9. Least squares data fitting

- model fitting
- regression
- linear-in-parameters models
- time series examples
- validation
- least squares classification
- statistics interpretation

Model fitting

suppose *x* and a scalar quantity *y* are related as

 $y \approx f(x)$

- *x* is the *explanatory variable* or *independent variable*
- *y* is the *outcome*, or *response variable*, or *dependent* variable
- we don't know f, but have some idea about its general form

Model fitting

- find an approximate *model* \hat{f} for f, based on observations
- we use the notation \hat{y} for the model *prediction* of the outcome y:

$$\hat{y} = \hat{f}(x)$$

Prediction error

we have data consisting of *N* examples (samples, measurements, observations):

 $x^{(1)}, \dots, x^{(N)}, \qquad y^{(1)}, \dots, y^{(N)}$

- model prediction for example *i* is $\hat{y}^{(i)} = \hat{f}(x^{(i)})$
- the *prediction error* or *residual* for example *i* is

$$r^{(i)} = y^{(i)} - \hat{y}^{(i)} = y^{(i)} - \hat{f}(x^{(i)})$$

- the model \hat{f} fits the data well if the N residuals $r^{(i)}$ are small
- prediction error can be quantified using the *mean square error* (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (r^{(i)})^2$$

the square root of the MSE is the RMS error

Outline

- model fitting
- regression
- linear-in-parameters models
- time series examples
- validation
- least squares classification
- statistics interpretation

Regression

we first consider the regression model (page 1.30):

$$\hat{f}(x) = x^T \beta + v$$

- here the independent variable *x* is an *n*-vector
- the elements of *x* are the *regressors*
- the model is parameterized by the weight vector β and the offset (intercept) v
- the prediction error for example *i* is

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)})$$

= $y^{(i)} - (x^{(i)})^T \beta - v$

$$\frac{1}{N}\sum_{i=1}^{N} (r^{(i)})^2 = \frac{1}{N}\sum_{i=1}^{N} \left(y^{(i)} - (x^{(i)})^T \beta - v \right)^2$$

Least squares regression

choose the model parameters v, β that minimize the MSE

$$\frac{1}{N} \sum_{i=1}^{N} \left(v + (x^{(i)})^T \beta - y^{(i)} \right)^2$$

this is a least squares problem: minimize $||A\theta - y^d||^2$ with

$$A = \begin{bmatrix} 1 & (x^{(1)})^T \\ 1 & (x^{(2)})^T \\ \vdots & \vdots \\ 1 & (x^{(N)})^T \end{bmatrix}, \qquad \theta = \begin{bmatrix} v \\ \beta \end{bmatrix}, \qquad y^d = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

we write the solution as $\hat{\theta} = (\hat{v}, \hat{\beta})$

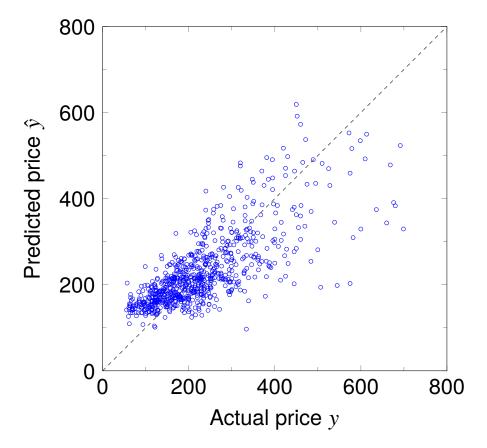
Example: house price regression model

example of page 1.30

 $\hat{y} = x^T \beta + v$

- \hat{y} is predicted sales price (in 1000 dollars); y is actual sales price
- two regressors: x_1 is house area; x_2 is number of bedrooms

- data set of N = 774 house sales
- RMS error of least squares fit is 74.8



Example: house price regression model

regression model with additional regressors

 $\hat{y} = x^T \beta + v$

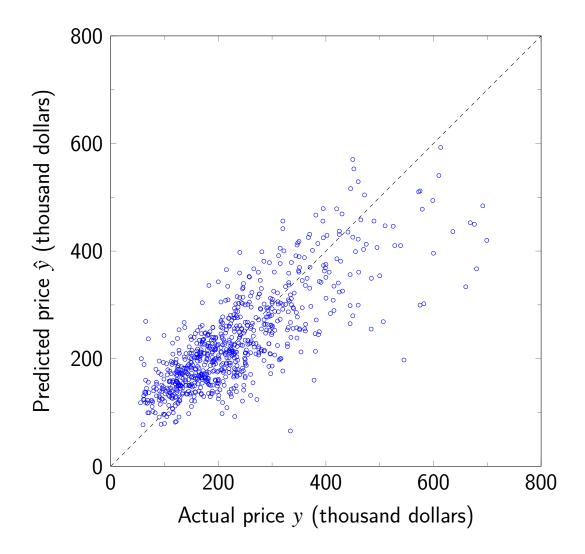
feature vector x has 7 elements

- *x*¹ is area of the house (in 1000 square feet)
- $x_2 = \max \{x_1 1.5, 0\}, i.e., \text{ area in excess of } 1.5 \text{ (in 1000 square feet)}$
- *x*₃ is number of bedrooms
- *x*₄ is one for a condo; zero otherwise
- *x*₅, *x*₆, *x*₇ specify location (four groups of ZIP codes)

Location	<i>x</i> ₅	x_6	<i>X</i> 7
А	0	0	0
В	1	0	0
С	0	1	0
D	0	0	1

Example: house price regression model

- use least squares to fit the eight model parameters v, β
- RMS fitting error is 68.3



Outline

- model fitting
- regression
- linear-in-parameters models
- time series examples
- validation
- least squares classification
- statistics interpretation

Linear-in-parameters model

we choose the model $\hat{f}(x)$ from a family of models

$$\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

- the functions f_i are scalar valued *basis functions* (chosen by us)
- the basis functions often include a constant function (typically, $f_1(x) = 1$)
- the coefficients $\theta_1, \ldots, \theta_p$ are the model *parameters*
- the model $\hat{f}(x)$ is linear in the parameters θ_i
- if $f_1(x) = 1$, this can be interpreted as a regression model

$$\hat{y} = \beta^T \tilde{x} + v$$

with parameters $v = \theta_1$, $\beta = \theta_{2:p}$ and new features \tilde{x} generated from x:

$$\tilde{x}_1 = f_2(x), \quad \dots, \quad \tilde{x}_p = f_p(x)$$

Least squares model fitting

- fit linear-in-parameters model to data set $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- residual for data sample *i* is

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)}) = y^{(i)} - \theta_1 f_1(x^{(i)}) - \dots - \theta_p f_p(x^{(i)})$$

• least squares model fitting: choose parameters θ by minimizing MSE

$$\frac{1}{N} \left((r^{(1)})^2 + (r^{(2)})^2 + \dots + (r^{(N)})^2 \right)$$

• this is a least squares problem: minimize $||A\theta - y^d||^2$ with

$$A = \begin{bmatrix} f_1(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ f_1(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & & \vdots \\ f_1(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}, \qquad y^d = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Example: polynomial approximation

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_p x^{p-1}$$

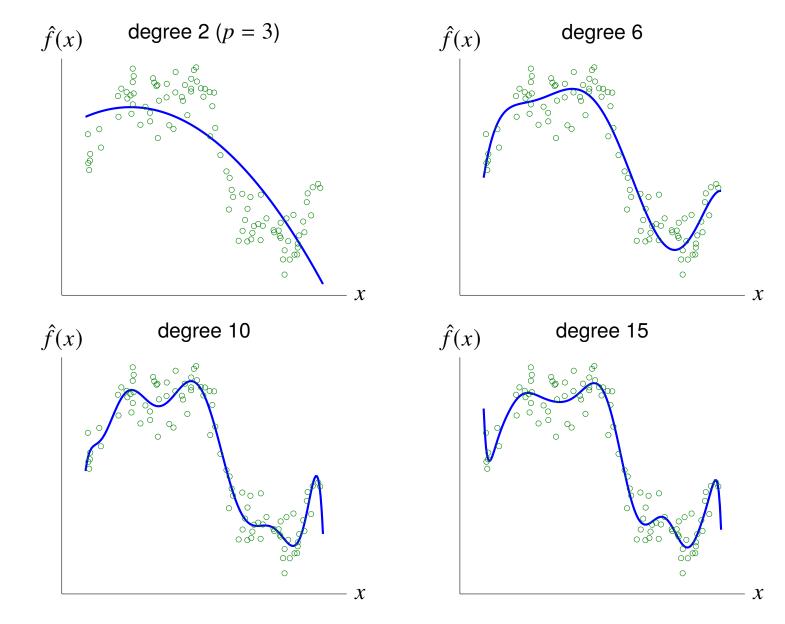
- a linear-in-parameters model with basis functions $1, x, ..., x^{p-1}$
- least squares model fitting: choose parameters θ by minimizing MSE

$$\frac{1}{N} \left((y^{(1)} - \hat{f}(x^{(1)}))^2 + (y^{(2)} - \hat{f}(x^{(2)}))^2 + \dots + (y^{(N)} - \hat{f}(x^{(N)}))^2 \right)$$

• in matrix notation: minimize $||A\theta - y^d||^2$ with

$$A = \begin{bmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & (x^{(2)})^2 & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x^{(N)} & (x^{(N)})^2 & \cdots & (x^{(N)})^{p-1} \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} & y^{(2)} & y^{(2)} \\ \vdots & y^{(N)} & y^{(N)} \end{bmatrix}$$

Example



data set of 100 examples

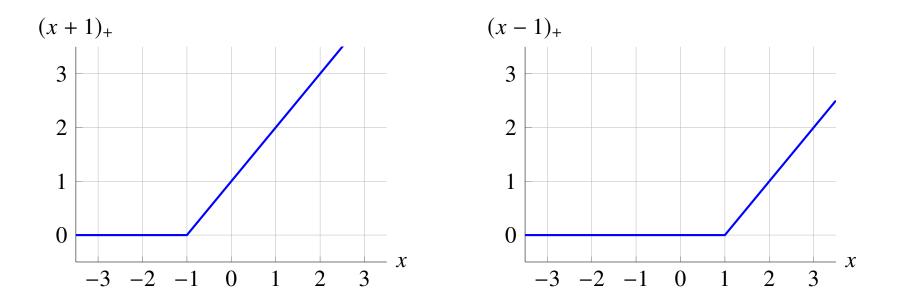
Least squares data fitting

Piecewise-affine function

- define *knot points* $a_1 < a_2 < \cdots < a_k$ on the real axis
- piecewise-affine function is continuous, and affine on each interval $[a_k, a_{k+1}]$
- piecewise-affine function with knot points a_1, \ldots, a_k can be written as

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 (x - a_1)_+ + \dots + \theta_{2+k} (x - a_k)_+$$

where $u_{+} = \max{\{u, 0\}}$

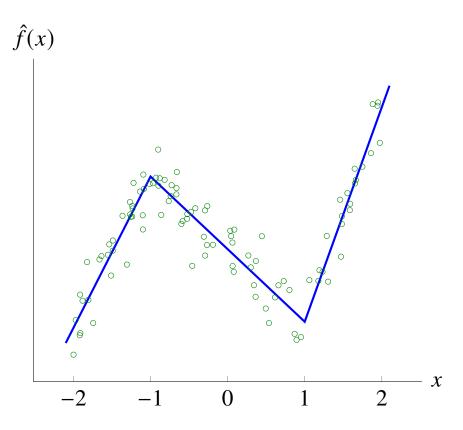


Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters θ , with basis functions

$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = (x - a_1)_+$, ..., $f_{k+2}(x) = (x - a_k)_+$

Example: fit piecewise-affine function with knots $a_1 = -1$, $a_2 = 1$ to 100 points



Outline

- model fitting
- regression
- linear-in-parameters models
- time series examples
- validation
- least squares classification
- statistics interpretation

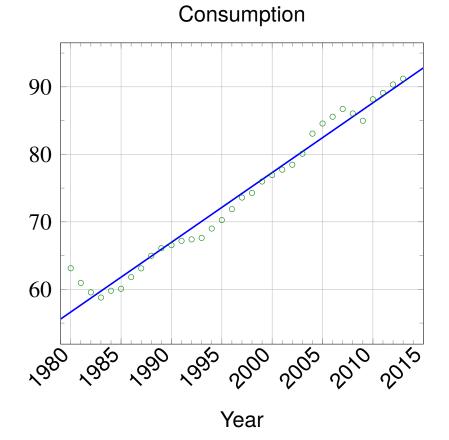
Time series trend

- N data samples from time series: $y^{(i)}$ is value at time *i*, for i = 1, ..., N
- straight-line fit $\hat{y}^{(i)} = \theta_1 + \theta_2 i$ is the *trend line*
- $y^{d} \hat{y}^{d} = (y^{(1)} \hat{y}^{(1)}, \dots, y^{(N)} \hat{y}^{(N)})$ is the *de-trended* time series
- least squares fitting of trend line: minimize $||A\theta y^d||^2$ with

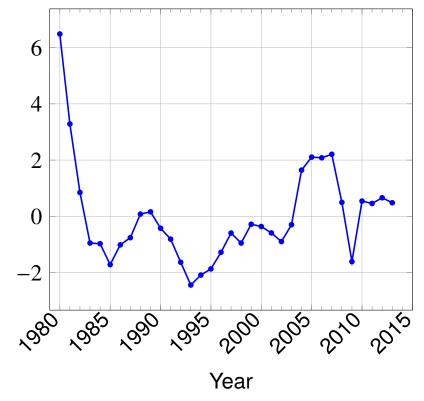
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ \vdots & \vdots \\ 1 & N \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Example: world petroleum consumption

- time series of world petroleum consumption (million barrels/day) versus year
- left figure shows data samples and trend line
- right figure shows de-trended time series



De-trended consumption



Trend plus seasonal component

• model time series as a linear trend plus a periodic component with period *P*:

$$\hat{y}^{d} = \hat{y}^{\text{lin}} + \hat{y}^{\text{seas}}$$

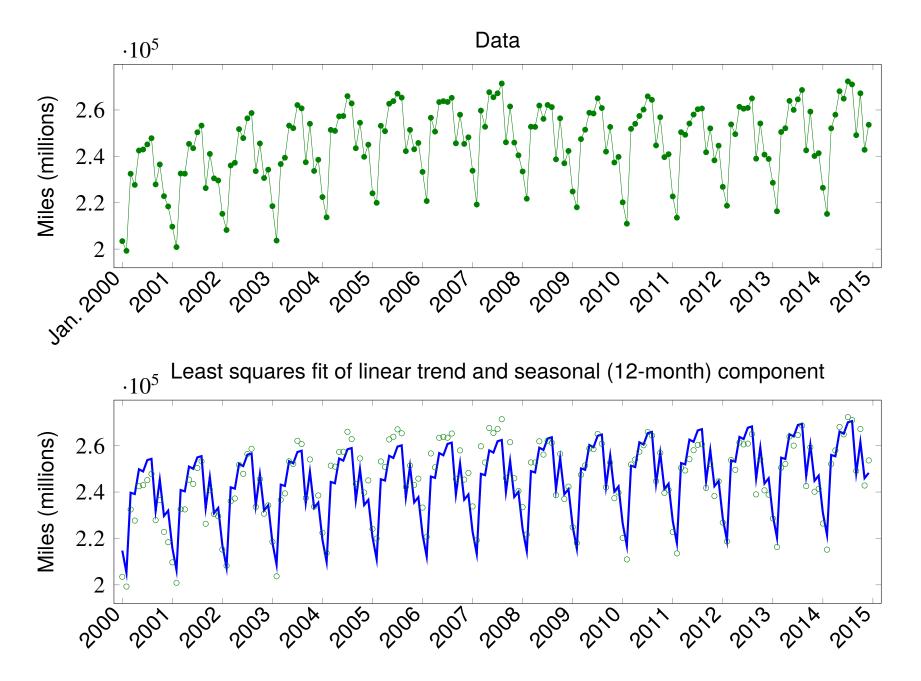
with $\hat{y}^{\text{lin}} = \theta_1(1, 2, \dots, N)$ and

$$\hat{y}^{\text{seas}} = (\theta_2, \theta_3, \dots, \theta_{P+1}, \theta_2, \theta_3, \dots, \theta_{P+1}, \dots, \theta_2, \theta_3, \dots, \theta_{P+1})$$

- the mean of \hat{y}^{seas} serves as a constant offset
- residual $y^d \hat{y}^d$ is the *de-trended*, *seasonally adjusted* time series
- least squares formulation: minimize $||A\theta y^d||^2$ with

$$A_{1:N,1} = \begin{bmatrix} 1\\2\\\vdots\\N \end{bmatrix}, \qquad A_{1:N,2:P+1} = \begin{bmatrix} I_P\\I_P\\\vdots\\I_P \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)}\\y^{(2)}\\\vdots\\y^{(N)} \end{bmatrix}$$

Example: vehicle miles traveled in the US per month



Auto-regressive (AR) time series model

 $\hat{z}_{t+1} = \beta_1 z_t + \dots + \beta_M z_{t-M+1}, \qquad t = M, M+1, \dots$

- z_1, z_2, \ldots is a time series
- \hat{z}_{t+1} is a prediction of z_{t+1} , made at time *t*
- prediction \hat{z}_{t+1} is a linear function of previous *M* values z_t, \ldots, z_{t-M+1}
- *M* is the *memory* of the model

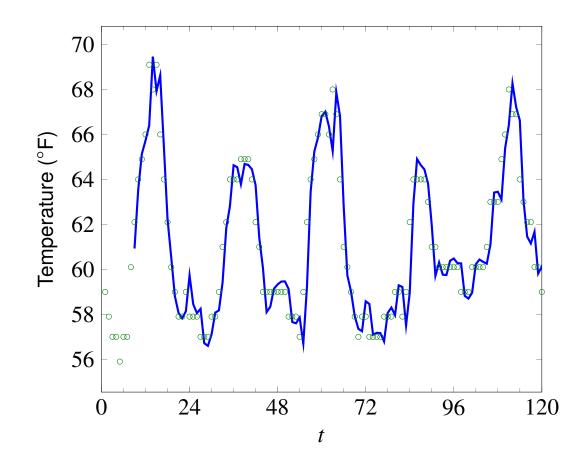
Least squares fitting of AR model: given observed data z_1, \ldots, z_T , minimize

$$(z_{M+1} - \hat{z}_{M+1})^2 + (z_{M+2} - \hat{z}_{M+2})^2 + \dots + (z_T - \hat{z}_T)^2$$

this is a least squares problem: minimize $||A\beta - y^d||^2$ with

$$A = \begin{bmatrix} z_M & z_{M-1} & \cdots & z_1 \\ z_{M+1} & z_M & \cdots & z_2 \\ \vdots & \vdots & & \vdots \\ z_{T-1} & z_{T-2} & \cdots & z_{T-M} \end{bmatrix}, \qquad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_M \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} z_{M+1} \\ z_{M+2} \\ \vdots \\ z_T \end{bmatrix}$$

Example: hourly temperature at LAX



- blue line shows prediction by AR model of memory M = 8
- model was fit on time series of length T = 744 (May 1–31, 2016)
- plot shows first five days

Outline

- model fitting
- regression
- linear-in-parameters models
- time series examples
- validation
- least squares classification
- statistics interpretation

Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

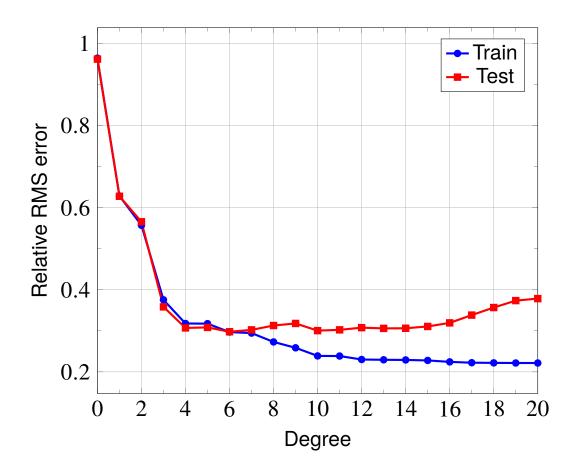
Model validation: to assess generalization ability,

- divide data in two sets: *training set* and *test (or validation)* set
- use training set to fit model
- use test set to get an idea of generalization ability
- this is also called *out-of-sample validation*

Over-fit model

- model with low prediction error on training set, bad generalization ability
- prediction error on training set is much smaller than on test set

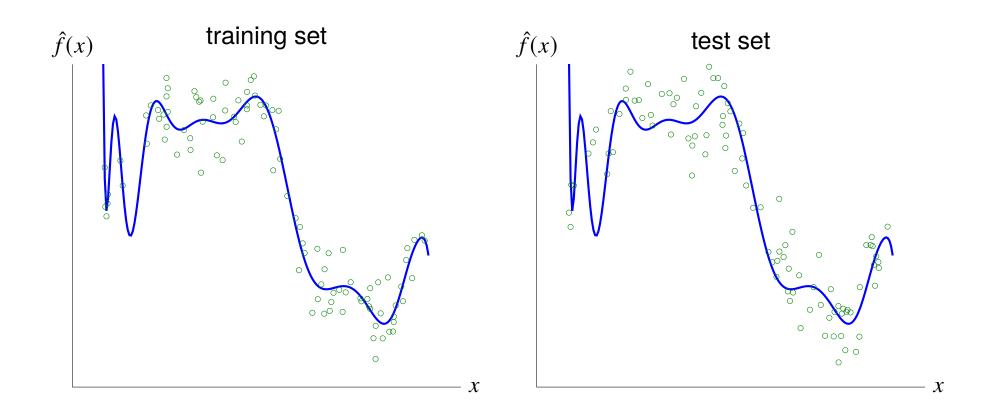
Example: polynomial fitting



- training set is data set of 100 points used on page 9.11
- test set is a similar set of 100 points
- plot suggests using degree 6

Over-fitting

polynomial of degree 20 on training and test set



over-fitting is evident at the left end of the interval

Cross-validation

an extension of out-of-sample validation

- divide data in K sets (folds); typical values are K = 5, K = 10
- for i = 1 to K, fit model i using fold i as test set and other data as training set
- compare parameters and train/test RMS errors for the *K* models

House price model (page 9.7) with 5 folds (155 or 154 examples each)

Model parameters					RMS error					
Fold	V	eta_1	β_2	β_3	eta_4	β_5	eta_6	β_7	Train	Test
1	122.5	166.9	-39.3	-16.3	-24.0	-100.4	-106.7	-26.0	67.3	72.8
2	101.0	186.7	-55.8	-18.7	-14.8	-99.1	-109.6	-17.9	67.8	70.8
3	133.6	167.2	-23.6	-18.7	-14.7	-109.3	-114.4	-28.5	69.7	63.8
4	108.4	171.2	-41.3	-15.4	-17.7	-94.2	-103.6	-29.8	65.6	78.9
5	114.5	185.7	-52.7	-20.9	-23.3	-102.8	-110.5	-23.4	70.7	58.3

Outline

- model fitting
- regression
- linear-in-parameters models
- time series example
- validation
- least squares classification
- statistics interpretation

Boolean (two-way) classification

- a data fitting problem where the outcome y can take two values +1, -1
- values of *y* represent two categories (true/false, spam/not spam, ...)
- model $\hat{y} = \hat{f}(x)$ is called a *Boolean classifier*

Least squares classifier

- use least squares to fit model $\tilde{f}(x)$ to training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$
- $\tilde{f}(x)$ can be a regression model $\tilde{f}(x) = x^T \beta + v$ or linear in parameters

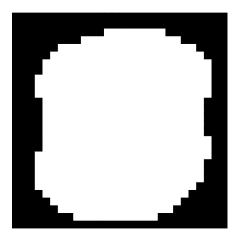
$$\tilde{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

• take sign of $\tilde{f}(x)$ to get a Boolean classifier

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \begin{cases} +1 & \text{if } \tilde{f}(x) \ge 0\\ -1 & \text{if } \tilde{f}(x) < 0 \end{cases}$$

Example: handwritten digit classification

- MNIST data set used in homework
- 28×28 images of handwritten digits ($n = 28^2 = 784$ pixels)
- data set contains 60000 training examples; 10000 test examples
- we only use the 493 pixels that are nonzero in at least 600 training examples

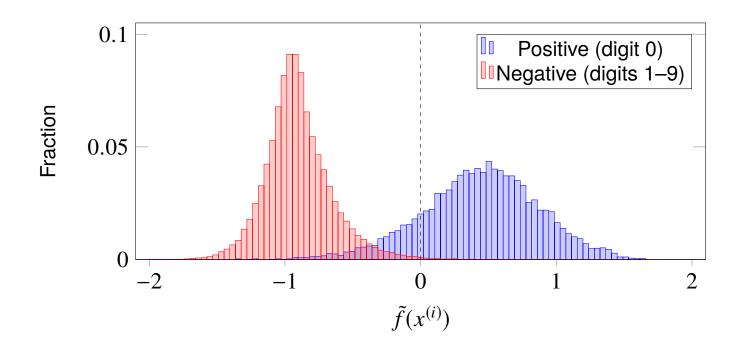


• Boolean classifier distinguishes digit zero (y = 1) from other digits (y = -1)

Classifier with basic regression model

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \operatorname{sign}(x^T \beta + v)$$

- *x* is vector of 493 pixel intensities
- figure shows distribution of $\tilde{f}(x^{(i)}) = (x^{(i)})^T \hat{\beta} + \hat{v}$ on training set



- blue bars to the left of dashed line are false negatives (misclassified digits zero)
- red bars to the right of dashed line are false positives (misclassified non-zeros)

Prediction error

• for each data point x, y we have four combinations of prediction and outcome

	Prediction			
Outcome	$\hat{y} = +1$	$\hat{y} = -1$		
y = +1 $y = -1$	true positive false positive	false negative true negative		

• classifier can be evaluated by counting data points for each combination

	Training	g set			Test s	set	
	Pred	iction			Pred	iction	
Outcome	$\hat{y} = +1$	$\hat{y} = -1$	Total	Outcome	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	5158	765	5923	y = +1	864	116	980
y = -1	169	53910	54077	y = -1	42	8978	9020
All	5325	54675	60000	All	906	9094	10000

error rate (765 + 169)/60000 = 1.6%

error rate (116 + 42)/10000 = 1.6%

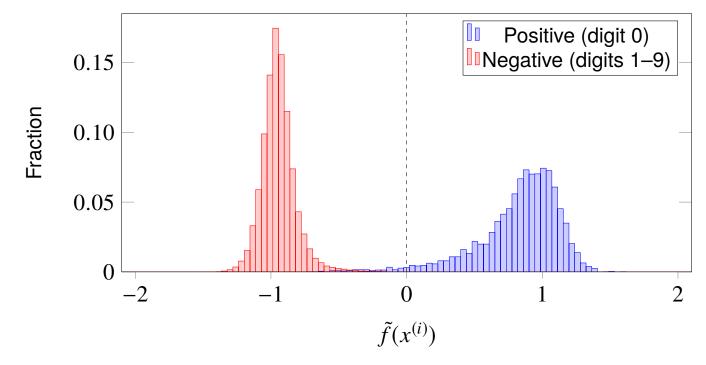
Classifier with additional nonlinear features

$$\hat{f}(x) = \operatorname{sign}(\tilde{f}(x)) = \operatorname{sign}(\sum_{i=1}^{p} \theta_i f_i(x))$$

• basis functions include constant, 493 elements of x, plus 5000 functions

 $f_i(x) = \max \{0, r_i^T x + s_i\}$ with randomly generated r_i, s_i

• figure shows distribution of $\tilde{f}(x^{(i)})$ on training set



Prediction error

Training set: error rate 0.21%

	Pred		
Outcome	$\hat{y} = +1$	$\hat{y} = -1$	Total
y = +1	5813	110	5923
y = -1	15	54062	54077
All	5828	54172	60000

Test set: error rate 0.24%

Outcome	$\hat{y} = +1$	$\hat{y} = -1$	Total
<i>y</i> = +1	963	17	980
y = -1	7	9013	9020
All	970	9030	10000

Multi-class classification

- a data fitting problem where the outcome *y* can takes values 1, ..., *K*
- values of *y* represent *K* labels or categories
- multi-class classifier $\hat{y} = \hat{f}(x)$ maps x to an element of $\{1, 2, \dots, K\}$

Least squares multi-class classifier

• for k = 1, ..., K, compute Boolean classifier to distinguish class k from not k

$$\hat{f}_k(x) = \operatorname{sign}(\tilde{f}_k(x))$$

• define multi-class classifier as

$$\hat{f}(x) = \underset{k=1,...,K}{\operatorname{argmax}} \tilde{f}_k(x)$$

Example: handwritten digit classification

• we compute a least squares Boolean classifier for each digit versus the rest

$$\hat{f}_k(x) = \operatorname{sign}(x^T \beta_k + v_k), \quad k = 1, \dots, K$$

• table shows results for test set (error rate 13.9%)

	Prediction										
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	944	0	1	2	2	8	13	2	7	1	980
1	0	1107	2	2	3	1	5	1	14	0	1135
2	18	54	815	26	16	0	38	22	39	4	1032
3	4	18	22	884	5	16	10	22	20	9	1010
4	0	22	6	0	883	3	9	1	12	46	982
5	24	19	3	74	24	656	24	13	38	17	892
6	17	9	10	0	22	17	876	0	7	0	958
7	5	43	14	6	25	1	1	883	1	49	1028
8	14	48	11	31	26	40	17	13	756	18	974
9	16	10	3	17	80	0	1	75	4	803	1009
All	1042	1330	887	1042	1086	742	994	1032	898	947	10000

Example: handwritten digit classification

- ten least squares Boolean classifiers use 5000 new features (page 9.29)
- table shows results for test set (error rate 2.6%)

Prediction											
Digit	0	1	2	3	4	5	6	7	8	9	Total
0	972	0	0	2	0	1	1	1	3	0	980
1	0	1126	3	1	1	0	3	0	1	0	1135
2	6	0	998	3	2	0	4	7	11	1	1032
3	0	0	3	977	0	13	0	5	8	4	1010
4	2	1	3	0	953	0	6	3	1	13	982
5	2	0	1	5	0	875	5	0	3	1	892
6	8	3	0	0	4	6	933	0	4	0	958
7	0	8	12	0	2	0	1	992	3	10	1028
8	3	1	3	6	4	3	2	2	946	4	974
9	4	3	1	12	11	7	1	3	3	964	1009
All	997	1142	1024	1006	977	905	956	1013	983	997	10000

Outline

- model fitting
- regression
- linear-in-parameters models
- time series example
- validation
- least squares classification
- statistics interpretation

Linear regression model

$$y = X\beta + \epsilon$$

- β is (non-random) *p*-vector of unknown *parameters*
- X is $n \times p$ (data matrix or *design matrix*, *i.e.*, result of experiment design)
- if there is an offset v, we include it in β and add a column of ones in X
- ϵ is a random *n*-vector (*random error* or *disturbance*)
- *y* is an observable random *n*-vector

- this notation differs from previous sections but is common in statistics
- we discuss methods for estimating parameters β from observations of y

Assumptions

- *X* is tall (n > p) with linearly independent columns
- random disturbances ϵ_i have zero mean

 $\mathbf{E} \epsilon_i = 0$ for $i = 1, \ldots, n$

• random disturbances have equal variances σ^2

$$\mathbf{E} \epsilon_i^2 = \sigma^2$$
 for $i = 1, \dots, n$

• random disturbances are uncorrelated (have zero covariances)

$$\mathbf{E}(\epsilon_i \epsilon_j) = 0$$
 for $i, j = 1, ..., n$ and $i \neq j$

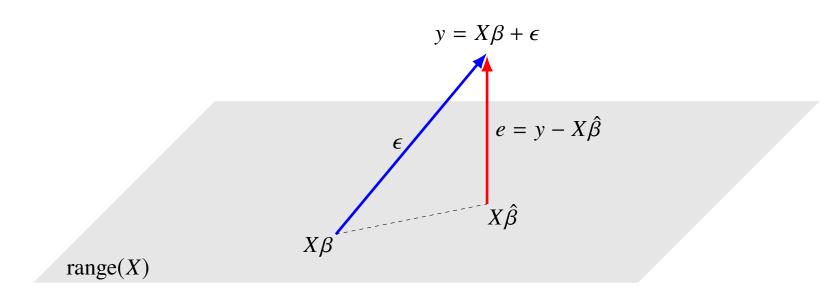
last three assumptions can be combined using matrix and vector notation:

$$\mathbf{E}\,\boldsymbol{\epsilon}=\boldsymbol{0},\qquad \mathbf{E}\,\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{T}=\sigma^{2}I$$

Least squares estimator

least squares estimate $\hat{\beta}$ of parameters β , given the observations y, is

$$\hat{\beta} = X^{\dagger} y = (X^T X)^{-1} X^T y$$



- $X\hat{\beta}$ is the orthogonal projection of y on range(X)
- residual $e = y X\hat{\beta}$ is an (observable) random variable

Mean and covariance of least squares estimate

$$\hat{\beta} = X^{\dagger}(X\beta + \epsilon) = \beta + X^{\dagger}\epsilon$$

- least squares estimator is *unbiased*: $\mathbf{E}\hat{\beta} = \beta$
- covariance matrix of least squares estimate is

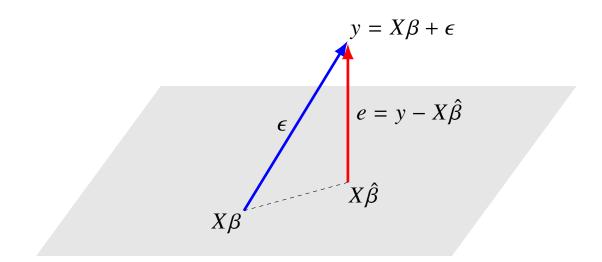
$$\mathbf{E} (\hat{\beta} - \beta) (\hat{\beta} - \beta)^T = \mathbf{E} \left((X^{\dagger} \epsilon) (X^{\dagger} \epsilon)^T \right)$$
$$= \mathbf{E} \left((X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-1} \right)$$
$$= \sigma^2 (X^T X)^{-1}$$

• covariance of $\hat{\beta}_i$ and $\hat{\beta}_j$ $(i \neq j)$ is

$$\mathbf{E}\left((\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)\right) = \sigma^2 \left((X^T X)^{-1}\right)_{ij}$$

for i = j, this is the variance of $\hat{\beta}_i$

Estimate of σ^2



 $\mathbf{E} \|\boldsymbol{\epsilon}\|^2 = n\sigma^2$ $\mathbf{E} \|\boldsymbol{e}\|^2 = (n-p)\sigma^2$ $\mathbf{E} \|\boldsymbol{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\|^2 = p\sigma^2$

(proof on next page)

- define estimate $\hat{\sigma}$ of σ as

$$\hat{\sigma} = \frac{\|e\|}{\sqrt{n-p}}$$

• $\hat{\sigma}^2$ is an unbiased estimate of σ^2 :

$$\mathbf{E}\,\hat{\sigma}^2 = \frac{1}{n-p}\,\mathbf{E}\,\|e\|^2 = \sigma^2$$

Proof.

first expression is immediate: $\mathbf{E} \| \epsilon \|^2 = \sum_{i=1}^{n} \mathbf{E} \epsilon_i^2 = n\sigma^2$

• to show that $\mathbf{E} \| X(\hat{\beta} - \beta) \|^2 = p\sigma^2$, first note that

$$\begin{aligned} X(\hat{\beta} - \beta) &= XX^{\dagger}y - X\beta \\ &= XX^{\dagger}(X\beta + \epsilon) - X\beta \\ &= XX^{\dagger}\epsilon \\ &= X(X^TX)^{-1}X^T\epsilon \end{aligned}$$

on line 3 we used $X^{\dagger}X = I$ (however, note that $XX^{\dagger} \neq I$ if X is tall)

• squared norm of $X(\beta - \hat{\beta})$ is

$$\|X(\hat{\beta} - \beta)\|^2 = \epsilon^T (XX^{\dagger})^2 \epsilon = \epsilon^T XX^{\dagger} \epsilon$$

first step uses symmetry of XX^{\dagger} ; second step, $X^{\dagger}X = I$

Least squares data fitting

• expected value of squared norm is

$$\mathbf{E} \| X(\hat{\beta} - \beta) \|^{2} = \mathbf{E} \left(\epsilon^{T} X X^{\dagger} \epsilon \right) = \sum_{i,j} \mathbf{E} (\epsilon_{i} \epsilon_{j}) (X X^{\dagger})_{ij}$$
$$= \sigma^{2} \sum_{i=1}^{n} (X X^{\dagger})_{ii}$$
$$= \sigma^{2} \sum_{i=1}^{n} \sum_{j=1}^{p} X_{ij} (X^{\dagger})_{ji}$$
$$= \sigma^{2} \sum_{j=1}^{p} (X^{\dagger} X)_{jj}$$
$$= p \sigma^{2}$$

• expression $\mathbf{E} ||e||^2 = (n - p)\sigma^2$ on page 9.38 now follows from

$$\|\epsilon\|^{2} = \|e + X\hat{\beta} - X\beta\|^{2} = \|e\|^{2} + \|X(\hat{\beta} - \beta)\|^{2}$$

Linear estimator

linear regression model (page 9.34), with same assumptions as before (p. 9.35):

 $y = X\beta + \epsilon$

a *linear estimator* of β maps observations y to the estimate

$$\hat{\beta} = By$$

- estimator is defined by the $p \times n$ matrix B
- least squares estimator is an example with $B = X^{\dagger}$

Unbiased linear estimator

if *B* is a left inverse of *X*, then estimator $\hat{\beta} = By$ can be written as:

$$\hat{\beta} = By = B(X\beta + \epsilon) = \beta + B\epsilon$$

- this shows that the linear estimator is *unbiased* ($\mathbf{E}\hat{\beta} = \beta$) if BX = I
- covariance matrix of unbiased linear estimator is

$$\mathbf{E}\left((\hat{\beta}-\beta)(\hat{\beta}-\beta)^T\right) = \mathbf{E}\left(B\epsilon\epsilon^T B^T\right) = \sigma^2 B B^T$$

• if c is a (non-random) p-vector, then estimate $c^T \hat{\beta}$ of $c^T \beta$ has variance

$$\mathbf{E} \left(c^T \hat{\beta} - c^T \beta \right)^2 = \sigma^2 c^T B B^T c$$

least squares estimator is an example with $B = X^{\dagger}$ and $BB^{T} = (X^{T}X)^{-1}$

Best linear unbiased estimator

if *B* is a left inverse of *X* then for all *p*-vectors *c*

 $c^T B B^T c \ge c^T (X^T X)^{-1} c$

(proof on next page)

• left-hand side gives variance of $c^T \hat{\beta}$ for linear unbiased estimator

$$\hat{\beta} = By$$

• right-hand side gives variance of $c^T \hat{\beta}_{ls}$ for least squares estimator

$$\hat{\beta}_{\rm ls} = X^{\dagger} y$$

• least squares estimator is the "best linear unbiased estimator" (BLUE)

this is known as the Gauss-Markov theorem

Proof.

• use BX = I to write BB^T as

$$BB^{T} = (B - (X^{T}X)^{-1}X^{T})(B^{T} - X(X^{T}X)^{-1}) + (X^{T}X)^{-1}$$

= $(B - X^{\dagger})(B - X^{\dagger})^{T} + (X^{T}X)^{-1}$

• hence,

$$c^{T}BB^{T}C = c^{T}(B - X^{\dagger})(B - X^{\dagger})^{T}c + c^{T}(X^{T}X)^{-1}c$$
$$= \|(B - X^{\dagger})^{T}c\|^{2} + c^{T}(X^{T}X)^{-1}c$$
$$\geq c^{T}(X^{T}X)^{-1}c$$

with equality if $B = X^{\dagger}$