Simple stability criteria for nonlinear time-varying discrete systems

Tsu-Chin Tsao

Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA

Received 26 February 1993

Abstract: We present two sufficient conditions for asymptotic stability of nonlinear time-varying discrete systems. Our main results generalize Mori's result for linear discrete time-invariant systems to nonlinear time-varying systems.

Keywords: Stability criteria; nonlinear time-varying systems; delay independent stability; discrete systems.

Introduction

Mori et al. [1] gave a delay independent stability condition for linear discrete systems. The system

$$x(n+1) = Ax(n) + Bx(n-h),$$

where $x \in \mathbb{R}^n$, A and $B \in \mathbb{R}^{n \times n}$, is asymptotically stable if

$$||A|| + ||B|| < 1.$$

This result provides a simple way of stability check without solving characteristic roots. For nonlinear systems, a similar condition can be derived.

Main theorem. Consider a nonlinear discrete timevarying system of the following form:

$$x(n+1) = \sum_{i=1}^{p} A_i(\cdot,\cdot) \ x(n-h_i), \tag{1}$$

where $x \in \mathbb{R}^n$, $A_i(\cdot, \cdot) \in \mathbb{R}^{n \times n}$ is a function of time indices $n, n-1, n-2, \ldots$, etc., and x(n), x(n-1),

Correspondence to: Prof. Tsu-Chin Tsao, Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801, USA.

 $x(n-2), \dots,$ etc., and $0 \le h_1 < h_2 < h_3 \dots < h_p$. Suppose there exists operator norm $\|\cdot\|$ and constants $C_i > 0$, $1 \le i \le p$ such that

$$||A_i(\cdot,\cdot)|| \leq c_i.$$

Then system (1) is asymptotically stable if

$$\sum_{i=1}^{p} c_i < 1.$$

Lemma 1. Consider the following scalar difference equation:

$$y(n+1) = a_1 y(n-h_1) + a_2 y(n-h_2) + \cdots + a_n y(n-h_n),$$
 (2)

where $y(n) \ge 0$ and $a_i \ge 0$. Then

$$\sum_{i=1}^{p} a_i < 1 \iff y(n) \to 0 \quad \text{as } n \to \infty.$$

Proof. (\Rightarrow) Suppose $\sum_{i=1}^{p} a_i < 1$. By applying z-transform to equation (2), the characteristic polynomial is

$$H(z) = z^{h_p+1} - a_1 z^{(h_p-h_1)} - a_2^{(h_p-h_2)} - \cdots - a_p$$

Let

$$H_1(z) = z^{h_p+1}$$
, and

$$H_2(z) = -(a_1 z^{(h_p - h_1)} + \cdots + a_n).$$

Then $\forall z, |z| = 1$, we have

$$|H_1(z)| = 1$$
 and

$$|H_2(z)| \le a_1 + a_2 + \cdots + a_p < 1.$$

Hence.

$$|H_1(z)| > |H_2(z)|.$$

By Rouché Theorem [2] H_1 and $H_1 + H_2$ have same number of roots (counting multiplicity) inside

indices

reometrie

Chinese).

3) 2-22. 34 (1989)

variable

k. 1977)

E Trans.

1 Control.

al World

the unit circle. Therefore, all roots of $H(z) = H_1(z) + H_2(z)$ are inside the unit circle and the solution of equation (2) asymptotically converges to zero.

 (\Leftarrow) Suppose $\sum_{i=1}^{p} a_i \ge 1$.

(i) $\sum a_i = 1 \implies H(1) = 0 \implies$ equation (2) is not asymptotically stable.

(ii) $\sum a_i > 1$. Then $H(1) = 1 - \sum_{i=1}^p a_i < 0$. Choose a number b sufficiently large such that H(b) > 0; then H(1)H(b) < 0, which implies that there exists e, 1 < e < b, such that H(e) = 0. Therefore, the system is unstable.

Lemma 2. Consider the following scalar difference inequality:

$$w(n+1) \le a_1 w(n-h_1) + a_2 w(n-h_2) + \cdots + a_p w(n-h_p),$$
 (3)

where $w(n) \ge 0$, $a_i \ge 0$.

If (2) and (3) have same initial condition, then $w(n) \le y(n)$ for n = 1, 2, ...

Proof. Suppose there exists a positive integer m such that

$$w(k) \le y(k)$$
, $k \le m$ and $w(m+1) > y(m+1)$.

Since

$$w(m+1) \leq \sum_{i=1}^{p} a_i w(m-h_i),$$

$$y(m + 1) = \sum_{i=1}^{p} a_i y(m - h_i),$$

imply $w(m+1) \le y(m+1)$, it contradicts (3). Hence the proof is complete. \square

Therefore, by Lemmas 1 and 2, we can conclude that

$$w(n) \to 0$$
 as $n \to \infty$

if

$$y(n) \to 0$$
 as $n \to \infty$.

Proof of main theorem. Since equation (1) can be expressed as

$$x(n+1) = \sum_{i=1}^{p} A_i(\cdot,\cdot) \ x(n-h_i)$$
 (4)

and $||A_i(\cdot,\cdot)|| \le c_i$, taking norm on both sides of equation (4) yields

$$||x(n+1)|| = \left| \left| \sum_{i=1}^{p} A_i(\cdot, \cdot) x(n-h_i) \right| \right|$$

$$\leq \sum_{i=1}^{p} ||A_i(\cdot, \cdot)|| ||x(n-h_i)||$$

$$\leq \sum_{i=1}^{p} c_i ||x(n-h_i)||.$$

By Lemmas 1 and 2, $||x(n)|| \to 0$ as $n \to \infty$.

Corollary. Suppose

$$x(n+1) = \sum_{i=1}^{p} f_i(\cdot, x(n-h_i)),$$
 (5)

where $x \in \mathbb{R}^n$, $0 \le h_1 < h_2 < h_3 \cdot \cdot \cdot < h_p$, and $f_i : \mathbb{R}^n \to \mathbb{R}^n$ is C^1 function of x, which may vary with time and $f(\cdot, 0) = 0$.

Suppose there is an operator norm such that for every $x \in \mathbb{R}^n$

$$\|Jf_i(\cdot,x)\| \le c_i$$

 $(Jf_i(\cdot,x))$ is the Jacobian matrix of f_i at x)

then equation (5) is asymptotically stable if $\sum_{i=1}^{p} c_i < 1$.

Proof. $\forall x \in \mathbb{R}^n$.

$$f_i(\cdot, x) = f_i(\cdot, x) - f_i(\cdot, 0) = \int_0^1 \left[\frac{\mathrm{d}}{\mathrm{d}\lambda} f_i(\cdot, \lambda x) \right] \mathrm{d}\lambda$$
$$= \int_0^1 \left[Jf_i(\cdot, \lambda x) \right] x \, \mathrm{d}\lambda = A_i(\cdot, x) x,$$

where

$$A_i(\cdot,x)=\int_0^1 Jf_i(\cdot,\lambda x)\mathrm{d}\lambda.$$

Further,

$$||A_i(\cdot,x)|| = \int_0^1 ||Jf_i(\cdot,\lambda x)|| \,\mathrm{d}\lambda \le c_i.$$

The proof is completed by applying the main theorem.

The result of Mori et al. [1] is a special case of the main theorem or of the Corollary, supposing $f_i(x) = A_i x$.

Exampl

x(n+1)

Then

 $A_1(\cdot,\cdot)$.

 $A_2(\cdot,\cdot)$.

Then ∀:

 $\|A_1(\cdot,\cdot$

ides of

(5)

and

ary with

that for

 ff_i at x) able if

Example 1. Consider

$$x(n+1) = \begin{bmatrix} x_1(n+1) \\ x_2(n+1) \end{bmatrix}$$
$$= \begin{bmatrix} 0.5\cos(n)\sin(x_1(n-5))x_2(n) \\ 0.4\cos(x_1(n))x_2(n-10) \end{bmatrix}.$$

Then

$$A_{1}(\cdot,\cdot)x(n) = \begin{bmatrix} 0 & 0.5\cos(n)\sin(x_{1}(n-5)) \\ 0 & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} x_{1}(n) \\ x_{2}(n) \end{bmatrix},$$

$$A_{2}(\cdot,\cdot)x(n-10) = \begin{bmatrix} 0 & 0 \\ 0 & 0.4\cos(x_{1}(n)) \end{bmatrix}$$

 $A_{2}(\cdot,\cdot)x(n-10) = \begin{bmatrix} 0 & 0 \\ 0 & 0.4\cos(x_{1}(n)) \end{bmatrix} \times \begin{bmatrix} x_{1}(n-10) \\ x_{2}(n-10) \end{bmatrix}.$

Then $\forall x \in \mathbb{R}^n$,

$$||A_1(\cdot,\cdot)||_{\infty} \le c_1 = 0.5, ||A_2(\cdot,\cdot)||_{\infty} \le c_2 = 0.4.$$

Since $c_1 + c_2 = 0.9 < 1$, by the main theorem, x(n) converges to 0 asymptotically.

Example 2. Consider

$$x(n + 1) = \sin(n)[0.5x(n) - 0.4\sin(x(n - 10))].$$

Since $f_1(\cdot, 0) = f_2(\cdot, 0) = 0$, $Jf_1(\cdot, x) = 0.5\sin(n)$ and $Jf_2(\cdot, x) = 0.4\sin(n)\cos(x(n - 10))$ by the Corollary, $x(n)$ converges to 0 asymptotically.

Concluding remark

Simple delay-independent sufficient conditions for asymptotic stability of nonlinear time-varying discrete systems have been presented.

References

- [1] T. Mori, N. Fukuma and M. Kuwahara, Delay-independent stability criteria for discrete-delay systems, IEEE Trans. Automat. Control 27 (1982) 964-966.
- [2] W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1974).

٦,.

ne main

l case of apposing