L. Vandenberghe ECE133A (Fall 2024)

15. Problem condition

- condition of a mathematical problem
- matrix norm
- condition number

Sources of error in numerical computation

Example: evaluate a function $f : \mathbf{R} \to \mathbf{R}$ at a given x

sources of error in the result:

- x is not exactly known
 - measurement errors
 - errors in previous computations
 - \longrightarrow how sensitive is f(x) to errors in x?
- the algorithm for computing f(x) is not exact
 - discretization (e.g., algorithm uses a table to look up function values)
 - truncation (e.g., function is evaluated by truncating a Taylor series)
 - rounding error during the computation
 - → how large is the error introduced by the algorithm?

Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

- well-conditioned problem:
 - small changes in the data produce small changes in the solution
- ill-conditioned (badly conditioned) problem:
 - small changes in the data can produce large changes in the solution

a rigorous definition depends on what "large error" means

- absolute or relative error, which norm is used, ...
- the informal definition is sufficient for our purposes

Example: function evaluation

here the problem is: given x, evaluate y = f(x)

• if x is changed to $x + \Delta x$, solution changes to

$$y + \Delta y = f(x + \Delta x)$$

condition with respect to absolute error in x and y

$$|\Delta y| \approx |f'(x)||\Delta x|$$

problem is ill-conditioned with respect to absolute error if |f'(x)| is very large

condition with respect to relative errors in x and y

$$\frac{|\Delta y|}{|y|} \approx \frac{|f'(x)||x|}{|f(x)|} \frac{|\Delta x|}{|x|}$$

ill-conditioned with respect to relative error if |f'(x)||x|/|f(x)| is very large

Roots of a polynomial

$$p(x) = (x - 1)(x - 2) \cdot \cdot \cdot (x - 10) + \delta \cdot x^{10}$$

roots of p computed by MATLAB for two values of δ

roots can be very sensitive to errors in the coefficients

Condition of a set of linear equations

- assume A is nonsingular and Ax = b
- if we change b to $b + \Delta b$, the new solution is $x + \Delta x$ with

$$A(x + \Delta x) = b + \Delta b$$

• the change in *x* is

$$\Delta x = A^{-1} \Delta b$$

Condition

- the equations are *well-conditioned* if small Δb results in small Δx
- the equations are *ill-conditioned* if small Δb can result in large Δx

Example of ill-conditioned equations

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 1+10^{-10} & 1-10^{-10} \end{bmatrix}, \qquad A^{-1} = \begin{bmatrix} 1-10^{10} & 10^{10} \\ 1+10^{10} & -10^{10} \end{bmatrix}$$

- solution for b = (1, 1) is x = (1, 1)
- change in x if we change b to $b + \Delta b$:

$$\Delta x = A^{-1} \Delta b = \begin{bmatrix} \Delta b_1 - 10^{10} (\Delta b_1 - \Delta b_2) \\ \Delta b_1 + 10^{10} (\Delta b_1 - \Delta b_2) \end{bmatrix}$$

small Δb can lead to extremely large Δx

Outline

- condition of a mathematical problem
- matrix norm
- condition number

Matrix norms

the **Frobenius norm** of an $m \times n$ matrix A is defined as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2}$$

- denoted ||A|| in the textbook
- in MATLAB: norm(A, 'fro'); in Julia: norm(A)

the **2-norm** or **spectral norm** is defined as

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

- the norms ||Ax|| and ||x|| are Euclidean norms of vectors
- no simple explicit expression, except for special *A*
- readily computed numerically (in MATLAB: norm(A); in Julia: opnorm(A))

Interpretation of 2-norm

the $m \times n$ matrix A defines a linear function f(x) = Ax

- ||Ax||/||x|| gives the *amplification factor* or *gain* for input x
- the gain only depends on the direction of *x*
- the 2-norm of A is the maximum gain over all directions:

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$$

Computing the 2-norm of a matrix

Simple matrices: sometimes it is easy to maximize ||Ax||/||x||

• zero matrix: $||0||_2 = 0$

• identity matrix: $||I||_2 = 1$

diagonal matrix:

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{nn} \end{bmatrix}, \qquad ||A||_2 = \max_{i=1,\dots,n} |A_{ii}|$$

• matrix with orthonormal columns: $||A||_2 = 1$

General matrices: $||A||_2$ must be computed by numerical algorithms

Properties of the matrix norm

Properties satisfied by all matrix norms

- nonnegative: $||A||_2 \ge 0$ for all A
- positive definiteness: $||A||_2 = 0$ only if A = 0
- homogeneity: $||\beta A||_2 = |\beta| ||A||_2$
- triangle inequality: $||A + B||_2 \le ||A||_2 + ||B||_2$

Additional properties satisfied by the 2-norm

- $||Ax|| \le ||A||_2 ||x||$ if the product Ax exists
- $||AB||_2 \le ||A||_2 ||B||_2$ if the product AB exists
- if *A* is nonsingular: $||A||_2 ||A^{-1}||_2 \ge 1$
- if A is nonsingular: $1/\|A^{-1}\|_2 = \min_{x \neq 0} (\|Ax\|_2/\|x\|)$
- $||A^T||_2 = ||A||_2$

Outline

- condition of a mathematical problem
- matrix norm
- condition number

Bound on absolute error

suppose A is nonsingular and define

$$x = A^{-1}b, \qquad \Delta x = A^{-1}\Delta b$$

Upper bound on $||\Delta x||$:

$$||\Delta x|| \le ||A^{-1}||_2 ||\Delta b||$$

- follows from property 4 on page 15.11
- small $||A^{-1}||_2$ means that $||\Delta x||$ is small when $||\Delta b||$ is small
- large $||A^{-1}||_2$ means that $||\Delta x||$ can be large, even when $||\Delta b||$ is small
- for every A, there exists nonzero Δb such that $\|\Delta x\| = \|A^{-1}\|_2 \|\Delta b\|$

Bound on relative error

suppose in addition that $b \neq 0$; hence $x \neq 0$

Upper bound on $||\Delta x||/||x||$:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\|_2 \|A^{-1}\|_2 \frac{\|\Delta b\|}{\|b\|} \tag{1}$$

- follows from $||\Delta x|| \le ||A^{-1}||_2 ||\Delta b||$ and $||b|| \le ||A||_2 ||x||$
- $||A||_2 ||A^{-1}||_2$ small means $||\Delta x||/||x||$ is small when $||\Delta b||/||b||$ is small
- $||A||_2 ||A^{-1}||_2$ large means $||\Delta x||/||x||$ can be much larger than $||\Delta b||/||b||$
- for every A, there exist nonzero b, Δb such that equality holds in (1)

Condition number

Definition: the condition number of a nonsingular matrix A is

$$\kappa(A) = ||A||_2 ||A^{-1}||_2$$

Properties

- $\kappa(A) \ge 1$ for all A (additional property 3 on page 15.11)
- A is a well-conditioned matrix if $\kappa(A)$ is small (close to 1): the relative error in x is not much larger than the relative error in b
- A is badly conditioned or ill-conditioned if $\kappa(A)$ is large: the relative error in x can be much larger than the relative error in b

Example

- A is blurring matrix, nonsingular with condition number $\approx 10^9$
- we apply A to image x_{ex}

blurred image $y_1 = Ax_{ex}$

blurred and noisy image $y_2 = Ax_{ex} + \text{small noise}$

Example

we solve Ax = y for the two blurred images

$$A^{-1}y_1$$

 $A^{-1}y_2$

- ullet illustrates ill conditioning of A
- explains need for regularization in deblurring algorithms

Exercises

Exercise 1

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1+a & 1-a \end{bmatrix}, \qquad A^{-1} = \frac{1}{a} \begin{bmatrix} a-1 & 1 \\ a+1 & -1 \end{bmatrix}$$

a is small and nonzero ($a = 10^{-10}$ on page 15.7); show that $\kappa(A) \ge 1/|a|$

Exercise 2

suppose A = UBV with U, V orthogonal, and B nonsingular; show that

$$\kappa(A) = \kappa(B)$$

Exercise 3

suppose $A = uv^T$ where u and v are vectors; show that $||A||_2 = ||u|| ||v||$

Exercises

Exercise 4 (ex. A15.3)

• let *u* be a vector; show that

$$||u|| = \max_{v \neq 0} \frac{v^T u}{||v||}$$

• let *A* be a matrix; show that

$$||A||_2 = \max_{y \neq 0, x \neq 0} \frac{y^T A x}{||x|| ||y||}$$

therefore $||A||_2 = ||A^T||_2$