L. Vandenberghe ECE133A (Fall 2024)

3. Matrices

e notation and terminology
e maltrix operations
e linear and affine functions

e complexity
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Matrix

a rectangular array of numbers, for example

0 1 -23 0.1]
A=|13 4 -0.1 0
41 -1 0 1.7

e numbers in array are the elements (entries, coefficients, components)

o A;jisthe i, j element of A; i is its row index, j the column index

e size (dimensions) of the matrix is specified as (#rows) X (#columns)
for example, the matrix A above is a 3 X 4 matrix

e set of m X n matrices with real elements is written R"*"

e set of m x n matrices with complex elements is written C"*"
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Other conventions

e many authors use parentheses as delimiters:

0O 1 =23 0.1
A= 13 4 =01 O
41 -1 0 1.7

e often a;; is used to denote the i, j element of A
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Matrix shapes
Scalar: we don't distinguish between a 1 X 1 matrix and a scalar
Vector: we don't distinguish between an n X 1 matrix and an n-vector

Row and column vectors

e a1l xn matrix is called a row vector

e an n X 1 matrix is called a column vector (or just vector)

Tall, wide, square matrices: an m X n matrix is

o fallifm >n
o wideifm<n

e squareiftm=n
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Block matrix

e a block matrix is a rectangular array of matrices

e clements in the array are the blocks or submatrices of the block matrix

B C
D E

Example
A=

is a 2 X 2 block matrix; if the blocks are

B:H], c:[gigl, D=|1]|, E=[-1 6 0]

then

A=|1
-1_

—_ O O
@) W SN\
O J W

Note: dimensions of the blocks must be compatible
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Rows and columns

a matrix can be viewed as a block matrix with row/column vector blocks

e m X n matrix A as 1 X n block matrix
A:[a1 a, --- an]

each a; is an m-vector (the jth column of A)

e m X n matrix A as m X 1 block matrix

e
b

L bm -

each b; is a 1 X n row vector (the ith row of A)
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Special matrices

Zero matrix

e matrix with A;; = O for all i, j

e notation: 0 (usually) or 0,,x, (if dimension is not clear from context)

Identity matrix
e square matrix with A;; = 1ifi=jand A;; =0ifi # j

e notation: I (usually) or I, (if dimension is not clear from context)

e columns of I,, are unit vectors ey, ey, ..., e,; for example,
(1 0 O

I3= O 1 O 2[61 () 83]
0 0 1|
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Symmetric and Hermitian matrices

Symmetric matrix: square with A;; = Aj;

4 3 -2 ] [ 4+43j 3-2j O
3 -1 5 |, 3-2 - -2
-2 5 0 0 -2j 3

Hermitian matrix: square with A;; = A ji (complex conjugate of A;;)

note: diagonal elements are real (since A;; = A;;)
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Structured matrices

matrices with special patterns or structure arise in many applications

e diagonal matrix: square with A;; =0 fori # j
-1 0 O -1
0 2 0 |,
0 0 -5 |

o O

e lower triangular matrix: square with A;; =0 fori < j

40 0 4 0 0
3 -1 0 |, 0 -1 0
-1 5 -2 -1 0 -2

e upper triangular matrix: square with A;; =0 fori > j
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Sparse matrices

a matrix is sparse if most (almost all) of its elements are zero

e sparse matrix storage formats and algorithms exploit sparsity
e efficiency depends on number of nonzeros and their positions

e positions of nonzeros are visualized in a ‘spy plot’

00 500000 1000000 1500000 2000000 2500000

500000
Example

1000000

e 2,987,012 rows and columns

e 26,621,983 nonzeros 1500000

(Freescale/FullChip matrix from 2000000
SuiteSparse Matrix Collection)

2500000
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Scalar—-matrix multiplication and addition

Scalar—-matrix multiplication:

scalar—matrix product of m x n matrix A with scalar 8

| BAIL BAn -+ BA |
BA = BAn BAn - BAx

A and g can be real or complex

Addition: sum of two m X n matrices A and B (real or complex)

| A +Byy Ap+Byp - Ay +By, |

A+ B A21J.r321 AzzfrBzz A2n'f'82n

Aml +Bm1 Am2+Bm2 T Amn"'an |
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Transpose

the transpose of an m X n matrix A is the n X m matrix

A Ay o Apr |
AT _ | Az A o A
i Aln Az - Amn |

e a symmetric matrix satisfies A = AT
e A may be complex, but transpose of a complex matrix is rarely needed

e transpose of scalar—matrix product and matrix sum

BA)! =pal,  (A+B)! =aA' + B!
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Conjugate transpose

the conjugate transpose of an m X n matrix A is the n X m matrix

F 411 1%21 4m1
A _ | Az Axn o Ap
| Aln AZn T Amn |

(A;; is complex conjugate of A;;)

o A7 = AT if A is a real matrix
e a Hermitian matrix satisfies A = A#

e conjugate transpose of scalar—matrix product and matrix sum

(BA =AY, (A+B)T =A%+ B
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Matrix—matrix product

product of m X n matrix A and n X p matrix B (A, B are real or complex)
C=AB
is the m X p matrix with i, j element

Cij = AinB1j+AinByj + -+ AinBp;

dimensions must be compatible:

#columns in A = #rows in B

Matrices
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Exercise: paths in directed graph

directed graph with n = 5 vertices matrix representation
< @ 0 1 0 0 1
A 1 01 0 O
A=]10 0 0 1 1
1 0 0 0 O
\ _O 0O 0 1 O_
A;; = 1 indicates an edge j — i
1 ~(4)
Question: give a graph interpretation of A2 = AA, A> = AAA,...
1 01 1 0] 1 1.0 1 2]
O 1 0 1 2 2 01 2 0
A=|1 0 01 Of, A>=[11 0 0 1],
O 1 0 0 1 1 01 1 O
1 0 0 O O_ O 1 0 O 1_
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Properties of matrix—matrix product

e associative: (AB)C = A(BC) so we write ABC
e associative with scalar—matrix multiplication: (yA)B = y(AB) = yAB

e distributes with sum:

A(B+C)=AB+ AC, (A+B)C =AC + BC

e transpose and conjugate transpose of product:

(AB)! =BTAT, (AB)Y = B"AH
e not commutative: AB # BA in general; for example,
-1 0 0 1 4 0 1 -1 0
0 1 1 O I O 0 1

there are exceptions, e.g., AI = I A for square A
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Notation for vector inner product

e inner product of a, b € R" (see page 1.15):

- _T - -
by aj
b a
bTCl =biay+brar+---+bya, = .2 .2
by dn

product of the transpose of the column vector b and the column vector a

e inner product of a, b € C" (see page 1.21):

[ bl ] | al ]
— - - b a
ba = biay+brar+---+ bya, = _2 .2
by dn

product of conjugate transpose of column vector b and column vector a

Matrices 3.17



Matrix—matrix product and block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2 X 2 block matrices
A B
C D

if the dimensions of the blocks are compatible

WY]

AW+ BX AY + BZ
X Z

CW+DX CY+DZ

Matrices
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Matrix—vector product

product of m X n matrix A with n-vector (or n X 1 matrix) x

A11X1 + A12xQ + -4 Alnxn

Ax A21x1 + A22X2 + -4 Aznxn

Am1x1 + Appxo + -+ + Apnxn

e dimensions must be compatible: number of columns of A equals the size of x
e Ax is alinear combination of the columns of A:
e

X
Ax:[a1 ap --- an] .2 =XxX1a1+Xx2ar+ -+ xpay,

Xn

each a; is an m-vector (ith column of A)

Matrices 3.19



Linear function

a function f : R* — R is linear if the superposition property

flax+By) =af(x) +Bf(y)

holds for all n-vectors x, y and all scalars «,

Extension: if f is linear, superposition holds for any linear combination:

flaur +aguz + - -+ apup) = a1 f(ur) +arf(ua) +-- -+ apf(up)

for all scalars, a4, ..., @, and all n-vectors u;y, ..., u,
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Matrix—vector product function

for fixed A € R™", define a function f : R* — R™ as
f(x) = Ax

e any function of this type is linear: A(ax + 8y) = a(Ax) + B(Ay)

e every linear function can be written as a matrix—vector product function:

f(x) = f(xie;+xe2+---+x4ep)
= x1f(er) +xaf(ex) +---+x,f(ey)
X1

= | fle) - flen) |

Xn

hence, f(x) = Axwith A= f(e1) f(ea) --- flen)
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Input—output (operator) interpretation

think of a function f : R" — R"™ in terms of its effect on x

X —p A ——> v = f(x) = Ax

e signal processing/control interpretation: n inputs x;, m outputs y;

e fislinear if we can represent its action on x as a product f(x) = Ax

Matrices
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Examples (f : R° — R°)

e f reverses the order of the components of x

a linear function: f(x) = Ax with

e f sorts the components of x in decreasing order: not linear

e f scales x| by a given number d1, xo by d, x3 by dj

a linear function: f(x) = Ax with

e f replaces each x; by its absolute value |x;|: not linear

Matrices

—_— O O

C

0 0°
0 do 0
0 ds |

0

o = O
SO -
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Operator interpretation of matrix—-matrix product

explains why in general AB # BA

x—» B M A —> y=ABx x—» A | B —> y=BAx

Example
-1 0 0 1
A‘l 0 1]’ B‘[1 o]
e f(x) = ABx reverses order of elements; then changes sign of first element

e f(x) = BAx changes sign of 1st element; then reverses order
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Reverser and circular shift

Reverser matrix

S -
Xn—1

A — : 0 AX o :

1 0O O o)

1 0 0 X1

Circular shift matrix

0O O 0 1 Xp

1 O 0O O X1

A= 1 0O 0|, Ax = x>

Matrices
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Permutation

Permutation matrix

e a square 0-1 matrix with one element 1 per row and one element 1 per column
e equivalently, an identity matrix with columns reordered

e equivalently, an identity matrix with rows reordered

Ax is a permutation of the elements of x

Example ] _ _ _
O 1 0 O X
10 0 0 1 | x4
A=l 1 00 0 7|4

i O 0 1 O ] I X3 |
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Rotation in a plane

A — cosf® —sind
| sin@ cos@

Ax is x rotated counterclockwise over an angle 6

Ax
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Projection on line and reflection

X a

e projection on line through a (see page 2.12):

d 1
y = - xza = Ax with A= 2aaT
lall lall
e reflection with respect to line through a
: 2 T
z=x+2(y—x)=Bx, with B= | Hzaa -1
a
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Node-arc incidence matrix

e directed graph (network) with m vertices, n arcs (directed edges)

e incidence matrix is m X n matrix A with

1 ifarc j enters node i
A;jj =4 -1 fifarc jleaves node i
0  otherwise

-1 -1 0 1 O
I 0 -1 0
A= 0 1 -1 -1
0 1 0 1
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Kirchhoff’s current law

n-vector x = (x1,x2,...,x,) with x; the current through arc j

@y = 3 om- ¥ oy
arc j enters arc j leaves
node i node i
= total current arriving at node i
X3
@ ~(3
A
— —X1 — X2 +X4 —
A1 — X3
Ax =
X1 X4 X5 X3 — X4 — X5
X2 + X5
X Y
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m-vectory = (y1, ya, ...

Matrices

(Aly);

Kirchhoff’s voltage law

, Ym) With y; the potential at node i

= negative of voltage across arc j

= yx—y; Iifedge j goesfromnode!to k

v — 1 |

Y4 —Y1
Y3 —Jy2
Y1—JY3

| V4= Y3 |
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the convolution of an n-vector a and an m-vector b is the (n + m — 1)-vector ¢

notation: c =a x b

Example: n=4,m =3

Matrices

C1
C2
c3
C4
Cs

C6

Convolution

Ck —

2. aiby
all i and j with
i+j=k+1

aib;

a1b2 + a2b1

a1b3 + azbz + a3b1
a2b3 + a3b2 + a4b1
Cl3b3 + a4b2

asbs
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Properties

Interpretation: if a and b are the coefficients of polynomials

|

p(x)=al+a2x+---+anx”_ , q<x):b1+b2x+...+bmxm—1

then ¢ = a = b gives the coefficients of the product polynomial
n+m-—2

p(x)g(x) =c1+crx + 03x2 + o+ Cppm—1X

Properties
e symmetric: axb =bxa
e associative: (a*b)*xc=ax* (b *c)

e ifaxb=0thena=00rb =0

these properties follow directly from the polynomial product interpretation
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Example: moving average of a time series

e n-vector x represents a time series

e the 3-period moving average of the time series is the time series

1
Yk = g(xk +Xk—1+Xk—2), k=1,2,...,n+2

(with x; interpreted as zero for k < 1 and k > n)

e this can be expressed as a convolution y = a «x witha = (1/3,1/3,1/3)

3 1 3 :
2| 1 L 2| :
< 0
= *
S
1 : = 1 :
07 \\\\\\\\\\\\\\\\\\\\\ | 07 \\\\\\\\\\\\\\\\\\\\\ |
0 20 40 L 60 80 100 0 20 40 L 60 80 100
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Convolution and Toeplitz matrices

e ¢ = a * b is alinear function of b if we fix a

e ¢ = a * b is alinear function of a if we fix b

Example: convolution ¢ = a = b of a 4-vector a and a 3-vector b

— Cl ] — ai 0 0 b1 0 0 0)
) a a; 0 | by b by 0 0 |[ aq
c as ap a bs by, by O a
ci - ai ai a; by | = O3 bi b; b ai
b3
C5 0 aq dj - - 0] 0 b3 b2 I aq ]
C6 | 0O O ayu O O 0 b3

the matrices in these matrix—vector products are called Toeplitz matrices
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e polynomial of degree n — 1 or less with coefficients x1, x2, ..., xy:

e values of p(¢) at m points tq, ..., t,,:

the matrix A is called a Vandermonde matrix

e f(x) = Ax maps coefficients of polynomial to function values

Matrices

Vandermonde matrix

p(t) = X1 +xaf + X387+ - -

- p(r1)

p(12)

 p(tm)

+x,t" ]

X1

X2
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Discrete Fourier transform

the DFT maps a complex n-vector (x1, xp, . .., x,) to the complex n-vector
[ )’1 ] [ 1 1 1 1 [ xl ]
V2 1 ! w2 w1 %)
y3 = 1 w? w4 w™2(n=1) X3
Vi 1 0)_(”_1) w—2(n—1) w—(n—l)(n—l) Xn
= Wx

where w = ¢2™/" (and j = V-1)

e DFT matrix W € C"™" has k, [ element W; = @~ k=DU=-1)

e a Vandermonde matrix with m = n and

1 =1, t2=a)_1, 13 = w

Matrices
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Affine function

a function f : R* — R is affine if it satisfies

flax+By) =af(x) +Bf(y)

for all n-vectors x, y and all scalars a, g witha+8 =1

Extension: if f is affine, then

flajuy + aqup + - - - + @) = ay f(uy) + azf(u2) + - - - + amf(um)
for all n-vectors uy, ..., u,, and all scalars a1, ..., a;, with

al+ary+---+ay =1
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Affine functions and matrix—vector product

for fixed A € R™", b € R™, define a function f : R* — R™ by
f(x) =Ax+b

i.e., a matrix—vector product plus a constant

e any function of this type is affine: if « + 8 = 1 then

A(ax+By)+b =a(Ax+b) +B(Ay + D)

e every affine function can be written as f(x) = Ax + b with:

A= fler)=f(0) f(e2)=f(0) -+ flen)=f(0) ]

and b = £(0)
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Affine approximation

first-order Taylor approximation of differentiable f : R" — R around z:

f

), I1=1,....,m

i) = i) + 52 @~ 21) +
X1

in matrix—vector notation: f(x) = f(z) + D f(2)(x — 2) where

’3—;2(;7,) 3—,{;@ g;‘;(z)' V()T
D 3—5?:@ S—sz) af2.<z> | VAT
@) ) o Y | | VRE@T

e D f(z) is called the derivative matrix or Jacobian matrix of f at z

e f is a local affine approximation of f around z
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Example

| AG) ][ eFrre—x
o= 4w = el

e derivative matrix
262X1+XQ _ 1 €2X1+X2 ]

Df(x):[ 2x1 -1

e first order approximation of f around z = 0:

~ A | |1 11 ||«
o= B0 1= [o]+[s 11 ]

Matrices 3.41



notation and terminology
matrix operations
linear and affine functions

complexity

Outline



Matrix—vector product

matrix—vector multiplication of m X n matrix A and n-vector x:
y = Ax

requires (2n — 1)m flops

e m elements in y; each element requires an inner product of length n

e approximately 2mn for large n

Special cases: flop count is lower for structured matrices

e A diagonal: n flops
e A lower triangular: n? flops

e A sparse: #flops < 2mn
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Matrix—matrix product

product of m X n matrix A and n X p matrix B:
C=AB
requires mp(2n — 1) flops

e mp elements in C; each element requires an inner product of length n

e approximately 2mnp for large n
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Exercises

1. evaluate y = ABx two ways (A and B are n X n, x is a vector)

e y = (AB)x (first make product C = AB, then multiply C with x)
e y = A(Bx) (first make product y = Bx, then multiply A with y)

both methods give the same answer, but which method is faster?

2. evaluate y = (1 + uvT)x where u, v, x are n-vectors

o A=1+uv! followed by y = Ax
in MATLAB: y = (eye(n) + u*v’) * x
o w=(vIx)ufollowedby y=x+w

in MATLAB: v = x + (v'*x) * u
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