based on the nominal sampling in-
terval T. This is because the discrete-time system matrix eigenval-
ues are conlinucus functions of the matrix elements, which in turn
are continuous functions of the sampling period.

Slow Adaptation Scheme. When the plant is not accurately
known and the signal w{r) in Eq. {2) is not available, the sieady-
state signal u(f) or y¥(t) can be vsed for period identilication since
it has the same period as w(t). To cnsure thal the signal sampled
for computation is close to periodic, the sampling time must be
fixed in cach cycle of data collection. Furthermore, the controller
period and sampling time must be updated infrequent enough so
that the closcd-loop system can practically rcach the steady-state
response. Therelore, we assume that the period and sampling time
updating tate is much slower than the control system transient
response. With this assumption, the identifier gets near periodic
signals from the near steady state control system and the slowly
Lime-varying control system stability can be determined by its
frozen-time model. Frozen-time stability is thus assured if Eqg.
(14 is satisfied for the small range of sampling interval variations.
This means that the A, norm of the transfer funcuon in (14)
should be sufficiently less than one so that Eq. (14) can be satis-
ficd under the variations. We call this slow adaptation scheme.

The slow adaptation scheme can be implemented in the follow-
ing fashion, Let the period identilication and repetitive control
have the same sampling time although, in general, they need not
be identical. Let each tuning cycle be P steps. The controller
period N, and sampling interval 7, arc updated at beginning of
cach tuning cycle and they remain fixed for the entire cycle.
Within cycle k, first £ steps are [or the signal to scttle to steady
state, the subsequent P, steps arc for collecling datu lor period
identification, and the last P4 steps are for ilerative period identi-
fication computation.

Fast Adaptation Scheme. In the case that a periodic signal is
available at all time disrcgarding the control system transicnt re-
sponses, the period identification and the adaptive controller may
be updated every time step to catch up with the change ol signal
period more quickly. This is the case when the signal w(f) in Eq.
{2) is available for measurement or the plant model 15 accuraie
enough 5o (hat w(z) can be compuled [rom the input and output
signmals by using Eq. (2). In this case. the period identificr and the
repetitive control period are updated every controller sampling
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interval. We call this fast adaptation scheme, A sufficient condi-
tion for the 1, BIBO stability of such linear time varying system is
thut the |; norm of the transfer function in Eq. (14) be lcss than
one, Referring to the equivalent block diagram, Fig. 2(h}, the time
delay perturbation is now a linear time varying perturbation op-
crator, whose 1. induced norm is one. Therelore, applying the
small gain theorem [14] gives the above condition. The BIBD
stability for variable time delay repetitive control can also be
proven based on state space formulation (Hu [13]).

When applying variable sampling time adaptive scheme to this
fast adaptation version, two independent sampling intervals, one
for the period identification and the other for the repetitive con-
troller should be used. with the former fixed while the latter vary-
ing. To establish stability, the 1, norm of the transfer funclion in
(14} should be sulliciently less than one so that even under a small
range of sampling interval variations, the induced norm is always
less than one,

4  Application to Mechanical Motion Tracking Control

The proposed self-tuning repetitive control algorithms have
been applied to & mechanicul motion tracking control probiem,
‘The hardware system consists of a air bearing supported XY stage
driven by DC serve motors through ball screws, PWM servo am-
plifiers, linear encoeders with T micron resolution, computer inter-
fuces, and a floating point digital signal processor (TMS320C30)
for control implementation. Both analog-to-digital and digital-to-
analog converters arc of 12 bit size over --10 1o 10 volts range.
The servo amplifier has an internal velocity feedback and there-
fore the voltage input w the amplifier represents a velocity com-
mand. Only the X axis motion is considered herein for testing the
contriyl algorithms.

The transter function from the voltage input of the amplifier to
the encoder position cutput for the X-axis has heen identified:

0.004{s + 1934.7)({ s+ 4749.3)

=TT 841.0]

(20)

The zero order hold and sampler discrete transfer function for a 3
millisecond sampling intcrval is

L0¢ *(0.0034z7 400111z 2400001~
C1-09917:" 1000827 2—0.0001z°

-1

Z

(21)

A digital PD controller of the following form was introduced to
stahilize the system:

1

Cla™ =k, + krT (22)

The gaing &, = 4000, k=20 were used and the stabilized closed
toop transfer function is

L 0.8273z7! - 0.3252: - 0.0432¢ 7 *—0.00057 7

Gl ) T Teaae = 0.3333: 7 009337 00005
(23)

which 1s the plant model used for repetitive controller design,

Since all the zeros of the plant is inside the unit circle, the repeti-
tive controller by applying Eq. (15) for K,=1 and h=1 is

|
JW{Z_.IJ_ T
) Gz '}

-

Az 64704
16

.

gz -

Both the T1,, and 1, norms ol the transier function in Eq. ({4) was
verified o be less than one.
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Fig. 3 Experimental results of the nonadaptive repetitive con-

trol scheme with exact match of the signal and the controller
period {N=100)

Slow Adaptation Experimental Results. Experiment was
first conducted for the case of exacl signat and controller period
synchronization. A sinc wave, of which the period is (00 times
the sampling period (5 ms) and the amplitude is 0.6 mm. was
generaled within (he control software. Figure 3 shows the tracking
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102
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g 1005} -
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Time Step x4
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é

o L 2 3 4 5

Time Step x 104

Flg. 4 Experimental results of the slow adaptation scheme
with fixed and variable sampling intervals
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crror response. The r.m.s. value of the steady-state error response
was 2.6 microns, This value represents the hardware system per-
formance limit for exactly matched case and will be used for
comparison with the adaptive schemes.

An analog sine wave was generaled external w the control soft-
ware by a funciion generator and was sampled by the control
software as the tracking reference signal. The signal used lor pe-
riod identification was taken from the voltage input to the servo
amplifier, assuming the periodic reference signal was not avail-
able. The signal period was around 300 milliscconds. it was
uncertain. Each wning cycle has £ =40 steps with P, — 2100,
Poy= 9N, Py=1000. The experimental results are shown in Fig. 4.
The fixed sampling time adaptive scheme was implemented for
the first 32,000 dme steps and the variable sampling time adaptive
scheme ways activated an step 32,000, In the first cyele, the con-
troller period had initial condition at 101 and the steady state
r.mes. error magnitude was 62.2 microns, The period identilier
gave n=102.22 and hence the adaptive repetitive controller ap-
plied =102 in the next lew cycles. This reduced the r.mus. error
magnitude to 13.3 microns. When switched to variable sampling
interval adaptive scheme, the sampling ume was adjusicd such
that both signal and controller periods were 102, The identificd
period corresponding signal sampling interval is shown in the vp-
per trace of Fig. 4. The r.m.s. error magnitude reduced further fo
3.3 microns, close to the limiting value 2.6 microns. The 0.7 mi-
cron ditterence is probably duc to combined effect from the con-
trolicr hardware timer resolution and the neises in the analog sig-

Estimatad Period

L] 2000 AHNXE 000 3000 1600} 12000

Time Step
=107

Tracking Etror (M)

D5

|3} 20060 4000 6000 ROOG LOCDC T
Time Step

Fig. 5 Experimental results of fast adaptation scheme using
reference input signal for period identification
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Fig. 6 Experimental resuits of fast adaptation scheme using
the plant mode! to calculate the periodic input signal

nal transmission and conversion. The missing data points in Fig. 4
is duc to the act that host computer processor was not available
for data acquisition during those periods,

Fast Adaptation Experimental Results. The {ast adaplation
scheme was implemented with a fixed sampling interval. In the
experiment, the lunction generator signal [Tequency was manually
switched from about 1.4 Hz w about 2 Hz and switched again
back te 1.4 Hz. The moving data window for the period identifi-
cation was 150 steps. The first test used the reference signal lrom
the function generator for period identification and the second test
uscd the error and control signals 10 calculate the exogenous sig-
nal wir) by Eq. (2). The results are shown in Figs. 5 and 6,
respectively, Both cases were able to keep up with (he change of
periods quickly while maintaining system stability. 1t is intcrest-
ing to observe that the period estimation has smooth transition
when the signal frequency is changed although in the transition
stage there are times at which the 150 data points used for period
ideniification contain both (requencies. As cxpected, the transient
performance of the first test appears better than that of the second
test because the signal used for the sccond test contains *noise™
from the unmodeled dynamics.

Finally. it is remarked that the real-time sollware for imple-
menting the adaptive schemes presented herein only needs 10 be
slightly modihed from a fixed sampling interval repetitive control
software. In addition to the period estimation software, changing
contreller peried is only a matter of changing the pointer index of
a data array, and changing sampling interval is accomplished by
changing 2 timer counter value. Both simulalion and experimental
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results showed that no substantial adverse transient behaviors
were observed when changing the repetitive conuroller period
and/or sampling intervals.

5 Concluding Remarks

Repetitive control schemes for tracking periodic signals with
unknown or slowly varying period have been presented. A
discrete-lime domain recursive scheme for identifying continuous-
time signal period with better than sampling interval resolution
has been proposed. The period adaption scherme was incorporated
in the seif tuning repetitive control with a slow adaptation scheme
and a fast one, cach with stability conditions given. A novel way
to match the noninteger esimated signal period and the integer
repetitive controller period was proposed by changing the control
sampling interval. Both the fixed sampling and the variable sam-
pling interval adaptive schemes have been verified by simulation/
experiment with the latter having superior performance than the
former. The fast adaptation schemes have been able to keep up
with the change of periods quickly while maintaining system sta-
hility. The slow adaptation scheme with a fixed sampling interval
has also been successfully applied to removing unknown periodic
disturbance load for the mold level regulation in continucus steel
casting process (Manayathara et al. [15]).
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This paper deals with asvmptotic tracking for lnear systems with
actugtor saturation in the presence of disturbances. Both refer-
ence npity and disturbances are assumed to belong 1o o class
which may be regarded as the zevo-input responses of linear sys-
tems. The controller includes an anri-windup term which reduces
the degradation i the svstem performance due to saturation. The
stability of the overall svstem is established based on ihe
Lvapunov siability theory. Both state and ouwtpur feedback solu-
fivns are given. The proposed scheme iy evaluated for u two axis
mation control system by sinudation. [S0022-0434(00)01002-9]

1 Introduaction

Nearly all physical systems are subjecied to some type of con-
trol inpult saturation. Actuator saturation is such a case, and 1t is
often encountered in mechanical contro! systems. It is known that
actuator saturation may have adverse effects on performance and
stability ol a closed-loop system. if the controller of which is
designed without accounting Tor it. Consequently, there have been
a nurmber of studies made for linear systems with input saturation.
One rescarch topic is the closed-loop stability, and several signifi-
cant resuolts have emerged. State and output feedback controllers
have been synthesized (o achieve global or scmi-global stabiliza-
tion of stabilizable systems with no vostable open-loop eigenval-
ues (1,2]. Another topic of tnterest has been the rajectory plan-
ning considering the actuator constraints in the framework of ofl-
line optimization [3.4]. A third wpic has been the so-called
windup. Windup problems were originally encountered in PYPID
controllers. However, il was recognized laler that the integrator
windup is only a special case of a more general problem. Ay
pointed cut by Dovle et al. {5]. any controller with relatively slow
or unstable modes will experience windup if there are actuator
constramts. Substantial research has been done 1w incorporate
medifications into controllers, which have been designed without
accounting for constraints, such that the closed-loop behavior s
satisfactory even in the presence of construints. These madilica-
tions are usualty called anti-windup schemes. Most of the existing
unti-windup schemes modify the controt law only when the actua-
tor 1s suturated. Many of them are ad-hoc in nature and do not
guarantee asymptotic closed-loop stability even for open-loop
stable systems.

This puper is based on work by Kapoor, Teel, and Daoulidis
[6.7]. In [&], only regeluion was considered and measurement
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