4. Matrix inverses

- left and right inverse
- linear independence
- nonsingular matrices
- matrices with linearly independent columns
- matrices with linearly independent rows
Left and right inverse

$AB \neq BA$ in general, so we have to distinguish two types of inverses

Left inverse: X is a *left inverse* of A if

$$XA = I$$

A is *left-invertible* if it has at least one left inverse

Right inverse: X is a *right inverse* of A if

$$AX = I$$

A is *right-invertible* if it has at least one right inverse
Examples

\[
A = \begin{bmatrix}
-3 & -4 \\
4 & 6 \\
1 & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]

- \(A \) is left-invertible; the following matrices are left inverses:

\[
\frac{1}{9} \begin{bmatrix}
-11 & -10 & 16 \\
7 & 8 & -11
\end{bmatrix}, \quad \begin{bmatrix}
0 & -1/2 & 3 \\
0 & 1/2 & -2
\end{bmatrix}
\]

- \(B \) is right-invertible; the following matrices are right inverses:

\[
\frac{1}{2} \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
1 & 1
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}, \quad \begin{bmatrix}
1 & -1 \\
0 & 0 \\
0 & 1
\end{bmatrix}
\]
Some immediate properties

Dimensions

a left or right inverse of an $m \times n$ matrix must have size $n \times m$

Left and right inverse of (conjugate) transpose

- X is a left inverse of A if and only if X^T is a right inverse of A^T

\[A^T X^T = (XA)^T = I \]

- X is a left inverse of A if and only if X^H is a right inverse of A^H

\[A^H X^H = (XA)^H = I \]
Inverse

if \(A \) has a left \textbf{and} a right inverse, then they are equal and unique:

\[
XA = I, \quad AY = I \quad \implies \quad X = X(AY) = (XA)Y = Y
\]

- in this case, we call \(X = Y \) the \textbf{inverse} of \(A \) (notation: \(A^{-1} \))
- \(A \) is \textit{invertible} if its inverse exists

Example

\[
A = \begin{bmatrix}
-1 & 1 & -3 \\ 1 & -1 & 1 \\ 2 & 2 & 2
\end{bmatrix}, \quad A^{-1} = \frac{1}{4} \begin{bmatrix}
2 & 4 & 1 \\ 0 & -2 & 1 \\ -2 & -2 & 0
\end{bmatrix}
\]
Linear equations

set of m linear equations in n variables

\[
\begin{align*}
A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n &= b_1 \\
A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n &= b_2 \\
&\quad \vdots \\
A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n &= b_m
\end{align*}
\]

- in matrix form: $Ax = b$
- may have no solution, a unique solution, infinitely many solutions

Matrix inverses 4.6
Linear equations and matrix inverse

Left-invertible matrix: if X is a left inverse of A, then

$$Ax = b \implies x = XAx = Xb$$

there is *at most one* solution (if there is a solution, it must be equal to Xb)

Right-invertible matrix: if X is a right inverse of A, then

$$x = Xb \implies Ax = AXb = b$$

there is *at least one* solution (namely, $x = Xb$)

Invertible matrix: if A is invertible, then

$$Ax = b \iff x = A^{-1}b$$

there is a *unique* solution
Outline

- left and right inverse
- **linear independence**
- nonsingular matrices
- matrices with linearly independent columns
- matrices with linearly independent rows
Linear combination

A linear combination of vectors a_1, \ldots, a_n is a sum of scalar-vector products

$$x_1a_1 + x_2a_2 + \cdots + x_na_n$$

- The scalars x_i are the *coefficients* of the linear combination.
- Can be written as a matrix-vector product:

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- The trivial linear combination has coefficients $x_1 = \cdots = x_n = 0$

(same definition holds for real and complex vectors/scalars)
Linear dependence

A collection of vectors a_1, a_2, \ldots, a_n is linearly dependent if

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = 0$$

for some scalars x_1, \ldots, x_n, not all zero

- the vector 0 can be written as a nontrivial linear combination of a_1, \ldots, a_n

- equivalently, at least one vector a_i is a linear combination of the other vectors:

$$a_i = -\frac{x_1}{x_i}a_1 - \cdots - \frac{x_{i-1}}{x_i}a_{i-1} - \frac{x_{i+1}}{x_i}a_{i+1} - \cdots - \frac{x_n}{x_i}a_n$$

if $x_i \neq 0$
Example

the vectors

\[
\begin{align*}
 \mathbf{a}_1 &= \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, & \mathbf{a}_2 &= \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, & \mathbf{a}_3 &= \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}
\end{align*}
\]

are linearly dependent

- 0 can be expressed as a nontrivial linear combination of $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$:

 \[
 0 = \mathbf{a}_1 + 2\mathbf{a}_2 - 3\mathbf{a}_3
 \]

- \mathbf{a}_1 can be expressed as a linear combination of $\mathbf{a}_2, \mathbf{a}_3$:

 \[
 \mathbf{a}_1 = -2\mathbf{a}_1 + 3\mathbf{a}_3
 \]

 (and similarly \mathbf{a}_2 and \mathbf{a}_3)
Linear independence

vectors a_1, \ldots, a_n are \textit{linearly independent} if they are not linearly dependent

- the zero vector cannot be written as a nontrivial linear combination:

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = 0 \implies x_1 = x_2 = \cdots = x_n = 0$$

- none of the vectors a_i is a linear combination of the other vectors

\textbf{Matrix with linearly independent columns}

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

has linearly independent columns if

$$Ax = 0 \implies x = 0$$
Example

the vectors

\[a_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \]

are linearly independent:

\[x_1 a_1 + x_2 a_2 + x_3 a_3 = \begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_3 \\ x_2 + x_3 \end{bmatrix} = 0 \]

only if \(x_1 = x_2 = x_3 = 0 \)
Dimension inequality

if n vectors a_1, a_2, \ldots, a_n of length m are linearly independent, then

$$n \leq m$$

(proof is in textbook)

- if an $m \times n$ matrix has linearly independent columns then $m \geq n$

- if an $m \times n$ matrix has linearly independent rows then $m \leq n$
Outline

• left and right inverse

• linear independence

• nonsingular matrices

• matrices with linearly independent columns

• matrices with linearly independent rows
Nonsingular matrix

for a square matrix A the following four properties are equivalent

1. A is left-invertible
2. the columns of A are linearly independent
3. A is right-invertible
4. the rows of A are linearly independent

a square matrix with these properties is called nonsingular

Nonsingular = invertible

- if properties 1 and 3 hold, then A is invertible (page 4.5)
- if A is invertible, properties 1 and 3 hold (by definition of invertibility)
Proof

- we show that (a) holds in general
- we show that (b) holds for square matrices
- (a’) and (b’) follow from (a) and (b) applied to A^T
Part a: suppose A is left-invertible

- if B is a left inverse of A (satisfies $BA = I$), then

\[
Ax = 0 \implies BAx = 0 \implies x = 0
\]

- this means that the columns of A are linearly independent: if

\[
A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}
\]

then

\[
x_1 a_1 + x_2 a_2 + \cdots + x_n a_n = 0
\]

holds only for the trivial linear combination $x_1 = x_2 = \cdots = x_n = 0$
Part b: suppose A is square with linearly independent columns a_1, \ldots, a_n

- for every n-vector b the vectors a_1, \ldots, a_n, b are linearly dependent (from dimension inequality on page 4.13)

- hence for every b there exists a nontrivial linear combination

$$x_1a_1 + x_2a_2 + \cdots + x_na_n + x_{n+1}b = 0$$

- we must have $x_{n+1} \neq 0$ because a_1, \ldots, a_n are linearly independent

- hence every b can be written as a linear combination of a_1, \ldots, a_n

- in particular, there exist n-vectors c_1, \ldots, c_n such that

$$Ac_1 = e_1, \quad Ac_2 = e_2, \quad \ldots, \quad Ac_n = e_n,$$

- the matrix $C = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}$ is a right inverse of A:

$$A \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} = I$$
Examples

\[
A = \begin{bmatrix}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{bmatrix}
\]

• \(A\) is nonsingular because its columns are linearly independent:

\[
x_1 - x_2 + x_3 = 0, \quad -x_1 + x_2 + x_3 = 0, \quad x_1 + x_2 - x_3 = 0
\]

is only possible if \(x_1 = x_2 = x_3 = 0\)

• \(B\) is singular because its columns are linearly dependent:

\[
Bx = 0 \text{ for } x = (1, 1, 1, 1)
\]
Example: Vandermonde matrix

\[
A = \begin{bmatrix}
1 & t_1 & t_1^2 & \cdots & t_1^{n-1} \\
1 & t_2 & t_2^2 & \cdots & t_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_n & t_n^2 & \cdots & t_n^{n-1}
\end{bmatrix}
\]

with \(t_i \neq t_j \) for \(i \neq j \)

we show that \(A \) is nonsingular by showing that \(Ax = 0 \) only if \(x = 0 \)

- \(Ax = 0 \) means \(p(t_1) = p(t_2) = \cdots = p(t_n) = 0 \) where

\[
p(t) = x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1}
\]

\(p(t) \) is a polynomial of degree \(n - 1 \) or less

- if \(x \neq 0 \), then \(p(t) \) can not have more than \(n - 1 \) distinct real roots

- therefore \(p(t_1) = \cdots = p(t_n) = 0 \) is only possible if \(x = 0 \)
Inverse of transpose and product

Transpose and conjugate transpose

if A is nonsingular, then A^T and A^H are nonsingular and

$$(A^T)^{-1} = (A^{-1})^T, \quad (A^H)^{-1} = (A^{-1})^H,$$

we write these as A^{-T} and A^{-H}

Product

if A and B are nonsingular and of equal size, then AB is nonsingular with

$$(AB)^{-1} = B^{-1}A^{-1}$$
Outline

- left and right inverse
- linear independence
- nonsingular matrices
- matrices with linearly independent columns
- matrices with linearly independent rows
Gram matrix

the *Gram matrix* associated with a matrix

\[A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \]

is the matrix of column inner products

- for real matrices:

\[
A^T A = \begin{bmatrix}
 a_1^T a_1 & a_1^T a_2 & \cdots & a_1^T a_n \\
 a_2^T a_1 & a_2^T a_2 & \cdots & a_2^T a_n \\
 \vdots & \vdots & \ddots & \vdots \\
 a_n^T a_1 & a_n^T a_2 & \cdots & a_n^T a_n
\end{bmatrix}
\]

- for complex matrices

\[
A^H A = \begin{bmatrix}
 a_1^H a_1 & a_1^H a_2 & \cdots & a_1^H a_n \\
 a_2^H a_1 & a_2^H a_2 & \cdots & a_2^H a_n \\
 \vdots & \vdots & \ddots & \vdots \\
 a_n^H a_1 & a_n^H a_2 & \cdots & a_n^H a_n
\end{bmatrix}
\]
Nonsingular Gram matrix

the Gram matrix is nonsingular if only if \(A \) has linearly independent columns

- Suppose \(A \in \mathbb{R}^{m \times n} \) has linearly independent columns:

\[
A^T A x = 0 \quad \Rightarrow \quad x^T A^T A x = (Ax)^T (Ax) = \|Ax\|^2 = 0
\]

\[
\Rightarrow \quad Ax = 0
\]

\[
\Rightarrow \quad x = 0
\]

Therefore \(A^T A \) is nonsingular

- Suppose the columns of \(A \in \mathbb{R}^{m \times n} \) are linearly dependent

\[
\exists x \neq 0, \quad Ax = 0 \quad \Rightarrow \quad \exists x \neq 0, \quad A^T A x = 0
\]

Therefore \(A^T A \) is singular

(for \(A \in \mathbb{C}^{m \times n} \), replace \(A^T \) with \(A^H \) and \(x^T \) with \(x^H \))
Pseudo-inverse

- Suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent columns.
- This implies that A is tall or square ($m \geq n$); see page 4.13.

The pseudo-inverse of A is defined as

$$A^\dagger = (A^T A)^{-1} A^T$$

- This matrix exists, because the Gram matrix $A^T A$ is nonsingular.
- A^\dagger is a left inverse of A:

$$A^\dagger A = (A^T A)^{-1} (A^T A) = I$$

(for complex A with linearly independent columns, $A^\dagger = (A^H A)^{-1} A^H$)
Summary

the following three properties are equivalent for a real matrix A

1. A is left-invertible
2. the columns of A are linearly independent
3. $A^T A$ is nonsingular

- $1 \Rightarrow 2$ was already proved on page 4.16
- $2 \Rightarrow 1$: we have seen that the pseudo-inverse is a left inverse
- $2 \Leftrightarrow 3$: proved on page 4.22
- a matrix with these properties must be tall or square
- for complex matrices, replace $A^T A$ in property 3 by $A^H A$
Outline

- left and right inverse
- linear independence
- nonsingular matrices
- matrices with linearly independent columns
- matrices with linearly independent rows
Pseudo-inverse

• suppose $A \in \mathbb{R}^{m \times n}$ has linearly independent rows

• this implies that A is wide or square ($m \leq n$); see page 4.13

the pseudo-inverse of A is defined as

$$A^\dagger = A^T (AA^T)^{-1}$$

• A^T has linearly independent columns

• hence its Gram matrix AA^T is nonsingular, so A^\dagger exists

• A^\dagger is a right inverse of A:

$$AA^\dagger = (AA^T)(AA^T)^{-1} = I$$

(for complex A with linearly independent rows, $A^\dagger = A^H (AA^H)^{-1}$)
Summary

the following three properties are equivalent

1. A is right-invertible
2. the rows of A are linearly independent
3. AA^T is nonsingular

- $1 \Rightarrow 2$ and $2 \Leftrightarrow 3$: by transposing result on page 4.24
- $2 \Rightarrow 1$: we have seen that the pseudo-inverse is a right inverse
- a matrix with these properties must be wide or square
- for complex matrices, replace AA^T in property 3 by AA^H