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This paper presents the development of robust digital tracking control algorithms
and their regi-time implementation on an electrohydraulic servo-actuator for (ool
positioning in roncircular machining. Robust adaptive feedforward controller for
tracking arbitrary signais and robust repetitive controfler for iracking periadic signals

against disturbances and unmodeled dynamics have been developed. Experr'men‘m!
results are presented to jliustrate the control system synthesis procedures and tracking

performance,

1 Introduction

In tracking control problems, the control input must be
applied so that the plant output foillows a time varying desired
output. This problem is ciosely related to system dynamic
inverse. Intuitively speaking, if the dynamic inverse of a con-
trofled plant is placed between the desired cutput signal and
the control input, the plant output must come close to the
desired signal. Of course, the problem is more complicated
because of the stability and the realizability of inverse systems.
When the problem duration is finite and the desired output
signal is known in advance over the entire problem duration,
the tracking problem can be formulated in an optimal control
framework (Athans and Falb, 1964; Anderson and Moore,
1971). When the desired signai is not known over the entire
problem duration but only locally, the tracking problem can
be formulated as a finite preview problem (Tomizuka, 1973).
The preview controller can be interpreted as a filter, which
generates the optimal control input responding to previewed
future desired outputs. Such fNiters can be designed in the
frequency domain based on pole/zero cancellation and phase
canceliation (Tomizuka, 1987). Design methods for tracking
controflers mentioned above assume that the plant model is
accurately known. When the controlied plant s poorly known
and is subject to uncertainties and/or variations, the tracking
controiler must have adapting or learning capability so that
an acceptable level of tracking performance is maintained.

A commonly used learning alporithm has the following in-
tegral form: s¢y = 5¢ + Lpey, where kis a time index, sis a
signal 1o be adjusted such that the error signal e converges to
zero, and L is the learning gain. This integral form assures
that the error converges to zero if the signal s.., — 5 may
converge to zero, but it requires special attention to the system
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stability. In this paper, we present two tracking control al-
gorithms of this form, the robust adaptive feedforward track-
ing control algorithm and the robust repetitive centrol
algorithm, for the tool motion generation in nencircular ma-
chining.

Noncircular machining generates a workpiece with noncir-
cular shaped cross-sections by controlling the tool motion in
the direction normal to the surface of the workpiece, for ex-
ample, an oval shape engine piston. Tracking control algorithm
for generating accurate dynamic tool motion is essential for
successful implementation. This paper considers the use of an
electrohydraulic servo actuator for tool motion generation.

The remainder of this paper is organized as follows. The
next section presents a robust adaptive feedforward tracking
control algorithm. Section 3 presents a robust repetitive control
algorithm. Section 4 presents the implementation of the control
algorithms en a hydraulic servo actuator for nencircular ma-
chining.

2 Robust Adaptive Feedforward Tracking Control
Algorithm

The development of adaptive control has aimed at achieving
both good robust stability and performance under plant dy-
namics uncertainties and variations. In tracking controi, one
approach is to use a fixed robust controller to stabilize the
plant and to cascade the feedback system with an adaptive
feed-forward controller to maintain specified tracking per-
formance under plant variations. In this section, we are con-
cerned with such approach.

Widrow and Stearn (1985) introduced the concept of adap-
tive inverse modeling and applied this concept to inverse con-
trol as weil as signal processing techniques such as adaptive
equalization, interference canceling, and beam forming. The
effect of disturbances on the stability of the parameter esti-
mation algerithms was analyzed from statistical considera-
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tions. However, in various control applications, the availabie
prior information about the disturbances is usually given, not
in statistical terms, but as bounds on its absolute value. Thus,
the probabilistic convergence arguments may be invalid (Loz-
ano-Leal and Ortega, 1987). Tsao and Tomizuka (1987) gave
a special type adaptive feed-forward control algorithm in which
the convergence analysis was given in the deterministic sense
without considering the effect of disturbances. In this paper,
the problem of disturbances on the parameter estimation al-
gorithms will be handled by utilizing the “‘relarive dead zone’”
proposed by Kreisselmeier and Anderson (1986). Other meth-
ods such as projection of parameters to a constrained set
(Goodwin and Sin, 1984) and estimator signal filtering will
also be incorporated to achieve an integrated robust adaptive
feedforward tracking system,

Figure 1 shows the block diagram of an indirect adaptive
feed-forward control system. {t consists of the plant to be
controlled, the plant parameter estimation algorithm, the feed-
forward controiler parameter adaptation algorithm and the
calculation of the control input. The plant parameter esti-
mation algorithm uses the plant input and output signals to
generate the plant parameter estimates. The feed-forward con-
troller adaptation algorithm takes the plant estimate as input
and generates the controller parameters, which characterizes
the piant inverse dynamics. Finally, the control input is cal-
culated according to the obtained feed-forward controller.

While this procedure is described sequentiaily, the three parts
described above can actually be executed asynchronously, i.e.,
the updating rates of the plant parameters, the controller pa-
rameters, and the control input can be different. For the con-
venience of presentation, we assume that the three updating
rates are equal. The piant model, adaptive identifier, the feed-
forward controller, and performance characterization are de-
scribed next.

The Plant Model. Suppose a SISO system has been sta-
bilized and this stabilized closed-loop ‘*plant’ is described by
a nominal discrete-time linear time invariant model:

Alg "Wtk =B(g Yulk-d) +q(k)

A{g N =1+ag  vag  +... vag

rr

Bg™ ) =bo+bg ™ 4.+ bag", (1)
where n includes those modeling error, disturbances and noises,
g~ " is the one step delay shift operator, 4{g~") and B(g ")
are coprime and of desree n and m tespectively, and Alg™ D
is monic and stable. The transfer function g *B(q¢~")/A(g™")
is called the tuned model of the actual system. The size of »
can often be reduced by introducing an estimator filter F{g ™"}
to « and y. Then Eg. (1) becomes

Alg "ykY=Blg Nulk—d) + k) 3]
ar
Y)Y =8 T (k= 1) + k) 3

where /{k) = F(q“!)"?(k), B.T = [als 25 PERI bOJ bl! ey
bal, @'k = 1) = [=ylk = 1), =yplk = 2), .., —yplk —
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a), upix = d) ..., u(k — d - mj]. Note that the tuned
parameters §° is not required to be unique, especially when
persistent excitation does not exist.

When v, only contains smail bounded disturbances and
noises, a constant value N is sufficient to bound 7. When 7,
contains modeling error, it is relatively bounded (Kreisselmeier
and Anderson, 19886) if there exist p = 0 and m(0) = 0 such

that
nelk) = umik) (G
mky=aggm(k- 1+ bulhk— 1)}

Flyh=11 ©<op<ly  (5)

In the case that the frequency contents of the input signal
are concentrated at certain frequencies, the modeling error may
be very small because the tuned model only fits the true plant
at those frequencies. This is in contrast to the persistent ex-
citation condition generalily desirable for adaptive systems. In
either case, it is assumed that the bound M(4) is known apriori:
Le, Indiol = N(kY, k > 0.

Indirect Adaptive Feedforward Controller. The indirect
adaptive feedforward controller consists of the adaptive iden-
tifier and the feedforward controller. The general form of an
adaptive identifier is:

8(k) =6(k— 1)+ L{k)Yo(k— DDIN(K), e,(k))  {6)
e (k) =y k) =87 (k— Do (k- 1), 5

where # is the estimated parameter vector, ¢, is the estimation
error, L is the estimation gain matrix; 2(...) is a “Relative
Dead Zone” function to be precisely defined later. We pos-
tulate thar the adaptive identifier has the following desirable
praperties for the purpose of synthesizing the adaptive feed-
forward controller:

{D1) ikl <o, £20, (&)
DNk, e,(k))
c+ ¢ (k— Dbtk —1)
(D3} #ky—-8{k—11—0as k—co {10y

Notice that only the convergence of the estimation error as in
(ID2} is required and parameter convergence is not a concern
except for the constraint in (ID1) and (ID3).

The control objective is to let the plant output y(k) follow
the signal My (k + N,), where M is the desired /G map, yq
is the desired output signal and A, is the preview length of y,.
This means that at time step &, the fuiure reference points
yolk + 0, ..., yalk + N,) are known. To let y track yy
exactly, we may set M(g~") = ¢ "p.

Based on the estimated plant dynamics from the identifier,
the (approximate) inverse dynamics can be obtained in several
ways. Let the estimated piant transfer function at time & be
G798 (g™ ")/ Ac(g™"). Since the denominator A.(g~") can be
readily canceled, we assume the feed-forward controller is of
the form

—0 as k—oo, (C< @) (9

(D2)

u(k) = (AW g Vrelk+N,), (1

The filter W, (g ")is to be chosen to make the madel following
error (M — g ?B.W,) (¢~") small in some sense and is pos-
tulated to have the following properties:

{FFH
 mo(k) +my (K)g "+ +my (K)g~

-y _
Wilg™) = l+mEg™ "t +.. . +ni(k)g”

(12)

where the spectral radius of W, (g~ 1y, denoted g, satisfies
gp=<l—-¢e<1 for £>0. 13
(FF2)
160 = I8 k¥l +¢5, k>0, (c1>0,c2>0) (14

where 8.%k) is the Parameter vector of the feedforward con-
traller {4, W (g™ )
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Based on the construction of the above adaptive identif

+
and the feed-forward controller, the tracking performance can
be characterized as follows:

flar

Theorem 1. For the plant model of Eq. (3), the adaptive
identifier satisfying (ID 1, 2, 3) and the feed-forward controller
satisfying (FF1, 2), if the desired output ¥¢ is uniformly
bounded, then

la(i) il < oo (15}
DIN(KY, e, {k)y—0as k—oo, {16)
where
e (k) =:(FA) (g7 Nen k),
(K} =B ) (g Wpalk+ N,) - ytk).  (7)
Proof: See Appendix.
Remarks:

{1} This theorem gives a general result for the indirect
adaptive feed-forward control system. [t shows that the conirol
input is uniformly bounded and ¢,(k) is relatively bounded by
N{k} asymptotically.

{2) The goal of tracking is to minimize the modet following
error [M{q™ "Yys(k + N,) — y{k)}. The adaptive feedfor-
ward controller should be designed such that B, W, (g™ ") is as
close to M(g™") as possible. In the ideal situation, a small e,
implies that both e,, and the model following error are small.
This situation does not hold when 4,(g ™" is pathologic, i.e.,
when 4, {g ™) contains roots on the unit circle asymptotically.
In such situation, a small e, may result from a persistent en,
filtered by FA«(¢™'). The avoidance of pathologic A,(g™ "
are discusséd next.

(3) If the reference input is persistently exciting (Bai and
Sastry, 1985), then the parameter estimates will converge to
the neighborhood of the runed model. Then, the pathology
cannot happen since 4 (¢ ') is stable by assumption. However,
the richness of the reference input is usually not assured.

(4) If Ae(q™" = 1, i.e., the plant is modeled only by a
FIR filter, then the problem with A, does not exist. The trade-
off here is that a long FIR filter may be needed to achieve
small modeling errors.

(5) Since the roots of 4 (g~ ') are {nside the unit circle by
assumption, we can constrain the parameter estimate 4, (g~ ")
such that all its roots are in the unit circle at every time step.
Such procedure is simple for lower order A(g™"), vet is not
easy if the order is larger than 3.

nnnnn TN,

) {Kftisss!meier and ,%ndk.l.'suu, At c;u,bjt:r_‘t Mo
the plant model Eq. (3) and tgAk}] < N(k), the projection
method described by Eqs. (18) and (19) has the properties (ID1-

3).

Lemma 3 (Goodwin and Sin, 1984}:  If the dead zone fune-
tion D(N(k), e, (k)) in Eq. (19} is defined as:
e kY if le(k) ] >2N(k)
Nk k)= 20
D (Ntk), etk)) [0 if le,(k)| <2N(k) @0
and 0 < g < 1, Then, (ID1), (ID3)} are satisfied and {ID2) is
replaced by

D' (N(k), e,(k))
e+’ (kK)o (k)

In general, as much prior information of the plant as possible
shouid be utilized for superior and robust performance. Two
methods exist, one is based on constrained parameter esti-
mation {Goodwin and Sin, 1984} and the other is based on
model reparameterization (Bai and Sastry, 1986). For the pur-
pose of our specific application presented later, we will only
expleirt the first method with the following tvpe of linear con-
straints

—0as k—oo. (21}

>dor
87wy =6 or {22)
<6

where v, is a constraint vector and § is a constant scalar.
When the parameter estimates in Eq- (18} do not satisfy the
specified constraint, they are projected onto the constraint set
by
5— BTUC)PC
7 Pl

T
Vobe

fp=8 (VE}!

Then the projected parameter estimates are closer to the tuned
parameters #* than the unprojected one,

Least Squares Method:
AMK)IP (k- Dok - De &)
L+ MK o7 (k~ DP{k— Dtk — 1)
—_ ; - T — —
P(k)=P(k—l)—Mk}P(k Igo(»’c Do (k- NPk~ 1)
VMK O (k- DPk— Dotk — 1)

ry=8{k-1)+ (24)

(25}
o D(N1+aN(ky, e (i) .
fefky=0
M) = 4 1+07 (k= DP (k= Dalk - 1) e (k) if e.(k) o6
0 ifek)=0

Parameter Estimation Algorithms. Since the plant model
contains the errer »y, standard parameter estimation algorithms
which do not consider the effect of %, cannot be used. An idea
is to turn off the estimator when the magnitude of the esti-
mation error is reduced to the level of the modeling error 7.
The modified projection method and the least squares method,
which apply the above idea, are given below.

Projection Method:
ad{k— ND(N(K), e (k)
c+ " (k- Datk~1)

Blk)y=8(k-1)+ 0<a<2, c>0)
(18)

e (k)Y ~N(k) if e, (k) >N(k)
DIN(EY, ek =10 if lek) | =Nk (19)

e (kY +N(k) if e(k)< =N(k)
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where 0 < o < 1 and D is as defined in Eq. (19).

Lemma 4 {Lozano-Leal and Ortega, 1987): Subject to the
plant model Eq. (3) and Igdk)l < N(k), the least squares
algorithm described by Eqgs. {24)-(26) satisfies (ID1) and (ID3}
and (ID2) is replaced by
D*(N1+aN(K), e(k)
c+o (k- Dok —1)
Feed-Forward Controflers. The feed-forward controller
consists of two parts. The first part is A, (g™ "), which directly
cancels the estimated plant poles. The second part is W, (g™ 1),

whose spectral radius is less than one. W, (¢~ %) can be obtained
in several ways independently of the adaptive identifier.

—0as k—oo. en

(1) Optimal Tracking: When B, (g~ ") is invertible, we may
simply let Wi (g~") = M(g~'}/By(q™"}. Unfortunately, this
is usually not the case for sampled data systems (Astrom and
Whittenmark, 1984). In the case that B, (¢~} is noninvertible,
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optimal tracking ¢an be defined as the infimum of the distance
(using appropriate transfer function norm) between the ref-
erence model M(¢~'} and the achievable input/output map
BWilg™ ) Le

P = infimumlM — B, W, 1. {28)

(2) Inverse Modeling by a parallel identifier; Widrow and
Stearns {1989) suggested to obtain the inverse model for By {g ™"
by running a parallel parameter estimation algorithm. In this
process, the 1/O signals are generated by

5, (1) = Belg™ )8, (1), (29}

where i is a recursion index. B, (g~ ") cascaded with the inverse
model Wi {g~') should be as close as possible to M{g™!), Let
Wi(g~") be a FIR filter, then

Mg~ "), (D =Wielg s (D + (D) (30)

where p is the modeling error. The parameters of Wi.(g™")
can be obtained by running the estimation algorithm described
previously. Since the input s, is artificially generated, one can
choose an input signal with its spectrum in the desirable range.

(3) Zere Phase Error Tracking: The previous two methods
may require too much computation for real time implemen-
tation. Anocther method convenient for parameterization is the
zero phase ertor tracking algorithm (Tomizuka, 1987). This
algorithm cancels all the phase shift from B, (g~} by letting

Mg Big™h
=g
where By (q_l) = B,(qg} is a non-causal filter but the product
MB; (g™ "} shouid be a causal filter, and & = B,(1) for attaining

an exact mode! marching at zero frequency. To be precise,
Thecrem 1 is applied to give the following corollary.

Welg™") ]}

Coroflary 5 {Adaptive Zero Phase Error Tracking):
Consider the plant model Eq. (3) with apricri information:
B{l) =z & > 0{or B(I} = -4y < 0). Apply the feed-forward
controller in Eq. (31} and the adaptive identifier Eq. {18} or
(20) with the constrained parameter estimate Eq. (23) where
v =10,0,...,0;1,1, ..., 1]and § = 3, {8 = — &, for B(1)
= =6y < 0). Then,

latk)l < o {32
D(N{kY, e{k))—0 as k—oo, (33
where
(MB.B; ) (q™")
bl
Proof: In order that (FF2) in Theorem | be satisfied, the sign
of the plant static gain must be known apriori so that con-

strained parameter estimation may be applied to bound B(1)
away from zero. Consider the case of positive static gain: i.e.,

B()

—— >0 3s

A0) G
Since A (q“) is stable and monic by assumption, 4{1) must
be a positive number; otherwise, if A(1) < 0, there exists a
sufficiently large number 3 such that A(5) > 0, and a root
exist in the interval (1, 8). Therefore, the above constraint is
egquivaient to

€r(k)=(FAk)(Q_1)[y{k)— )’a(k)] (34

B(1yz8>0 (36)

for some positive 35. This implies the constrained parameter
estimation defined above. Similarly, if the static gain is neg-
ative, (1) = -8, < 0. Thus, the Corollary hoids by direct
application of Theorem 1.

3 Robust Repetitive Control Algorithm

In noncircular machining, an important class of shapes, the
cam-like shapes, is generated by periodic tool motion. Repet-
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itive control achieves perfect tracking of periodic reference
signal by applying internal madel principle, assuming the pe-
riod of the signal is known. The synthesis of repetitive control
was first developed in the continuous time domain by Hara et
al. (1988). A discrete time domain synthesis featuring fast error
convergence and efficient computation was proposed by Tom-
izuka et al. (1989). Let the period of the reference signal be
N, and the repetitive controller for the plant model in Eq. (1}
be:

u{k) Rig Hg ™ a7

elky 1-g¢°% '
By the internal model principle, the error due to periodic dis-
turbances asymptotically converges to zero as long as the closed-
loop systemn is stable. The prototype repetitive controller based
on the idea of zero phase compensation (Torizuka et al., 1989)
is:

o KAtg hB~
Rig l):—*ﬁa#,ﬂéi(,éz,

bzmax|B (e ™)I* (38)

where B{g™" = B* (g™ "8 (¢” ") and B (g ") conrains all
the unstable plant zeros. Infinitely large feedback gain at the
repetitive signal frequencies {s imposed to achieve perfect track-
ing.

In faet, it is impossible to construct an exponentially sta-
bilizing continuous-time domain repetitive controiler for strictly
proper plants and a medified repetitive controller, which in-
troduces a low-pass filter in the internal model, has been pro-
posed to solve this problem {Hara et al., 1988). In the discrete-
time domain, an exponentially stable repetitive control system
can still be obtained without iniroducing the low-pass fiiter
because only a finite number of frequencies are dealt with as
opposed to an infinite number of frequencies in the continuous
counterpart. However, high gain feedback inherently has poor
rebust stability and hence the modified repetitive controller
with the low-pass filter should also be necessary for synthe-
sizing robustly stable discrete system {Tsao, 1988). This can
be manifested by considering the size of allowable additive
perturbation to the nominal plant medet G.

Lemma § (Astrom and Wittenmark, 1984). Define a per-
turbed plant G € A(C, r) if

1Ge™)~Gle™™) | < Ir(w)] for 0sw=2r,  (39)
and G has the same number of unstable poles as G. Suppose
the closed loop systemn of the nominal plant G with a feedback
controlier C is stable. Then the closed-loop system for every
G € A{G, r) is stable if and only if

[1+Gle™™)yC(e™™)
|r(¢|}]|5 ‘ C[e_‘iw)

By this, the allowabie additive plant perturbation for the pro-

totype repetitive control system in Eq. (37) is

1~ (1—Gle ™R (e /) )e /N
R{e ™)

Notice that [rw) = 1Gle ™™} for w = 2a/N., i = 0, 1,
2, ..., N, — 1. This indicates that the allowable unmodeled
dynamics r(w) is small at the periodic modes at which infinitely
high feedback gains are employed. Therefore, robust stability
must be achieved by introducing a low-pass filter ¢ in the
repetitive controller, similar to the modified repetitive con-
troller for exponential stability in the continuous counterpart:

u(k) Rig"HQ(g Hg ™"
e(k)  1-Q(g ™™ “

- The introduction of the low-pass filter Q) maintains the learn-
ing mechanism of the internal model at low frequencies while
turns off the learning at high frequencies to retain robust

(40)

lr(w)l = 41}
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¢ following thecrem shows how the allowable ad-
perturbation is increased with respect to the low-
pass {ilter Q.

Theorem 7. Suppose a repetitive controller in the form of
Eq. (37), in which R(g™") is assumed stabie, stabilizes the
nominal plant G(g™'). Let

-y Hig HH
Qg l)=_'q_h.“.£gl

h=max|H(e )| (43)

under the constraint that Q(g~ YR (g~ "}¢~™ is causal. Then

Q(g HRg g™
1-Q(g~ g™
also stabilizes G(g~'}. Furthermore, the allowable additive
perturbation is

lr{u)] = |I _Q(e‘f'w) {1- G(eﬂw}R(e'f“))e—JNm
| Qe )R (™)

Proof: The characteristic equation of the original stable
control system is

(44)

(45)

I+ M(G(g YR(g™") - 1=0 (46)
and that of the modified repetitive control system is
L+¢ ™ ™M(G(g YWR(g™HY-DQg ) =0 (47)

Equation (46) can be considered as a unity feedback system
with stable loop gain z™(GR - 1). Hence by the Nyquist
stability criterion its encirclement around the critical point
(- 1) is zero. For Eq. (47), the loop gain 2~ ¥ (GR - DO is
also stable and also 0 < Q(e™™) = 1. Therefore the number
of encirclement remains zero, which implies the closed loop
stability. Equation (45) is directly from appiication of Eq.
{41). Q.E.D.

The allowable perturbation 7 {w) at high frequencies becomes
approximately {1/RQI. For the robust prototype repetitive
controller defined by Eqgs. (38), (43), and (44), a simple criteria
for synthesizing Q against unmodeled dynamics for robust
stability is given below.

Corollary 8. The repetitive control system stabilized by Egs.
(38}, (43}, and (44) is robust stable for the perturbed piant G
€ A(G, G/

Proof: By Theorem 7, it is sufficient to show that
G| _[1=ge M (1-RG)
Q| | RQ

Noticing that ¢ < R(e™™}G(e™™) = 1,and 0 = Q(e™™) =
1, due to the zero phase characteristics, we have

(48}

- sNrw
[1 =~ Qe (1 - RG) L= 101 -RG) || @
RQ IRQI
_1-QU-RG) 1-(1-RG) |G
" ROT = 1RO _JQ| (59)
Q.E.D.

This corollary gives an explicit relation between the filter g
and the unmodeled dynamics |G — &1, and hence is useful
from practical design standpoint. One simply needs to choose
Q such that its magnitude is less than that of |G/G - Gl.
Parallel development for multiplicative perturbation can be
found in Tsao {1988).

4 Application to an Electrohydraulic Servo-Actuator
for Noncircular Machining

Experimental System Description. Figure 2 shows the ex-
perimental system, which consists of a hydraulic linear actua-
tor, an analog current amplifier, and a digital signal processor.

281 Vo!. 116, MARCH 1984
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Fig. 2 Experimental system schematic diagram

The tool holder, which is a linear bail bearing sliding table,
holds the cutting tool and is connected to the hyvdraulic ac-
tuator. The linear actuator is a double acting double rod cyl-
inder with 50.8 mm stroke and 361,29 mm? effective area. Its
front end is connected to the tool holder and its rear end is
connected to a displacement sensor which is a linear variable
differential transformer with a carrier frequency of 6000 Hz,
implying approximately 600 Hz sensor bandwidth. The efectro-
hydraulic servo valve is a two stage spring feedback flow con-
trol spool valve, The analog current amplifier sums up the
negative feedback signal from the position sensor and the input
from the compurer digital to analog converter, and provides
the current input to the servo valve torque motor. The dual-
computer system consists of an [BM-AT microcomputer and
a TMS-32020 digital signal processor. The TMS processor car-
ries out the digital controt and data acquisition by 32 bits
integer arithmetic and 16 bits data word length. The [BM-AT,
which can read and write data on the TMS memories, provides
operator interface, and data storage for the TMS, The anaiog
to digital converter has 5 micron per bit measurement reso-
iution. Throughout the experiment the Muid supply pressure
was 498,735 Pa (1500 psi) unless mentioned otherwise.

If we specify the cross-sectional shape of the workpiece by
a series of points, the sampling period of the digital controller
is determined by

1
T.= second (31}
Lis

5
=N
60" 7

where #n; and N, are the spindle speed in rpm and a required
number of peints to describe the cross-sectional shape, re-
spectively. In this paper, N, = 250 and 1, = 600 rpm, resulting
in a sampling time of 0.4 ms. Every sampling was triggered
by the pulse train signal from an encoder attached to the spindle
axis.

System Identification. The system dynamics of hydraulic
serve actuators are generally nonlinear and time varying, The
nonlinearity is mainly due to the fact that the hydrauiic fiuid
flow rate through an orifice is proportional to the square root
of the pressure difference across the orifice. Coulomb friction
and stiction between the piston rod and the sealing is another
source of nonlinearity. The system variations are due to the
effect of fluid temperature change, air trap in the system,
mechanical wear and leakage, and etc.

The type-one open-loop hydraulic system was first stabilized
by an analog proportional feedback controller. Figure 3 shows
a set of step response data for several step sizes, normalized
to unit step in the plot. Nonlinear effect can be clearly observed,
a larger step caused larger overshoot. Small signai frequency
response was obtained by the swept sine method and is shown
in Fig. 4, The curve-fitted transfer function for this frequency
response has a close agreement with the experimental resuit:
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1.21635¢8 exp ™ 3928~ %[(5 + 228.205)" + 701.581%

Glsy= [(s +293.720)" + 344.6337(s + 136.264)" + 656.0277

[(s+ 383.750)% + 2052.592%)(s + 2470)

. . T = (52
[(s+352.485Y + 1474.6647}{(s + 350.602)" + 1801.829°] (52

The step response of this model shown in Figure 3 has a

very close agreement with the experimental data with small
step sizes. The zero-order-hold discrete transfer function for

0.4 msec. sampling time is

1.45038¢ 7 (g +4.126)[(g — 0.585)* +0.628%]

Gla) T (g —0.881)7 +0.1222)[(g — 0.915) + 0.2467)
[(g - 0.877)° +0.253%(g + 0.319)(g - 0.373)
"[(g - 0.722) +0.483%) [(g — 0.653)* + 0.5747)
or
G =q‘3[0.00145 +0.00167¢ "' —~0.01251¢ >+ 0.018844 ~*
1-6.34200¢ ' +18.18757¢ " * - 30.81742¢ >

—0.01221g %+ 0.00217¢ "* + 0.00131g " * - 0.00044q ')

Magnilude {dH)
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104
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Fig. 4 Frequency response plots

phase error tracking controliers (ZPETC) based on the full
order model in Eq. (53} and the reduced order model in Eq.
(55}, respectively, The control input for the full order model
was computed off-line by floating point arithmetic. The control
for the reduced order model was implemented in real time by
32 bits integer arithmetic with several scaling schemes to achieve

(53)

+33.758%0g " - 24.49529¢ " + 11.50632¢ ®— 3.20287¢ "' + 0.40505g ®

[n order to test the effect of unmodeled dynamics on the
performance of the developed robust tracking controilers, we
signify the unmodeled dynamics by assuming that the discrete-
time domain plant model is described by the following reduced

order mode!
g “(bo+big "+ g™ h) 54
T+ag  +aag  +ayg ™}

where 4 was determined to be § by inspecting the step responses
and the parameters were obtained by off-line recursive least
squares using random excitation:

(a1l ay, dJ3, bl]) b]t bz)
={-0.606, —0.747, 0.519, 0.060, 0.034, 0.071) (55)

Using the reduced order model for controller design also re-
duces the real-time implementation difficulty in compuration.
The frequency responses of both discrete models are shown in
Fig. 4, The step response of the reduced order discrete model,
shown in Fig. 3, has a good agreement with the experimental
results in the rising stage but does not capture the overshoot
as the full order model does.

Tracking control algorithms were tested by considering non-
circular machining of a workpiece to an oval shape, shown in
Fig. 5. Figure 3 also shows the experimental resuits of the zero

Glg )=
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appropriate dynamic range. The integer dynamic range was
deemed appropriate when the results for the reduced order
model using off-line floating point arithmetic made no sig-
nificant difference from using real-time integer arithmetic. The
ZPETC using the full order model rendered 4.5 units {5 mi-
crons/unit} r.m.s. tracking error compared to 9.7 units using

the reduced order model.

Adaptive Zero Phase Error Tracking Controller. Adaptive
zero phase error tracking control was tested among possit_:le
adaptive feedforward tracking control schemes because of its
simplicity in implementation. The plant model structure as-
sumed was the one in Eq. (54). Therefore the model parameters
in Eq. (55) can be considered as one candidate of tuned models.
This implies that adaptive ZPETC should be able to achieve
a similar performance to that of tuned model.

The behavior of adaptive and repetitive controllers should
be cbserved over a long time interval in order to conclude
stability. Because of the limited memory space for storing the
experimental data in real time, the data for the adaptive and
repetitive controller experiments were collected and will be
displayed in the following fashion: Each step in the horizontal
axis represents one spindle revolution, which corresponds to
250 sampled data or 0.1 s of time interval. For each step, the

MARCH 1394, Vol. 116/ 29
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r.m.s. values of signals over one spindle rotation are shown
in the vertical axis.

Because the stabilized servo actuator has unity d.c. gain due
to the fact that the actuator is of type-one in open loop, this
prior information was utilized to constrain the estimated pa-
rameters by projection, as in Eqs. (22) and (36}

Constraints: 67p.=1, where »7=(~1, =1, = 1; I, 1, 1),
and
875, >0.001, where »7=(0, 0, 0; 1, 1, 1). (56)

Because of the presence of noise and unmedeled dynamics,
signal filtering and dead zone was necessary to ensure param-
eter estimate convergence. The noise level in the displacement
measurement was about two te three units (A/D bits). An
extensive set of experiments indicated that a moving average
filter given below and a dead zone size of 3 were adequate,
Figures 6 and 7 show the experimental results of adaptive
ZPETC using projection scheme in Eq. (18) and dead zone
function Eqg. (20} with the following parameters and filters:

Figure 6: ¢=10, F(g™h
=(1+¢ '+F+q *)/4, N=2, a=1.0,
Figure 7: ¢=10, F(¢ N=(l+g '+ ¢ +q %)/4, N=13,
a=0.6, 1.0, 1.5, 1.9, 2.0.

Notice that in Fig. 6, the case of dead zone size N = 2,
bursts appeared in the tracking error and the adaptive identifier
estimation error e, {per Eq. (7)). This is in contrast to the case
of adequate dead zone N = 3 in Fig. 7.

Larger adaptation gains rendered smaller estimation and
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tracking errors until instability cccurred at 2 = 2.0, This is
compared to the condition in Lemma 3, in which 0 < g < 1
is sufficient for convergence. The tracking error for the case
@ = 1.9 has reached 9.5 units (r.m.s.) similar to that attained
by using the ‘‘tuned reduced order model.””

To further illustrate the adaptive control capability, another
experiment was conducted to investigate the effect of plant
parameter and structure variations to tracking perfermance.
The hydraulic supply pressure was suddenly reduced to 83.125
Pa (250 psi.) from 498.75 Pa (1500 psi} in the experiment to
cause such change. The non-adaptive and the adaptive ZPETC
(witha = 1.3) were tested. Figure 8 shows that the nonadaptive
ZPETC could net properiy compensate for the plant dynamics
change and resulted in a significantly larger tracking error and
estimation error than those of adaptive case. In the adaptive
case, the estimation error for the lower supply pressutre could
not recover to the level of the higher supply pressure because
the systemn dynamics had changed drastically from the assumed
piant model structure.

Robust Repetitive Controller. The repetitive controller was
designed based on the reduced order medel in Eq. (55). The
compensator R(q“l) in the repetitive controlier is sitnply the
ZPETC:

R(g™"
_ g1 -0.606g""—0.747¢7)(0.060+0.034¢ + 0.0714%)
- (0.060 +0.034 +0.071)°

(57)
Since significant unmodeled dynamics exist, the closed loop
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stability could not be established simply by employing R{g~ n,
In this case, Q(g~") is chosen to achieve (robust) stability at
the expense of reduced rracking accuracy. Corollary 8 was
used to determine O(g~") by using the form

~1 n
Qg™ )= [M} (58)

4

Herein, the nominal plant G is the reduced order mode! in Eq.
(55) and the perturbed plant %o{G) is the curve-fitted full order

model in Eq. (53). The magnitudes of Q and % r=6-a

shown in Fig. 9 indicate that the order m = 1 is sufficient to
stabilize the perturbed plant, while # = 0 {i.e., Q(g™") = 1)
violates the robust stability condition due to the smail dip of
G/r below 0 dB at around 700 Hz. The experimental results
for both n = Dand n = 1 with Kr = 1.0 are shown in Fi%.
10, Notice that the evolution to instability for the case Qg™ )
= | is not evident until after 600 revolutions.

The error convergence rate for the repetitive controllers is
determined by the accuracy of the model as well as by the
repetitive control gain K,. For a reasonably accurate piant
model X, = 1 gives fastest convergence rate and even gives a
dead beat controller for a perfectly modeled minimum phase
plant (Tomizuka et al., {989). The transient behaviors of the
tracking error r.m.s. values under different repetitive control
gains &, are shown in Fig. 11. As expected, &, = 1.0 had the
fastest convergent rate. A sample of typical steady state track-
ing error signal, which is almost vanished except for noises,
is shown over one revolution in Fig. 12.

Actual machining of Aluminum {7075-T651) was conducted
using the robust repetitive controller because of its superior
performance in tracking periodic reference signals. The radiai
cutting force was much smaller than the hydraulic acruator
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force capability and did not affect the tracking performance
significantly. A sample of the machined oval workpieces is
shown in Fig. 13.

5 Conclusions

Raobust adaptive feedforward tracking controiler and robust
repetitive controller has been developed for tracking arbitrary
dynamic signals and repetitive signals, respectively. Because
both algorithms invalve integration type of learning, estab-
lishing stability was the key factor for successful implemen-
tation. Application to a hydraulic servo system shows that
robust parameter estimation by a combination of signal fil-
tering, dead zone, and parameter constraints is crucial for
successful adaptive tracking control implementation. For re-
petitive control, a low-pass filter, which turns off high gain
feedback learning at high frequencies, is crucial for establishing
system stability. This low-pass filter has been explicitly related
to unmodeled dynamics for convenience in practical design.
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APPENDIX
Proof of Theorem 1
We first show the boundness of (k) using the Lemma fol-
lowing this proof, Consider the state representation of W,.
The conditions in Eqgs. (A6), (A7), and (A8) for the Lemma

are satisfied by (ID1), (FF1), and (ID3), respectively. Therefore,
(A9) applies. Since the state of a linear system cannot grow
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unbounded in finite time, tx (e}l < oo, Therefore, lo()l <
= in view of Eq. (A9). By {ID2), it follows that

D(N(k}, g;(k)}=0—0as k—a0. (Al

Notice that the following two time varving operations are
different (Goodwin and Sin, 1984), i.e.,

(AB) (g Ywiky=D D7 ak)blkywik—i-f)

4
= (BA) (@ Hwik) (A2

Arlg Ve Belg™ Wwik) =D D ailk)blk— iywik—i~f)
t

#Be(g e Aclg Ywk) (AD)

First equation means that w{k) is operated on the product of
A, and B;. The second equation means that wi{k) Is first
operated on B, and then 4,. However, if w(k) is uniformly
bounded and 4, — A,_,, By — B;_| converges (o zero asymp-
totically, A, = Byw(k), By » A,w(k) and (A B, )wi(k) are
indistinguishable asymptotically. Therefore, e{k) and e, (k)
are asymptotically identical as shown below,

lim e,(k) —e,(k) = lim [A,_ (k) — B up(k)]
L] k==

—FAL (k)Y = B Wy (h+N;)]
= lim A i Fy (k) = AFY (k) = Be o Fu (k) + BifFu (k)
= (BeF) s [{ WA ) Yalk + Ng) | = (FAQ <[{ By W )yl b+ Ny
=0 (Ad)
where (D1}, {ID3), and boundness of y{(&k), u(k}, Wo(k +
N,) have been utilized. Equation {16) then foilows from Eqs.
(Al and {Ad).
Lemma (Goodwin, et al., 1986): Consider the system:
x(k+ D) =Ax(K)+Blkyul{k)
YkY=C{k)xl{k) +D(k)ulk) {(A3)

Then provided
(D 140, 18N, 1CUAR, 1D{%) | are bounded for all
k

) (AG)

{(ii) Spectral radius of A(k) = | — e < 1 forallk = m,

and (A7)

(iity sup I4(k + 1) = A(&)B is sufficiently small, (A8}
kzno

the system, Eq. (A5}, is BIBO stable in the sense that there
exist ) < my < o, 0 = my < o=, which are independent of
k and n, such that

|y (NY] < lx{mo) | + misttg oy {AD)

Umax = Mmax luf(r)i forall ¥ = &k = n,

ngsTEN
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