
L. Vandenberghe ECE133A (Fall 2024)

3. Matrices

• notation and terminology

• matrix operations

• linear and affine functions

• complexity

3.1

Matrix

a rectangular array of numbers, for example

𝐴 =


0 1 −2.3 0.1

1.3 4 −0.1 0
4.1 −1 0 1.7


• numbers in array are the elements (entries, coefficients, components)

• 𝐴𝑖 𝑗 is the 𝑖, 𝑗 element of 𝐴; 𝑖 is its row index, 𝑗 the column index

• size (dimensions) of the matrix is specified as (#rows) × (#columns)

for example, the matrix 𝐴 above is a 3 × 4 matrix

• set of 𝑚 × 𝑛 matrices with real elements is written R𝑚×𝑛

• set of 𝑚 × 𝑛 matrices with complex elements is written C𝑚×𝑛

Matrices 3.2

Other conventions

• many authors use parentheses as delimiters:

𝐴 =
©­«

0 1 −2.3 0.1
1.3 4 −0.1 0
4.1 −1 0 1.7

ª®¬
• often 𝑎𝑖 𝑗 is used to denote the 𝑖, 𝑗 element of 𝐴

Matrices 3.3

Matrix shapes

Scalar: we don’t distinguish between a 1 × 1 matrix and a scalar

Vector: we don’t distinguish between an 𝑛 × 1 matrix and an 𝑛-vector

Row and column vectors

• a 1 × 𝑛 matrix is called a row vector

• an 𝑛 × 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an 𝑚 × 𝑛 matrix is

• tall if 𝑚 > 𝑛

• wide if 𝑚 < 𝑛

• square if 𝑚 = 𝑛

Matrices 3.4

Block matrix

• a block matrix is a rectangular array of matrices

• elements in the array are the blocks or submatrices of the block matrix

Example

𝐴 =

[
𝐵 𝐶

𝐷 𝐸

]
is a 2 × 2 block matrix; if the blocks are

𝐵 =

[
2
1

]
, 𝐶 =

[
0 2 3
5 4 7

]
, 𝐷 =

[
1

]
, 𝐸 =

[−1 6 0
]

then

𝐴 =


2 0 2 3
1 5 4 7
1 −1 6 0


Note: dimensions of the blocks must be compatible
Matrices 3.5

Rows and columns

a matrix can be viewed as a block matrix with row/column vector blocks

• 𝑚 × 𝑛 matrix 𝐴 as 1 × 𝑛 block matrix

𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]
each 𝑎 𝑗 is an 𝑚-vector (the 𝑗 th column of 𝐴)

• 𝑚 × 𝑛 matrix 𝐴 as 𝑚 × 1 block matrix

𝐴 =


𝑏1
𝑏2
...

𝑏𝑚


each 𝑏𝑖 is a 1 × 𝑛 row vector (the 𝑖th row of 𝐴)

Matrices 3.6

Special matrices

Zero matrix

• matrix with 𝐴𝑖 𝑗 = 0 for all 𝑖, 𝑗

• notation: 0 (usually) or 0𝑚×𝑛 (if dimension is not clear from context)

Identity matrix

• square matrix with 𝐴𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝐴𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗

• notation: 𝐼 (usually) or 𝐼𝑛 (if dimension is not clear from context)

• columns of 𝐼𝑛 are unit vectors 𝑒1, 𝑒2, . . . , 𝑒𝑛; for example,

𝐼3 =


1 0 0
0 1 0
0 0 1

 =
[
𝑒1 𝑒2 𝑒3

]

Matrices 3.7

Symmetric and Hermitian matrices

Symmetric matrix: square with 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖


4 3 −2
3 −1 5
−2 5 0

 ,


4 + 3j 3 − 2j 0
3 − 2j −j −2j

0 −2j 3



Hermitian matrix: square with 𝐴𝑖 𝑗 = 𝐴̄ 𝑗𝑖 (complex conjugate of 𝐴𝑖 𝑗)


4 3 − 2j −1 + j

3 + 2j −1 2j
−1 − j −2j 3


note: diagonal elements are real (since 𝐴𝑖𝑖 = 𝐴̄𝑖𝑖)

Matrices 3.8

Structured matrices

matrices with special patterns or structure arise in many applications

• diagonal matrix: square with 𝐴𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗


−1 0 0
0 2 0
0 0 −5

 ,

−1 0 0
0 0 0
0 0 −5


• lower triangular matrix: square with 𝐴𝑖 𝑗 = 0 for 𝑖 < 𝑗


4 0 0
3 −1 0
−1 5 −2

 ,


4 0 0
0 −1 0
−1 0 −2


• upper triangular matrix: square with 𝐴𝑖 𝑗 = 0 for 𝑖 > 𝑗

Matrices 3.9

Sparse matrices

a matrix is sparse if most (almost all) of its elements are zero

• sparse matrix storage formats and algorithms exploit sparsity

• efficiency depends on number of nonzeros and their positions

• positions of nonzeros are visualized in a ‘spy plot’

Example

• 2,987,012 rows and columns

• 26,621,983 nonzeros

(Freescale/FullChip matrix from
SuiteSparse Matrix Collection)

Matrices 3.10

Outline

• notation and terminology

• matrix operations

• linear and affine functions

• complexity

Scalar–matrix multiplication and addition

Scalar–matrix multiplication:

scalar–matrix product of 𝑚 × 𝑛 matrix 𝐴 with scalar 𝛽

𝛽𝐴 =


𝛽 𝐴11 𝛽 𝐴12 · · · 𝛽 𝐴1𝑛
𝛽 𝐴21 𝛽 𝐴22 · · · 𝛽 𝐴2𝑛
...

𝛽 𝐴𝑚1 𝛽 𝐴𝑚2 · · · 𝛽 𝐴𝑚𝑛


𝐴 and 𝛽 can be real or complex

Addition: sum of two 𝑚 × 𝑛 matrices 𝐴 and 𝐵 (real or complex)

𝐴 + 𝐵 =


𝐴11 + 𝐵11 𝐴12 + 𝐵12 · · · 𝐴1𝑛 + 𝐵1𝑛
𝐴21 + 𝐵21 𝐴22 + 𝐵22 · · · 𝐴2𝑛 + 𝐵2𝑛

...

𝐴𝑚1 + 𝐵𝑚1 𝐴𝑚2 + 𝐵𝑚2 · · · 𝐴𝑚𝑛 + 𝐵𝑚𝑛


Matrices 3.11

Transpose

the transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix

𝐴𝑇 =


𝐴11 𝐴21 · · · 𝐴𝑚1
𝐴12 𝐴22 · · · 𝐴𝑚2
...

𝐴1𝑛 𝐴2𝑛 · · · 𝐴𝑚𝑛


• (𝐴𝑇)𝑇 = 𝐴

• a symmetric matrix satisfies 𝐴 = 𝐴𝑇

• 𝐴 may be complex, but transpose of a complex matrix is rarely needed

• transpose of scalar–matrix product and matrix sum

(𝛽𝐴)𝑇 = 𝛽𝐴𝑇 , (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

Matrices 3.12

Conjugate transpose

the conjugate transpose of an 𝑚 × 𝑛 matrix 𝐴 is the 𝑛 × 𝑚 matrix

𝐴𝐻 =


𝐴̄11 𝐴̄21 · · · 𝐴̄𝑚1
𝐴̄12 𝐴̄22 · · · 𝐴̄𝑚2
...

𝐴̄1𝑛 𝐴̄2𝑛 · · · 𝐴̄𝑚𝑛


(𝐴̄𝑖 𝑗 is complex conjugate of 𝐴𝑖 𝑗)

• 𝐴𝐻 = 𝐴𝑇 if 𝐴 is a real matrix

• a Hermitian matrix satisfies 𝐴 = 𝐴𝐻

• conjugate transpose of scalar–matrix product and matrix sum

(𝛽𝐴)𝐻 = 𝛽𝐴𝐻, (𝐴 + 𝐵)𝐻 = 𝐴𝐻 + 𝐵𝐻

Matrices 3.13

Matrix–matrix product

product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵 (𝐴, 𝐵 are real or complex)

𝐶 = 𝐴𝐵

is the 𝑚 × 𝑝 matrix with 𝑖, 𝑗 element

𝐶𝑖 𝑗 = 𝐴𝑖1𝐵1 𝑗 + 𝐴𝑖2𝐵2 𝑗 + · · · + 𝐴𝑖𝑛𝐵𝑛 𝑗

dimensions must be compatible:

#columns in 𝐴 = #rows in 𝐵

Matrices 3.14

Exercise: paths in directed graph

directed graph with 𝑛 = 5 vertices

1

2 3

4

5

matrix representation

𝐴 =


0 1 0 0 1
1 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 0 1 0


𝐴𝑖 𝑗 = 1 indicates an edge 𝑗 → 𝑖

Question: give a graph interpretation of 𝐴2 = 𝐴𝐴, 𝐴3 = 𝐴𝐴𝐴,. . .

𝐴2 =


1 0 1 1 0
0 1 0 1 2
1 0 0 1 0
0 1 0 0 1
1 0 0 0 0


, 𝐴3 =


1 1 0 1 2
2 0 1 2 0
1 1 0 0 1
1 0 1 1 0
0 1 0 0 1


, . . .

Matrices 3.15

Properties of matrix–matrix product

• associative: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) so we write 𝐴𝐵𝐶

• associative with scalar–matrix multiplication: (𝛾𝐴)𝐵 = 𝛾(𝐴𝐵) = 𝛾𝐴𝐵

• distributes with sum:

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

• transpose and conjugate transpose of product:

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 , (𝐴𝐵)𝐻 = 𝐵𝐻𝐴𝐻

• not commutative: 𝐴𝐵 ≠ 𝐵𝐴 in general; for example,[−1 0
0 1

] [
0 1
1 0

]
≠

[
0 1
1 0

] [−1 0
0 1

]
there are exceptions, e.g., 𝐴𝐼 = 𝐼 𝐴 for square 𝐴

Matrices 3.16

Notation for vector inner product

• inner product of 𝑎, 𝑏 ∈ R𝑛 (see page 1.15):

𝑏𝑇𝑎 = 𝑏1𝑎1 + 𝑏2𝑎2 + · · · + 𝑏𝑛𝑎𝑛 =


𝑏1
𝑏2
...

𝑏𝑛


𝑇 

𝑎1
𝑎2
...

𝑎𝑛


product of the transpose of the column vector 𝑏 and the column vector 𝑎

• inner product of 𝑎, 𝑏 ∈ C𝑛 (see page 1.21):

𝑏𝐻𝑎 = 𝑏̄1𝑎1 + 𝑏̄2𝑎2 + · · · + 𝑏̄𝑛𝑎𝑛 =


𝑏1
𝑏2
...

𝑏𝑛


𝐻 

𝑎1
𝑎2
...

𝑎𝑛


product of conjugate transpose of column vector 𝑏 and column vector 𝑎

Matrices 3.17

Matrix–matrix product and block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 × 2 block matrices[
𝐴 𝐵

𝐶 𝐷

] [
𝑊 𝑌

𝑋 𝑍

]
=

[
𝐴𝑊 + 𝐵𝑋 𝐴𝑌 + 𝐵𝑍

𝐶𝑊 + 𝐷𝑋 𝐶𝑌 + 𝐷𝑍

]
if the dimensions of the blocks are compatible

Matrices 3.18

Outline

• notation and terminology

• matrix operations

• linear and affine functions

• complexity

Matrix–vector product

product of 𝑚 × 𝑛 matrix 𝐴 with 𝑛-vector (or 𝑛 × 1 matrix) 𝑥

𝐴𝑥 =


𝐴11𝑥1 + 𝐴12𝑥2 + · · · + 𝐴1𝑛𝑥𝑛
𝐴21𝑥1 + 𝐴22𝑥2 + · · · + 𝐴2𝑛𝑥𝑛

...

𝐴𝑚1𝑥1 + 𝐴𝑚2𝑥2 + · · · + 𝐴𝑚𝑛𝑥𝑛


• dimensions must be compatible: number of columns of 𝐴 equals the size of 𝑥

• 𝐴𝑥 is a linear combination of the columns of 𝐴:

𝐴𝑥 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

] 
𝑥1
𝑥2
...

𝑥𝑛

 = 𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛

each 𝑎𝑖 is an 𝑚-vector (𝑖th column of 𝐴)

Matrices 3.19

Linear function

a function 𝑓 : R𝑛 → R𝑚 is linear if the superposition property

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

holds for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽

Extension: if 𝑓 is linear, superposition holds for any linear combination:

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + · · · + 𝛼𝑝𝑢𝑝) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + · · · + 𝛼𝑝 𝑓 (𝑢𝑝)

for all scalars, 𝛼1, . . . , 𝛼𝑝 and all 𝑛-vectors 𝑢1, . . . , 𝑢𝑝

Matrices 3.20

Matrix–vector product function

for fixed 𝐴 ∈ R𝑚×𝑛, define a function 𝑓 : R𝑛 → R𝑚 as

𝑓 (𝑥) = 𝐴𝑥

• any function of this type is linear: 𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼(𝐴𝑥) + 𝛽(𝐴𝑦)
• every linear function can be written as a matrix–vector product function:

𝑓 (𝑥) = 𝑓 (𝑥1𝑒1 + 𝑥2𝑒2 + · · · + 𝑥𝑛𝑒𝑛)
= 𝑥1 𝑓 (𝑒1) + 𝑥2 𝑓 (𝑒2) + · · · + 𝑥𝑛 𝑓 (𝑒𝑛)

=
[

𝑓 (𝑒1) · · · 𝑓 (𝑒𝑛)
] 

𝑥1
...

𝑥𝑛


hence, 𝑓 (𝑥) = 𝐴𝑥 with 𝐴 =

[
𝑓 (𝑒1) 𝑓 (𝑒2) · · · 𝑓 (𝑒𝑛)

]
Matrices 3.21

Input–output (operator) interpretation

think of a function 𝑓 : R𝑛 → R𝑚 in terms of its effect on 𝑥

Ax y = f (x) = Ax

• signal processing/control interpretation: 𝑛 inputs 𝑥𝑖, 𝑚 outputs 𝑦𝑖

• 𝑓 is linear if we can represent its action on 𝑥 as a product 𝑓 (𝑥) = 𝐴𝑥

Matrices 3.22

Examples (𝑓 : R3 → R3)

• 𝑓 reverses the order of the components of 𝑥

a linear function: 𝑓 (𝑥) = 𝐴𝑥 with

𝐴 =


0 0 1
0 1 0
1 0 0


• 𝑓 sorts the components of 𝑥 in decreasing order: not linear

• 𝑓 scales 𝑥1 by a given number 𝑑1, 𝑥2 by 𝑑2, 𝑥3 by 𝑑3

a linear function: 𝑓 (𝑥) = 𝐴𝑥 with

𝐴 =


𝑑1 0 0
0 𝑑2 0
0 0 𝑑3


• 𝑓 replaces each 𝑥𝑖 by its absolute value |𝑥𝑖 |: not linear

Matrices 3.23

Operator interpretation of matrix–matrix product

explains why in general 𝐴𝐵 ≠ 𝐵𝐴

Bx A y = ABx Ax B y = BAx

Example

𝐴 =

[−1 0
0 1

]
, 𝐵 =

[
0 1
1 0

]
• 𝑓 (𝑥) = 𝐴𝐵𝑥 reverses order of elements; then changes sign of first element

• 𝑓 (𝑥) = 𝐵𝐴𝑥 changes sign of 1st element; then reverses order

Matrices 3.24

Reverser and circular shift

Reverser matrix

𝐴 =



0 0 · · · 0 1
0 0 · · · 1 0
...

.

0 1 · · · 0 0
1 0 · · · 0 0


, 𝐴𝑥 =


𝑥𝑛
𝑥𝑛−1
...

𝑥2
𝑥1


Circular shift matrix

𝐴 =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

0 0 · · · 1 0


, 𝐴𝑥 =


𝑥𝑛
𝑥1
𝑥2
...

𝑥𝑛−1


Matrices 3.25

Permutation

Permutation matrix

• a square 0-1 matrix with one element 1 per row and one element 1 per column

• equivalently, an identity matrix with columns reordered

• equivalently, an identity matrix with rows reordered

𝐴𝑥 is a permutation of the elements of 𝑥

Example

𝐴 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 , 𝐴𝑥 =


𝑥2
𝑥4
𝑥1
𝑥3


Matrices 3.26

Rotation in a plane

𝐴 =

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

𝐴𝑥 is 𝑥 rotated counterclockwise over an angle 𝜃

x

Ax

θ

Matrices 3.27

Projection on line and reflection

z

x

y

a

• projection on line through 𝑎 (see page 2.12):

𝑦 =
𝑎𝑇𝑥

∥𝑎∥2𝑎 = 𝐴𝑥 with 𝐴 =
1

∥𝑎∥2𝑎𝑎
𝑇

• reflection with respect to line through 𝑎

𝑧 = 𝑥 + 2(𝑦 − 𝑥) = 𝐵𝑥, with 𝐵 =
2

∥𝑎∥2𝑎𝑎
𝑇 − 𝐼

Matrices 3.28

Node–arc incidence matrix

• directed graph (network) with 𝑚 vertices, 𝑛 arcs (directed edges)

• incidence matrix is 𝑚 × 𝑛 matrix 𝐴 with

𝐴𝑖 𝑗 =


1 if arc 𝑗 enters node 𝑖

−1 if arc 𝑗 leaves node 𝑖

0 otherwise

1

2 3

4

1 54

2

3

𝐴 =


−1 −1 0 1 0
1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1


Matrices 3.29

Kirchhoff’s current law

𝑛-vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) with 𝑥 𝑗 the current through arc 𝑗

(𝐴𝑥)𝑖 =
∑︁

arc 𝑗 enters
node 𝑖

𝑥 𝑗 −
∑︁

arc 𝑗 leaves
node 𝑖

𝑥 𝑗

= total current arriving at node 𝑖

1

2 3

4

x1 x5x4

x2

x3

𝐴𝑥 =


−𝑥1 − 𝑥2 + 𝑥4

𝑥1 − 𝑥3
𝑥3 − 𝑥4 − 𝑥5

𝑥2 + 𝑥5



Matrices 3.30

Kirchhoff’s voltage law

𝑚-vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑚) with 𝑦𝑖 the potential at node 𝑖

(𝐴𝑇 𝑦) 𝑗 = 𝑦𝑘 − 𝑦𝑙 if edge 𝑗 goes from node 𝑙 to 𝑘

= negative of voltage across arc 𝑗

1

2 3

4
y1

y2 y3

y4

1 54

2

3

𝐴𝑇 𝑦 =


𝑦2 − 𝑦1
𝑦4 − 𝑦1
𝑦3 − 𝑦2
𝑦1 − 𝑦3
𝑦4 − 𝑦3



Matrices 3.31

Convolution

the convolution of an 𝑛-vector 𝑎 and an 𝑚-vector 𝑏 is the (𝑛 + 𝑚 − 1)-vector 𝑐

𝑐𝑘 =
∑︁

all 𝑖 and 𝑗 with
𝑖 + 𝑗 = 𝑘 + 1

𝑎𝑖𝑏 𝑗

notation: 𝑐 = 𝑎 ∗ 𝑏
Example: 𝑛 = 4, 𝑚 = 3

𝑐1 = 𝑎1𝑏1

𝑐2 = 𝑎1𝑏2 + 𝑎2𝑏1

𝑐3 = 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎3𝑏1

𝑐4 = 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎4𝑏1

𝑐5 = 𝑎3𝑏3 + 𝑎4𝑏2

𝑐6 = 𝑎4𝑏3

Matrices 3.32

Properties

Interpretation: if 𝑎 and 𝑏 are the coefficients of polynomials

𝑝(𝑥) = 𝑎1 + 𝑎2𝑥 + · · · + 𝑎𝑛𝑥
𝑛−1, 𝑞(𝑥) = 𝑏1 + 𝑏2𝑥 + · · · + 𝑏𝑚𝑥

𝑚−1

then 𝑐 = 𝑎 ∗ 𝑏 gives the coefficients of the product polynomial

𝑝(𝑥)𝑞(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2 + · · · + 𝑐𝑛+𝑚−1𝑥

𝑛+𝑚−2

Properties

• symmetric: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎
• associative: (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)
• if 𝑎 ∗ 𝑏 = 0 then 𝑎 = 0 or 𝑏 = 0

these properties follow directly from the polynomial product interpretation

Matrices 3.33

Example: moving average of a time series

• 𝑛-vector 𝑥 represents a time series

• the 3-period moving average of the time series is the time series

𝑦𝑘 =
1
3
(𝑥𝑘 + 𝑥𝑘−1 + 𝑥𝑘−2), 𝑘 = 1, 2, . . . , 𝑛 + 2

(with 𝑥𝑘 interpreted as zero for 𝑘 < 1 and 𝑘 > 𝑛)

• this can be expressed as a convolution 𝑦 = 𝑎 ∗ 𝑥 with 𝑎 = (1/3, 1/3, 1/3)

0 20 40 60 80 100
0

1

2

3

k

x k

0 20 40 60 80 100
0

1

2

3

k

(a
∗x
) k

Matrices 3.34

Convolution and Toeplitz matrices

• 𝑐 = 𝑎 ∗ 𝑏 is a linear function of 𝑏 if we fix 𝑎

• 𝑐 = 𝑎 ∗ 𝑏 is a linear function of 𝑎 if we fix 𝑏

Example: convolution 𝑐 = 𝑎 ∗ 𝑏 of a 4-vector 𝑎 and a 3-vector 𝑏



𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6


=



𝑎1 0 0
𝑎2 𝑎1 0
𝑎3 𝑎2 𝑎1
𝑎4 𝑎3 𝑎2
0 𝑎4 𝑎3
0 0 𝑎4



𝑏1
𝑏2
𝑏3

 =


𝑏1 0 0 0
𝑏2 𝑏1 0 0
𝑏3 𝑏2 𝑏1 0
0 𝑏3 𝑏2 𝑏1
0 0 𝑏3 𝑏2
0 0 0 𝑏3



𝑎1
𝑎2
𝑎3
𝑎4


the matrices in these matrix–vector products are called Toeplitz matrices

Matrices 3.35

Vandermonde matrix

• polynomial of degree 𝑛 − 1 or less with coefficients 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑝(𝑡) = 𝑥1 + 𝑥2𝑡 + 𝑥3𝑡
2 + · · · + 𝑥𝑛𝑡

𝑛−1

• values of 𝑝(𝑡) at 𝑚 points 𝑡1, . . . , 𝑡𝑚:


𝑝(𝑡1)
𝑝(𝑡2)
...

𝑝(𝑡𝑚)

 =


1 𝑡1 · · · 𝑡𝑛−1

1
1 𝑡2 · · · 𝑡𝑛−1

2
...

1 𝑡𝑚 · · · 𝑡𝑛−1
𝑚



𝑥1
𝑥2
...

𝑥𝑛


= 𝐴𝑥

the matrix 𝐴 is called a Vandermonde matrix

• 𝑓 (𝑥) = 𝐴𝑥 maps coefficients of polynomial to function values

Matrices 3.36

Discrete Fourier transform

the DFT maps a complex 𝑛-vector (𝑥1, 𝑥2, . . . , 𝑥𝑛) to the complex 𝑛-vector


𝑦1
𝑦2
𝑦3
...

𝑦𝑛


=


1 1 1 · · · 1
1 𝜔−1 𝜔−2 · · · 𝜔−(𝑛−1)

1 𝜔−2 𝜔−4 · · · 𝜔−2(𝑛−1)
...

1 𝜔−(𝑛−1) 𝜔−2(𝑛−1) · · · 𝜔−(𝑛−1) (𝑛−1)



𝑥1
𝑥2
𝑥3
...

𝑥𝑛


= 𝑊𝑥

where 𝜔 = 𝑒2𝜋j/𝑛 (and j =
√
−1)

• DFT matrix 𝑊 ∈ C𝑛×𝑛 has 𝑘, 𝑙 element 𝑊𝑘𝑙 = 𝜔−(𝑘−1) (𝑙−1)

• a Vandermonde matrix with 𝑚 = 𝑛 and

𝑡1 = 1, 𝑡2 = 𝜔−1, 𝑡3 = 𝜔−2, . . . , 𝑡𝑛 = 𝜔−(𝑛−1)

Matrices 3.37

Affine function

a function 𝑓 : R𝑛 → R𝑚 is affine if it satisfies

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

Extension: if 𝑓 is affine, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + · · · + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + · · · + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚 with

𝛼1 + 𝛼2 + · · · + 𝛼𝑚 = 1

Matrices 3.38

Affine functions and matrix–vector product

for fixed 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, define a function 𝑓 : R𝑛 → R𝑚 by

𝑓 (𝑥) = 𝐴𝑥 + 𝑏

i.e., a matrix–vector product plus a constant

• any function of this type is affine: if 𝛼 + 𝛽 = 1 then

𝐴(𝛼𝑥 + 𝛽𝑦) + 𝑏 = 𝛼(𝐴𝑥 + 𝑏) + 𝛽(𝐴𝑦 + 𝑏)

• every affine function can be written as 𝑓 (𝑥) = 𝐴𝑥 + 𝑏 with:

𝐴 =
[

𝑓 (𝑒1) − 𝑓 (0) 𝑓 (𝑒2) − 𝑓 (0) · · · 𝑓 (𝑒𝑛) − 𝑓 (0)]
and 𝑏 = 𝑓 (0)

Matrices 3.39

Affine approximation

first-order Taylor approximation of differentiable 𝑓 : R𝑛 → R𝑚 around 𝑧:

𝑓̂𝑖 (𝑥) = 𝑓𝑖 (𝑧) + 𝜕 𝑓𝑖

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + · · · + 𝜕 𝑓𝑖

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛), 𝑖 = 1, . . . , 𝑚

in matrix–vector notation: 𝑓̂ (𝑥) = 𝑓 (𝑧) + 𝐷 𝑓 (𝑧) (𝑥 − 𝑧) where

𝐷 𝑓 (𝑧) =



𝜕 𝑓1
𝜕𝑥1

(𝑧) 𝜕 𝑓1
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓1
𝜕𝑥𝑛

(𝑧)
𝜕 𝑓2
𝜕𝑥1

(𝑧) 𝜕 𝑓2
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓2
𝜕𝑥𝑛

(𝑧)
...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑧) 𝜕 𝑓𝑚
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑧)


=



∇ 𝑓1(𝑧)𝑇
∇ 𝑓2(𝑧)𝑇

...

∇ 𝑓𝑚 (𝑧)𝑇


• 𝐷 𝑓 (𝑧) is called the derivative matrix or Jacobian matrix of 𝑓 at 𝑧

• 𝑓̂ is a local affine approximation of 𝑓 around 𝑧

Matrices 3.40

Example

𝑓 (𝑥) =
[

𝑓1(𝑥)
𝑓2(𝑥)

]
=

[
𝑒2𝑥1+𝑥2 − 𝑥1
𝑥2

1 − 𝑥2

]

• derivative matrix
𝐷 𝑓 (𝑥) =

[
2𝑒2𝑥1+𝑥2 − 1 𝑒2𝑥1+𝑥2

2𝑥1 −1

]
• first order approximation of 𝑓 around 𝑧 = 0:

𝑓̂ (𝑥) =
[

𝑓̂1(𝑥)
𝑓̂2(𝑥)

]
=

[
1
0

]
+
[

1 1
0 −1

] [
𝑥1
𝑥2

]

Matrices 3.41

Outline

• notation and terminology

• matrix operations

• linear and affine functions

• complexity

Matrix–vector product

matrix–vector multiplication of 𝑚 × 𝑛 matrix 𝐴 and 𝑛-vector 𝑥:

𝑦 = 𝐴𝑥

requires (2𝑛 − 1)𝑚 flops

• 𝑚 elements in 𝑦; each element requires an inner product of length 𝑛

• approximately 2𝑚𝑛 for large 𝑛

Special cases: flop count is lower for structured matrices

• 𝐴 diagonal: 𝑛 flops

• 𝐴 lower triangular: 𝑛2 flops

• 𝐴 sparse: #flops ≪ 2𝑚𝑛

Matrices 3.42

Matrix–matrix product

product of 𝑚 × 𝑛 matrix 𝐴 and 𝑛 × 𝑝 matrix 𝐵:

𝐶 = 𝐴𝐵

requires 𝑚𝑝(2𝑛 − 1) flops

• 𝑚𝑝 elements in 𝐶; each element requires an inner product of length 𝑛

• approximately 2𝑚𝑛𝑝 for large 𝑛

Matrices 3.43

Exercises

1. evaluate 𝑦 = 𝐴𝐵𝑥 two ways (𝐴 and 𝐵 are 𝑛 × 𝑛, 𝑥 is a vector)

• 𝑦 = (𝐴𝐵)𝑥 (first make product 𝐶 = 𝐴𝐵, then multiply 𝐶 with 𝑥)

• 𝑦 = 𝐴(𝐵𝑥) (first make product 𝑦 = 𝐵𝑥, then multiply 𝐴 with 𝑦)

both methods give the same answer, but which method is faster?

2. evaluate 𝑦 = (𝐼 + 𝑢𝑣𝑇)𝑥 where 𝑢, 𝑣, 𝑥 are 𝑛-vectors

• 𝐴 = 𝐼 + 𝑢𝑣𝑇 followed by 𝑦 = 𝐴𝑥

in MATLAB: y = (eye(n) + u*v’) * x

• 𝑤 = (𝑣𝑇𝑥)𝑢 followed by 𝑦 = 𝑥 + 𝑤

in MATLAB: y = x + (v’*x) * u

Matrices 3.44

