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4. Matrix inverses

• left and right inverse

• linear independence

• nonsingular matrices

• matrices with linearly independent columns

• matrices with linearly independent rows

4.1



Left and right inverse

𝐴𝐵 ≠ 𝐵𝐴 in general, so we have to distinguish two types of inverses

Left inverse: 𝑋 is a left inverse of 𝐴 if

𝑋𝐴 = 𝐼

𝐴 is left-invertible if it has at least one left inverse

Right inverse: 𝑋 is a right inverse of 𝐴 if

𝐴𝑋 = 𝐼

𝐴 is right-invertible if it has at least one right inverse
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Examples

𝐴 =


−3 −4

4 6
1 1

 , 𝐵 =

[
1 0 1
0 1 1

]
• 𝐴 is left-invertible; the following matrices are left inverses:

1
9

[
−11 −10 16

7 8 −11

]
,

[
0 −1/2 3
0 1/2 −2

]

• 𝐵 is right-invertible; the following matrices are right inverses:

1
2


1 −1

−1 1
1 1

 ,


1 0
0 1
0 0

 ,


1 −1
0 0
0 1


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Some immediate properties

Dimensions

a left or right inverse of an 𝑚 × 𝑛 matrix must have size 𝑛 × 𝑚

Left and right inverse of (conjugate) transpose

• 𝑋 is a left inverse of 𝐴 if and only if 𝑋𝑇 is a right inverse of 𝐴𝑇

𝐴𝑇𝑋𝑇 = (𝑋𝐴)𝑇 = 𝐼

• 𝑋 is a left inverse of 𝐴 if and only if 𝑋𝐻 is a right inverse of 𝐴𝐻

𝐴𝐻𝑋𝐻 = (𝑋𝐴)𝐻 = 𝐼
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Inverse

if 𝐴 has a left and a right inverse, then they are equal and unique:

𝑋𝐴 = 𝐼, 𝐴𝑌 = 𝐼 =⇒ 𝑋 = 𝑋 (𝐴𝑌 ) = (𝑋𝐴)𝑌 = 𝑌

• in this case, we call 𝑋 = 𝑌 the inverse of 𝐴 (notation: 𝐴−1)

• 𝐴 is invertible if its inverse exists

Example

𝐴 =


−1 1 −3

1 −1 1
2 2 2

 , 𝐴−1 =
1
4


2 4 1
0 −2 1

−2 −2 0


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Linear equations

set of 𝑚 linear equations in 𝑛 variables

𝐴11𝑥1 + 𝐴12𝑥2 + · · · + 𝐴1𝑛𝑥𝑛 = 𝑏1

𝐴21𝑥1 + 𝐴22𝑥2 + · · · + 𝐴2𝑛𝑥𝑛 = 𝑏2
...

𝐴𝑚1𝑥1 + 𝐴𝑚2𝑥2 + · · · + 𝐴𝑚𝑛𝑥𝑛 = 𝑏𝑚

• in matrix form: 𝐴𝑥 = 𝑏

• may have no solution, a unique solution, infinitely many solutions
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Linear equations and matrix inverse

Left-invertible matrix: if 𝑋 is a left inverse of 𝐴, then

𝐴𝑥 = 𝑏 =⇒ 𝑥 = 𝑋𝐴𝑥 = 𝑋𝑏

there is at most one solution (if there is a solution, it must be equal to 𝑋𝑏)

Right-invertible matrix: if 𝑋 is a right inverse of 𝐴, then

𝑥 = 𝑋𝑏 =⇒ 𝐴𝑥 = 𝐴𝑋𝑏 = 𝑏

there is at least one solution (namely, 𝑥 = 𝑋𝑏)

Invertible matrix: if 𝐴 is invertible, then

𝐴𝑥 = 𝑏 ⇐⇒ 𝑥 = 𝐴−1𝑏

there is a unique solution
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• left and right inverse
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Linear combination

a linear combination of vectors 𝑎1, . . . , 𝑎𝑛 is a sum of scalar–vector products

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛

• the scalars 𝑥𝑖 are the coefficients of the linear combination

• can be written as a matrix–vector product

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

] 
𝑥1
𝑥2
...

𝑥𝑛


• the trivial linear combination has coefficients 𝑥1 = · · · = 𝑥𝑛 = 0

(same definition holds for real and complex vectors/scalars)
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Linearly independent vectors

vectors 𝑎1, . . . , 𝑎𝑛 are linearly independent if

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 = 0 =⇒ 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 = 0

• in matrix–vector notation, with 𝐴 = [𝑎1 𝑎2 · · · 𝑎𝑛],

𝐴𝑥 = 0 =⇒ 𝑥 = 0

• 𝑎1, . . . , 𝑎𝑛 are linearly dependent if there exist 𝑥1, . . . , 𝑥𝑛, not all zero, such that

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 = 0

at least one vector is a linear combination of the other vectors: if 𝑥𝑖 ≠ 0, then

𝑎𝑖 = −𝑥1
𝑥𝑖
𝑎1 − · · · − 𝑥𝑖−1

𝑥𝑖
𝑎𝑖−1 −

𝑥𝑖+1
𝑥𝑖

𝑎𝑖+1 − · · · − 𝑥𝑛

𝑥𝑖
𝑎𝑛

• linear (in)dependence is a property of the set of vectors {𝑎1, . . . , 𝑎𝑛}
(by convention, the empty set is linearly independent)
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Example

the vectors

𝑎1 =


0.2
−7
8.6

 , 𝑎2 =


−0.1

2
−1

 , 𝑎3 =


0
−1
2.2


are linearly dependent

• 0 can be expressed as a nontrivial linear combination of 𝑎1, 𝑎2, 𝑎3:

0 = 𝑎1 + 2𝑎2 − 3𝑎3

• 𝑎1 can be expressed as a linear combination of 𝑎2, 𝑎3:

𝑎1 = −2𝑎2 + 3𝑎3

(and similarly 𝑎2 and 𝑎3)

Matrix inverses 4.10



Example

the vectors

𝑎1 =


1
−2
0

 , 𝑎2 =


−1
0
1

 , 𝑎3 =


0
1
1


are linearly independent:

𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3 =


𝑥1 − 𝑥2

−2𝑥1 + 𝑥3
𝑥2 + 𝑥3

 = 0

holds only if 𝑥1 = 𝑥2 = 𝑥3 = 0
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Dimension inequality

if 𝑛 vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 of length 𝑚 are linearly independent, then

𝑛 ≤ 𝑚

(proof is in textbook)

• if an 𝑚 × 𝑛 matrix has linearly independent columns then 𝑚 ≥ 𝑛

• if 𝐴 is wide, the columns are linearly dependent: the homogeneous equation

𝐴𝑥 = 0

has nontrivial solutions (𝑥 ≠ 0)

• if an 𝑚 × 𝑛 matrix has linearly independent rows then 𝑚 ≤ 𝑛

• if 𝐴 is tall, its rows are linearly dependent
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Nonsingular matrix

for a square matrix 𝐴 the following four properties are equivalent

1. 𝐴 is left-invertible

2. the columns of 𝐴 are linearly independent

3. 𝐴 is right-invertible

4. the rows of 𝐴 are linearly independent

a square matrix with these properties is called nonsingular

Nonsingular = invertible

• if properties 1 and 3 hold, then 𝐴 is invertible (page 4.5)

• if 𝐴 is invertible, properties 1 and 3 hold (by definition of invertibility)
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Proof

left-invertible linearly independent columns

right-invertiblelinearly independent rows

(a)

(b)

(a’)

(b’)

• we show that (a) holds in general

• we show that (b) holds for square matrices

• (a’) and (b’) follow from (a) and (b) applied to 𝐴𝑇
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Part a: suppose 𝐴 is left-invertible

• if 𝐵 is a left inverse of 𝐴 (satisfies 𝐵𝐴 = 𝐼), then

𝐴𝑥 = 0 =⇒ 𝐵𝐴𝑥 = 0

=⇒ 𝑥 = 0

• this means that the columns of 𝐴 are linearly independent: if

𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]
then

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 = 0

holds only for the trivial linear combination 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 = 0
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Part b: suppose 𝐴 is square with linearly independent columns 𝑎1, . . . , 𝑎𝑛

• for every 𝑛-vector 𝑏 the vectors 𝑎1, . . . , 𝑎𝑛, 𝑏 are linearly dependent

(from dimension inequality on page 4.12)

• hence for every 𝑏 there exists a nontrivial linear combination

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 + 𝑥𝑛+1𝑏 = 0

• we must have 𝑥𝑛+1 ≠ 0 because 𝑎1, . . . , 𝑎𝑛 are linearly independent

• hence every 𝑏 can be written as a linear combination of 𝑎1, . . . , 𝑎𝑛

• in particular, there exist 𝑛-vectors 𝑐1, . . . , 𝑐𝑛 such that

𝐴𝑐1 = 𝑒1, 𝐴𝑐2 = 𝑒2, . . . , 𝐴𝑐𝑛 = 𝑒𝑛,

• the matrix 𝐶 =
[
𝑐1 𝑐2 · · · 𝑐𝑛

]
is a right inverse of 𝐴:

𝐴
[
𝑐1 𝑐2 · · · 𝑐𝑛

]
=
[
𝑒1 𝑒2 · · · 𝑒𝑛

]
= 𝐼
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Examples

𝐴 =


1 −1 1

−1 1 1
1 1 −1

 , 𝐵 =


1 −1 1 −1

−1 1 −1 1
1 1 −1 −1

−1 −1 1 1


• 𝐴 is nonsingular because its columns are linearly independent:

𝑥1 − 𝑥2 + 𝑥3 = 0, −𝑥1 + 𝑥2 + 𝑥3 = 0, 𝑥1 + 𝑥2 − 𝑥3 = 0

is only possible if 𝑥1 = 𝑥2 = 𝑥3 = 0

• 𝐵 is singular because its columns are linearly dependent:

𝐵𝑥 = 0 for 𝑥 = (1, 1, 1, 1)
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Example: Vandermonde matrix

𝐴 =


1 𝑡1 𝑡21 · · · 𝑡𝑛−1

1
1 𝑡2 𝑡22 · · · 𝑡𝑛−1

2
... ... ... . . . ...

1 𝑡𝑛 𝑡2𝑛 · · · 𝑡𝑛−1
𝑛

 with 𝑡𝑖 ≠ 𝑡 𝑗 for 𝑖 ≠ 𝑗

we show that 𝐴 is nonsingular by showing that 𝐴𝑥 = 0 only if 𝑥 = 0

• 𝐴𝑥 = 0 means 𝑝(𝑡1) = 𝑝(𝑡2) = · · · = 𝑝(𝑡𝑛) = 0 where

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + · · · + 𝑥𝑛𝑡

𝑛−1

𝑝(𝑡) is a polynomial of degree 𝑛 − 1 or less

• if 𝑥 ≠ 0, then 𝑝(𝑡) can not have more than 𝑛 − 1 distinct real roots

• therefore 𝑝(𝑡1) = · · · = 𝑝(𝑡𝑛) = 0 is only possible if 𝑥 = 0
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Inverse of transpose and product

Transpose and conjugate transpose

if 𝐴 is nonsingular, then 𝐴𝑇 and 𝐴𝐻 are nonsingular and

(𝐴𝑇)−1 = (𝐴−1)𝑇 , (𝐴𝐻)−1 = (𝐴−1)𝐻

we write these as 𝐴−𝑇 and 𝐴−𝐻

Product

if 𝐴 and 𝐵 are nonsingular and of equal size, then 𝐴𝐵 is nonsingular with

(𝐴𝐵)−1 = 𝐵−1𝐴−1
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Gram matrix

the Gram matrix associated with a matrix

𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]
is the matrix of all pairwise inner products of the column vectors

• for real matrices:

𝐴𝑇𝐴 =


𝑎𝑇1𝑎1 𝑎𝑇1𝑎2 · · · 𝑎𝑇1𝑎𝑛

𝑎𝑇2𝑎1 𝑎𝑇2𝑎2 · · · 𝑎𝑇2𝑎𝑛
... ... ...

𝑎𝑇𝑛𝑎1 𝑎𝑇𝑛𝑎2 · · · 𝑎𝑇𝑛𝑎𝑛


• for complex matrices:

𝐴𝐻𝐴 =


𝑎𝐻1 𝑎1 𝑎𝐻1 𝑎2 · · · 𝑎𝐻1 𝑎𝑛

𝑎𝐻2 𝑎1 𝑎𝐻2 𝑎2 · · · 𝑎𝐻2 𝑎𝑛
... ... ...

𝑎𝐻𝑛 𝑎1 𝑎𝐻𝑛 𝑎2 · · · 𝑎𝐻𝑛 𝑎𝑛


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Nonsingular Gram matrix

the Gram matrix is nonsingular if only if 𝐴 has linearly independent columns

• suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent columns:

𝐴𝑇𝐴𝑥 = 0 =⇒ 𝑥𝑇𝐴𝑇𝐴𝑥 = (𝐴𝑥)𝑇 (𝐴𝑥) = ∥𝐴𝑥∥2 = 0

=⇒ 𝐴𝑥 = 0

=⇒ 𝑥 = 0

therefore 𝐴𝑇𝐴 is nonsingular

• suppose the columns of 𝐴 ∈ R𝑚×𝑛 are linearly dependent

∃𝑥 ≠ 0, 𝐴𝑥 = 0 =⇒ ∃𝑥 ≠ 0, 𝐴𝑇𝐴𝑥 = 0

therefore 𝐴𝑇𝐴 is singular

(for 𝐴 ∈ C𝑚×𝑛, replace 𝐴𝑇 with 𝐴𝐻 and 𝑥𝑇 with 𝑥𝐻)
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Pseudo-inverse of matrix with independent columns

• suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent columns

• this implies that 𝐴 is tall or square (𝑚 ≥ 𝑛); see page 4.12

the pseudo-inverse of 𝐴 is defined as

𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇

• this matrix exists, because the Gram matrix 𝐴𝑇𝐴 is nonsingular

• 𝐴† is a left inverse of 𝐴:

𝐴†𝐴 = (𝐴𝑇𝐴)−1(𝐴𝑇𝐴) = 𝐼

(for complex 𝐴 with linearly independent columns, 𝐴† = (𝐴𝐻𝐴)−1𝐴𝐻)
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Summary

the following three properties are equivalent for a real matrix 𝐴

1. 𝐴 is left-invertible

2. the columns of 𝐴 are linearly independent

3. 𝐴𝑇𝐴 is nonsingular

• 1 ⇒ 2 was already proved on page 4.15

• 2 ⇒ 1: we have seen that the pseudo-inverse is a left inverse

• 2 ⇔ 3: proved on page 4.21

• a matrix with these properties must be tall or square

• for complex matrices, replace 𝐴𝑇𝐴 in property 3 by 𝐴𝐻𝐴
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Pseudo-inverse of matrix with independent rows

• suppose 𝐴 ∈ R𝑚×𝑛 has linearly independent rows

• this implies that 𝐴 is wide or square (𝑚 ≤ 𝑛); see page 4.12

the pseudo-inverse of 𝐴 is defined as

𝐴† = 𝐴𝑇 (𝐴𝐴𝑇)−1

• 𝐴𝑇 has linearly independent columns

• hence its Gram matrix 𝐴𝐴𝑇 is nonsingular, so 𝐴† exists

• 𝐴† is a right inverse of 𝐴:

𝐴𝐴† = (𝐴𝐴𝑇) (𝐴𝐴𝑇)−1 = 𝐼

(for complex 𝐴 with linearly independent rows, 𝐴† = 𝐴𝐻 (𝐴𝐴𝐻)−1)
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Summary

the following three properties are equivalent

1. 𝐴 is right-invertible

2. the rows of 𝐴 are linearly independent

3. 𝐴𝐴𝑇 is nonsingular

• 1 ⇒ 2 and 2 ⇔ 3: by transposing result on page 4.23

• 2 ⇒ 1: we have seen that the pseudo-inverse is a right inverse

• a matrix with these properties must be wide or square

• for complex matrices, replace 𝐴𝐴𝑇 in property 3 by 𝐴𝐴𝐻
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