8. Least squares

- least squares problem
- solution of a least squares problem
- solving least squares problems
Least squares problem

given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find vector $x \in \mathbb{R}^n$ that minimizes

$$\|Ax - b\|^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i \right)^2$$

- “least squares” because we minimize a sum of squares of affine functions:

 $$\|Ax - b\|^2 = \sum_{i=1}^{m} r_i(x)^2, \quad r_i(x) = \sum_{j=1}^{n} A_{ij}x_j - b_i$$

- the problem is also called the *linear* least squares problem
Example

\[
A = \begin{bmatrix}
2 & 0 \\
-1 & 1 \\
0 & 2
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}
\]

- the least squares solution \(\hat{x} \) minimizes

\[
f(x) = \| Ax - b \|^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2
\]

- to find \(\hat{x} \), set derivatives with respect to \(x_1 \) and \(x_2 \) equal to zero:

\[
10x_1 - 2x_2 - 4 = 0, \quad -2x_1 + 10x_2 + 4 = 0
\]

solution is \((\hat{x}_1, \hat{x}_2) = (1/3, -1/3)\)
Least squares and linear equations

minimize \(\|Ax - b\|^2 \)

- solution of the least squares problem: any \(\hat{x} \) that satisfies
 \[
 \|A\hat{x} - b\| \leq \|Ax - b\| \quad \text{for all} \ x
 \]

- \(\hat{r} = A\hat{x} - b \) is the residual vector
- if \(\hat{r} = 0 \), then \(\hat{x} \) solves the linear equation \(Ax = b \)
- if \(\hat{r} \neq 0 \), then \(\hat{x} \) is a least squares approximate solution of the equation
- in most least squares applications, \(m > n \) and \(Ax = b \) has no solution
Column interpretation

least squares problem in terms of columns a_1, a_2, \ldots, a_n of A:

$$\text{minimize} \quad \|Ax - b\|^2 = \|\sum_{j=1}^{n} a_j x_j - b\|^2$$

$A\hat{x}$ is the vector in $\text{range}(A) = \text{span}(a_1, \ldots, a_n)$ closest to b

geometric intuition suggests that $\hat{r} = A\hat{x} - b$ is orthogonal to $\text{range}(A)$
Example: advertising purchases

- m demographic groups; n advertising channels
- A_{ij} is # impressions (views) in group i per dollar spent on ads in channel j
- x_j is amount of advertising purchased in channel j
- $(Ax)_i$ is number of impressions in group i
- b_i is target number of impressions in group i

Example: $m = 10$, $n = 3$, $b = 10^31$

<table>
<thead>
<tr>
<th>Group</th>
<th>Impressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Columns of matrix A

Target b and least squares result $A\hat{x}$
Example: illumination

- n lamps at given positions above an area divided in m regions
- A_{ij} is illumination in region i if lamp j is on with power 1 and other lamps are off
- x_j is power of lamp j
- $(Ax)_i$ is illumination level at region i
- b_i is target illumination level at region i

Example: $m = 25^2$, $n = 10$; figure shows position and height of each lamp
Example: illumination

- left: illumination pattern for equal lamp powers ($x = 1$)
- right: illumination pattern for least squares solution \hat{x}, with $b = 1$
Outline

- least squares problem
- solution of a least squares problem
- solving least squares problems
Solution of a least squares problem

if A has linearly independent columns (is left-invertible), then the vector

$$\hat{x} = (A^T A)^{-1} A^T b$$

$$= A^\dagger b$$

is the unique solution of the least squares problem

$$\text{minimize} \quad \|Ax - b\|^2$$

- in other words, if $x \neq \hat{x}$, then $\|Ax - b\|^2 > \|A\hat{x} - b\|^2$
- recall from page 4.23 that

$$A^\dagger = (A^T A)^{-1} A^T$$

is called the pseudo-inverse of a left-invertible matrix
we show that $\|Ax - b\|^2 > \|A\hat{x} - b\|^2$ for $x \neq \hat{x}$:

\[
\|Ax - b\|^2 = \|A(x - \hat{x}) + (A\hat{x} - b)\|^2 \\
= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \\
> \|A\hat{x} - b\|^2
\]

- 2nd step follows from $A(x - \hat{x}) \perp (A\hat{x} - b)$:

\[
(A(x - \hat{x}))^T (A\hat{x} - b) = (x - \hat{x})^T (A^T A\hat{x} - A^T b) = 0
\]

- 3rd step follows from linear independence of columns of A:

$A(x - \hat{x}) \neq 0$ if $x \neq \hat{x}$
Derivation from calculus

\[f(x) = \|Ax - b\|^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i \right)^2 \]

- partial derivative of \(f \) with respect to \(x_k \)

\[\frac{\partial f}{\partial x_k}(x) = 2 \sum_{i=1}^{m} A_{ik} \left(\sum_{j=1}^{n} A_{ij}x_j - b_i \right) = 2(A^T(Ax - b))_k \]

- gradient of \(f \) is

\[\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right) = 2A^T(Ax - b) \]

- minimizer \(\hat{x} \) of \(f(x) \) satisfies \(\nabla f(\hat{x}) = 2A^T(A\hat{x} - b) = 0 \)
residual vector $\hat{r} = A\hat{x} - b$ satisfies $A^T\hat{r} = A^T(A\hat{x} - b) = 0$

- residual vector \hat{r} is orthogonal to every column of A; hence, to $\text{range}(A)$
- projection on $\text{range}(A)$ is a matrix-vector multiplication with the matrix

$$A(A^TA)^{-1}A^T = AA^\dagger$$
Outline

• least squares problem
• solution of a least squares problem
• solving least squares problems
Normal equations

\[A^T Ax = A^T b \]

- these equations are called the *normal equations* of the least squares problem
- coefficient matrix \(A^T A \) is the Gram matrix of \(A \)
- equivalent to \(\nabla f(x) = 0 \) where \(f(x) = \|Ax - b\|^2 \)
- all solutions of the least squares problem satisfy the normal equations

if \(A \) has linearly independent columns, then:

- \(A^T A \) is nonsingular
- normal equations have a unique solution \(\hat{x} = (A^T A)^{-1} A^T b \)
QR factorization method

rewrite least squares solution using QR factorization $A = QR$

$$\hat{x} = (A^T A)^{-1} A^T b = ((QR)^T (QR))^{-1} (QR)^T b$$
$$= (R^T Q^T QR)^{-1} R^T Q^T b$$
$$= (R^T R)^{-1} R^T Q^T b$$
$$= R^{-1} R^T R^T Q^T b$$
$$= R^{-1} Q^T b$$

Algorithm

1. compute QR factorization $A = QR$ ($2mn^2$ flops if A is $m \times n$)
2. matrix-vector product $d = Q^T b$ ($2mn$ flops)
3. solve $Rx = d$ by back substitution (n^2 flops)

complexity: $2mn^2$ flops
Example

\[A = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix} \]

1. QR factorization: \(A = QR \) with

\[Q = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \]

2. calculate \(d = Q^T b = (5, 2) \)

3. solve \(Rx = d \)

\[
\begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}
\]

solution is \(x_1 = 5, x_2 = 2 \)
Solving the normal equations

why not solve the normal equations

\[A^T Ax = A^T b \]

as a set of linear equations?

Example: a 3×2 matrix with “almost linearly dependent” columns

\[
A = \begin{bmatrix}
1 & -1 \\
0 & 10^{-5} \\
0 & 0
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
10^{-5} \\
1
\end{bmatrix},
\]

we round intermediate results to 8 significant decimal digits
Solving the normal equations

Method 1: form Gram matrix $A^T A$ and solve normal equations

$$A^T A = \begin{bmatrix} 1 & -1 \\ -1 & 1 + 10^{-10} \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad A^T b = \begin{bmatrix} 0 \\ 10^{-10} \end{bmatrix}$$

after rounding, the Gram matrix is singular; hence method fails

Method 2: QR factorization of A is

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \end{bmatrix}$$

rounding does not change any values (in this example)

- problem with method 1 occurs when forming Gram matrix $A^T A$
- QR factorization method is more stable because it avoids forming $A^T A$