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14. Nonlinear equations

• Newton method for nonlinear equations

• damped Newton method for unconstrained minimization

• Newton method for nonlinear least squares
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Set of nonlinear equations

𝑛 nonlinear equations in 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛:

𝑓1(𝑥1, . . . , 𝑥𝑛) = 0

𝑓2(𝑥1, . . . , 𝑥𝑛) = 0
...

𝑓𝑛(𝑥1, . . . , 𝑥𝑛) = 0

in vector notation: 𝑓 (𝑥) = 0 with

𝑥 =


𝑥1
𝑥2
...

𝑥𝑛

 , 𝑓 (𝑥) =


𝑓1(𝑥1, . . . , 𝑥𝑛)
𝑓2(𝑥1, . . . , 𝑥𝑛)

...

𝑓𝑛(𝑥1, . . . , 𝑥𝑛)



Nonlinear equations 14.2



Example: nonlinear resistive circuit
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𝑔(𝑥) − 𝐸 − 𝑥

𝑅
= 0

a nonlinear equation in the variable 𝑥, with three solutions
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Newton method

assume 𝑓 : R𝑛 → R𝑛 is differentiable

Algorithm: choose 𝑥 (1) and repeat for 𝑘 = 1, 2, . . .

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))

• 𝐷 𝑓 (𝑥 (𝑘)) is the derivative matrix of 𝑓 at 𝑥 (𝑘) (see page 3.40)

• each iteration requires one evaluation of 𝑓 (𝑥) and 𝐷 𝑓 (𝑥)
• each iteration requires factorization of the 𝑛 × 𝑛 matrix 𝐷 𝑓 (𝑥)
• we assume 𝐷 𝑓 (𝑥) is nonsingular
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Interpretation

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))

• linearize 𝑓 (i.e., make affine approximation) around current iterate 𝑥 (𝑘)

𝑓 (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• solve the linearized equation 𝑓 (𝑥; 𝑥 (𝑘)) = 0; the solution is

𝑥 = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))

• take the solution 𝑥 of the linearized equation as the next iterate 𝑥 (𝑘+1)
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One variable

f (x)

f̂ (x; x(k)) = f (x(k)) + f ′(x(k))(x − x(k))

x(k)
x(k+1)

• affine approximation of 𝑓 around 𝑥 (𝑘) is

𝑓 (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• solve the linearized equation 𝑓 (𝑥; 𝑥 (𝑘)) = 0 and take the solution as 𝑥 (𝑘+1):

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑓 (𝑥 (𝑘))
𝑓 ′(𝑥 (𝑘))
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Relation to Gauss–Newton method

recall Gauss–Newton method for nonlinear least squares problem

minimize ∥ 𝑓 (𝑥)∥2

where 𝑓 is a differentiable function from R𝑛 to R𝑚

• Gauss–Newton update

𝑥 (𝑘+1) = 𝑥 (𝑘) −
(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘))

)−1
𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘))

• if 𝑚 = 𝑛, then 𝐷 𝑓 (𝑥) is square and this is the Newton update

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝐷 𝑓 (𝑥 (𝑘))−1 𝑓 (𝑥 (𝑘))
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Example 1

Newton method applied to

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥, 𝑥 (1) = 10
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Example 2

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥 − 3𝑥

−2 −1 1 2

−1

1

x

f (x)

• starting point 𝑥 (1) = −1: converges to 𝑥★ = −1.62

• starting point 𝑥 (1) = −0.8: converges to 𝑥★ = 1.62

• starting point 𝑥 (1) = −0.7: converges to 𝑥★ = 0
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Example 3

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

−4 −2 2 4

−1

1

x

f (x)

• starting point 𝑥 (1) = 0.9: converges very rapidly to 𝑥★ = 0

• starting point 𝑥 (1) = 1.1: does not converge
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Example 4

𝑓1(𝑥1, 𝑥2) = log(𝑥2
1 + 2𝑥2

2 + 1) − 0.5 = 0

𝑓2(𝑥1, 𝑥2) = 𝑥2 − 𝑥2
1 + 0.2 = 0

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

f1(x) = 0

f2(x) = 0

x1

x 2

two equations in two variables; two solutions (0.70, 0.29), (−0.70, 0.29)
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Example 4

Newton iteration

• evaluate 𝑔 = 𝑓 (𝑥) and

𝐻 = 𝐷 𝑓 (𝑥) =


2𝑥1/(𝑥2
1 + 2𝑥2

2 + 1) 4𝑥2/(𝑥2
1 + 2𝑥2

2 + 1)

−2𝑥1 1


• solve 𝐻𝑣 = −𝑔 (two linear equations in two variables)

• update 𝑥 := 𝑥 + 𝑣

Results

• 𝑥 (1) = (1, 1): converges to 𝑥★ = (0.70, 0.29) in about 4 iterations

• 𝑥 (1) = (−1, 1): converges to 𝑥★ = (−0.70, 0.29) in about 4 iterations

• 𝑥 (1) = (1,−1) or 𝑥 (0) = (−1,−1): does not converge
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Observations

• Newton’s method works very well if started near a solution

• may not work otherwise

• can converge to different solutions depending on the starting point

• does not necessarily find the solution closest to the starting point
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Convergence of Newton’s method

if 𝑓 (𝑥★) = 0 and 𝐷 𝑓 (𝑥★) is nonsingular, and 𝑥 (1) is sufficiently close to 𝑥★, then

𝑥 (𝑘) → 𝑥★, ∥𝑥 (𝑘+1) − 𝑥★∥ ≤ 𝑐∥𝑥 (𝑘) − 𝑥★∥2

for some 𝑐 > 0

• this is called quadratic convergence

• explains fast convergence when started near solution
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Outline

• Newton’s method for sets of nonlinear equations

• damped Newton for unconstrained minimization

• Newton method for nonlinear least squares



Unconstrained minimization problem

minimize 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑔 is a function from R𝑛 to R

• 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is 𝑛-vector of optimization variables

• 𝑔(𝑥) is the cost function or objective function

• to solve a maximization problem (i.e., maximize 𝑔(𝑥)), minimize −𝑔(𝑥)
• we will assume that 𝑔 is twice differentiable
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Local and global optimum

• 𝑥★ is an optimal point (or a minimum) if

𝑔(𝑥★) ≤ 𝑔(𝑥) for all 𝑥

also called globally optimal

• 𝑥★ is a locally optimal point (local minimum) if for some 𝑅 > 0

𝑔(𝑥★) ≤ 𝑔(𝑥) for all 𝑥 with ∥𝑥 − 𝑥★∥ ≤ 𝑅

Example

𝑦 is locally optimal

𝑧 is (globally) optimal

z y
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Gradient

Gradient: the gradient of 𝑔 : R𝑛 → R at 𝑧 ∈ R𝑛 is the 𝑛-vector

∇𝑔(𝑧) =
(
𝜕𝑔

𝜕𝑥1
(𝑧), 𝜕𝑔

𝜕𝑥2
(𝑧), . . . , 𝜕𝑔

𝜕𝑥𝑛
(𝑧)

)
Directional derivative

• for given 𝑧 and nonzero 𝑣, define ℎ(𝑡) = 𝑔(𝑧 + 𝑡𝑣)
• derivative of ℎ at 𝑡 = 0

ℎ′(0) =
𝜕𝑔

𝜕𝑥1
(𝑧) 𝑣1 +

𝜕𝑔

𝜕𝑥2
(𝑧) 𝑣2 + · · · + 𝜕𝑔

𝜕𝑥𝑛
(𝑧)𝑣𝑛

= ∇𝑔(𝑧)𝑇𝑣

• this is called the directional derivative of 𝑔 (at 𝑧, in the direction 𝑣)

• 𝑣 is a descent direction of 𝑔 at 𝑧 if ∇𝑔(𝑧)𝑇𝑣 < 0
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Hessian

Hessian of 𝑔 at 𝑧: a symmetric 𝑛 × 𝑛 matrix ∇2𝑔(𝑧) with elements

∇2𝑔(𝑧)𝑖 𝑗 = 𝜕2𝑔

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑧)

this is also the derivative matrix 𝐷 𝑓 (𝑧) of 𝑓 (𝑥) = ∇𝑔(𝑥) at 𝑧

Quadratic (second order) approximation of 𝑔 around 𝑧:

𝑔q(𝑥) = 𝑔(𝑧) + ∇𝑔(𝑧)𝑇 (𝑥 − 𝑧) + 1
2
(𝑥 − 𝑧)𝑇∇2𝑔(𝑧) (𝑥 − 𝑧)

for 𝑛 = 1 this reduces to

𝑔q(𝑥) = 𝑔(𝑧) + 𝑔′(𝑧) (𝑥 − 𝑧) + 1
2
𝑔′′(𝑧) (𝑥 − 𝑧)2
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Examples

Affine function: 𝑔(𝑥) = 𝑎𝑇𝑥 + 𝑏

∇𝑔(𝑥) = 𝑎, ∇2𝑔(𝑥) = 0

Quadratic function: 𝑔(𝑥) = 𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑟 with 𝑃 symmetric

∇𝑔(𝑥) = 2𝑃𝑥 + 𝑞, ∇2𝑔(𝑥) = 2𝑃

Least squares cost: 𝑔(𝑥) = ∥𝐴𝑥 − 𝑏∥2 = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑏𝑇𝐴𝑥 + 𝑏𝑇𝑏

∇𝑔(𝑥) = 2𝐴𝑇𝐴𝑥 − 2𝐴𝑇𝑏, ∇2𝑔(𝑥) = 2𝐴𝑇𝐴
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Properties

Linear combination: if 𝑔(𝑥) = 𝛼1𝑔1(𝑥) + 𝛼2𝑔2(𝑥), then

∇𝑔(𝑥) = 𝛼1∇𝑔1(𝑥) + 𝛼2∇𝑔2(𝑥)

∇2𝑔(𝑥) = 𝛼1∇2𝑔1(𝑥) + 𝛼2∇2𝑔2(𝑥)

Composition with affine mapping: if 𝑔(𝑥) = ℎ(𝐶𝑥 + 𝑑), then

∇𝑔(𝑥) = 𝐶𝑇∇ℎ(𝐶𝑥 + 𝑑)

∇2𝑔(𝑥) = 𝐶𝑇∇2ℎ(𝐶𝑥 + 𝑑)𝐶
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Example

𝑔(𝑥1, 𝑥2) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

Gradient

∇𝑔(𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 − 𝑒−𝑥1−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

]

Hessian

∇2𝑔(𝑥) =
[
𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1 𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1

𝑒𝑥1+𝑥2−1 − 𝑒𝑥1−𝑥2−1 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1

]

Nonlinear equations 14.21



Gradient and Hessian via composition property

express 𝑔 as 𝑔(𝑥) = ℎ(𝐶𝑥 + 𝑑) with ℎ(𝑦1, 𝑦2, 𝑦3) = 𝑒𝑦1 + 𝑒𝑦2 + 𝑒𝑦3 and

𝐶 =


1 1
1 −1

−1 0

 , 𝑑 =


−1
−1
−1


Gradient: ∇𝑔(𝑥) = 𝐶𝑇∇ℎ(𝐶𝑥 + 𝑑)

∇𝑔(𝑥) =
[

1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1

𝑒𝑥1−𝑥2−1

𝑒−𝑥1−1


Hessian: ∇2𝑔(𝑥) = 𝐶𝑇∇ℎ2(𝐶𝑥 + 𝑑)𝐶

∇2𝑔(𝑥) =
[

1 1 −1
1 −1 0

] 
𝑒𝑥1+𝑥2−1 0 0

0 𝑒𝑥1−𝑥2−1 0
0 0 𝑒−𝑥1−1




1 1
1 −1

−1 0
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Optimality conditions for twice differentiable 𝑔

Necessary condition: if 𝑥★ is locally optimal, then

∇𝑔(𝑥★) = 0 and ∇2𝑔(𝑥★) is positive semidefinite

Sufficient condition: if 𝑥★ satisfies

∇𝑔(𝑥★) = 0 and ∇2𝑔(𝑥★) is positive definite

then 𝑥★ is locally optimal

Necessary and sufficient condition for convex functions

• 𝑔 is called convex if ∇2𝑔(𝑥) is positive semidefinite everywhere

• if 𝑔 is convex then 𝑥★ is optimal if and only if ∇𝑔(𝑥★) = 0
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Examples (𝑛 = 1)

• 𝑔(𝑥) = log(𝑒𝑥 + 𝑒−𝑥)

𝑔′(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑔′′(𝑥) = 4

(𝑒𝑥 + 𝑒−𝑥)2

𝑔′′(𝑥) ≥ 0 everywhere; 𝑥★ = 0 is the unique optimal point

• 𝑔(𝑥) = 𝑥4

𝑔′(𝑥) = 4𝑥3, 𝑔′′(𝑥) = 12𝑥2

𝑔′′(𝑥) ≥ 0 everywhere; 𝑥★ = 0 is the unique optimal point

• 𝑔(𝑥) = 𝑥3

𝑔′(𝑥) = 3𝑥2, 𝑔′′(𝑥) = 6𝑥

𝑔′(0) = 0, 𝑔′′(0) = 0 but 𝑥 = 0 is not locally optimal
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Examples

• 𝑔(𝑥) = 𝑥𝑇𝑃𝑥 + 𝑞𝑇𝑥 + 𝑟 (𝑃 is symmetric positive definite)

∇𝑔(𝑥) = 2𝑃𝑥 + 𝑞, ∇2𝑔(𝑥) = 2𝑃

∇2𝑔(𝑥) is positive definite everywhere, hence the unique optimal point is

𝑥★ = −(1/2)𝑃−1𝑞

• 𝑔(𝑥) = ∥𝐴𝑥 − 𝑏∥2 (𝐴 is a matrix with linearly independent columns)

∇𝑔(𝑥) = 2𝐴𝑇𝐴𝑥 − 2𝐴𝑇𝑏, ∇2𝑔(𝑥) = 2𝐴𝑇𝐴

∇2𝑔(𝑥) is positive definite everywhere, hence the unique optimal point is

𝑥★ = (𝐴𝑇𝐴)−1𝐴𝑇𝑏
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Examples

example of page 14.21: we can express ∇2𝑔(𝑥) as

∇2𝑔(𝑥) =
[

1 1 1
1 −1 0

] 
𝑒𝑥1+𝑥2−1 0 0

0 𝑒𝑥1−𝑥2−1 0
0 0 𝑒−𝑥1−1




1 1
1 −1
1 0


this shows that ∇2𝑔(𝑥) is positive definite for all 𝑥

therefore 𝑥★ is optimal if and only if

∇𝑔(𝑥★) =
[
𝑒𝑥

★
1+𝑥★2−1 + 𝑒𝑥

★
1−𝑥★2−1 − 𝑒−𝑥

★
1−1

𝑒𝑥
★
1+𝑥★2−1 − 𝑒𝑥

★
1−𝑥★2−1

]
= 0

two nonlinear equations in two variables
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Newton’s method for minimizing a convex function

if ∇2𝑔(𝑥) is positive definite everywhere, we can minimize 𝑔(𝑥) by solving

∇𝑔(𝑥) = 0

Algorithm: choose 𝑥 (1) and repeat for 𝑘 = 1, 2, . . .

𝑥 (𝑘+1) = 𝑥 (𝑘) − ∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘))

• 𝑣 = −∇2𝑔(𝑥)−1∇𝑔(𝑥) is called the Newton step at 𝑥

• converges if started sufficiently close to the solution

• Newton step is computed by a Cholesky factorization of the Hessian

• for 𝑛 = 1, the iteration can be written as

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑔′(𝑥 (𝑘))
𝑔′′(𝑥 (𝑘))
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Interpretations of Newton step

Affine approximation of gradient

• affine approximation of 𝑓 (𝑥) = ∇𝑔(𝑥) around 𝑥 (𝑘) is

𝑓 (𝑥; 𝑥 (𝑘)) = ∇𝑔(𝑥 (𝑘)) + ∇2𝑔(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• Newton update 𝑥 (𝑘+1) is solution of linear equation 𝑓 (𝑥; 𝑥 (𝑘)) = 0

Quadratic approximation of function

• quadratic approximation of 𝑔(𝑥) around 𝑥 (𝑘) is

𝑔q(𝑥; 𝑥 (𝑘)) = 𝑔(𝑥 (𝑘)) + ∇𝑔(𝑥 (𝑘))𝑇 (𝑥 − 𝑥 (𝑘)) + 1
2
(𝑥 − 𝑥 (𝑘))𝑇∇2𝑔(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• Newton update 𝑥 (𝑘+1) satisfies ∇𝑔q(𝑥; 𝑥 (𝑘)) = 0
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Example (𝑛 = 1)

gq(x; x(k))

g(x)

x(k) x(k+1) x?

g′q(x; x(k)) = f̂ (x; x(k))

g′(x)

𝑔q(𝑥; 𝑥 (𝑘)) = 𝑔(𝑥 (𝑘)) + 𝑔′(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘)) + 𝑔′′(𝑥 (𝑘))
2

(𝑥 − 𝑥 (𝑘))2
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Example

𝑔(𝑥) = log(𝑒𝑥 + 𝑒−𝑥), 𝑔′(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑔′′(𝑥) = 4

(𝑒𝑥 + 𝑒−𝑥)2

−3 −2 −1 1 2 3

1

2

3

x

g(x)

−3 −2 −1 1 2 3

−1

1

x

g′(x)

does not converge when started at 𝑥 (1) = 1.15
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Damped Newton method

Algorithm: choose 𝑥 (1) and repeat for 𝑘 = 1, 2, . . .

1. compute Newton step 𝑣 = −∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘))
2. find largest 𝑡 in {1, 0.5, 0.52, 0.53, . . .} that satisfies

𝑔(𝑥 (𝑘) + 𝑡𝑣) < 𝑔(𝑥 (𝑘))

and take 𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝑡𝑣

• positive scalar 𝑡 is called the step size

• step 2 in algorithm is called line search
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Interpretation of line search

to determine a suitable step size, consider the function ℎ : R → R

ℎ(𝑡) = 𝑔(𝑥 (𝑘) + 𝑡𝑣)

h(t)

h(0) + h′(0)t
t

• ℎ′(0) = ∇𝑔(𝑥 (𝑘))𝑇𝑣 is the directional derivative at 𝑥 (𝑘) in the direction 𝑣

• line search terminates with positive 𝑡 if ℎ′(0) < 0 (𝑣 is a descent direction)

• if ∇2𝑔(𝑥 (𝑘)) is positive definite, the Newton step is a descent direction

ℎ′(0) = ∇𝑔(𝑥 (𝑘))𝑇𝑣 = −𝑣𝑇∇2𝑔(𝑥 (𝑘))𝑣 < 0
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Example

𝑔(𝑥) = log(𝑒𝑥 + 𝑒−𝑥), 𝑥 (1) = 4

−4 −2 2 4

1

2

3

4

5

x

g(x)

1 2 3 4 5

0

0.5

1

Iteration

St
ep

t

close to the solution: very fast convergence, no backtracking steps
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Example

example of page 14.21

𝑔(𝑥1, 𝑥2) = 𝑒𝑥1+𝑥2−1 + 𝑒𝑥1−𝑥2−1 + 𝑒−𝑥1−1

damped Newton method started at 𝑥 = (−2, 2)

−3 −2 −1 0 1

−2

−1

0

1

2

x1

x 2

1 2 3 4 5 6

10−10

10−8

10−6

10−4

10−2

100

k

g
(x
(k
) )−

g
(x
?
)
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Newton method for nonconvex functions

if ∇2𝑔(𝑥 (𝑘)) is not positive definite, it is possible that Newton step 𝑣 satisfies

∇𝑔(𝑥 (𝑘))𝑇𝑣 = −∇𝑔(𝑥 (𝑘))𝑇∇2𝑔(𝑥 (𝑘))−1∇𝑔(𝑥 (𝑘)) > 0

x(k) x(k) + v

gq(x; x(k))

g(x)

• if Newton step is not descent direction, replace it with descent direction

• simplest choice is 𝑣 = −∇𝑔(𝑥 (𝑘)); practical methods make other choices
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Outline

• Newton’s method for sets of nonlinear equations

• damped Newton for unconstrained minimization

• Newton method for nonlinear least squares



Hessian of nonlinear least squares cost

𝑔(𝑥) = ∥ 𝑓 (𝑥)∥2 =
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)2

• gradient (from page 13.14):

∇𝑔(𝑥) = 2
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)∇ 𝑓𝑖 (𝑥) = 2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥)

• second derivatives:

𝜕2𝑔

𝜕𝑥 𝑗𝜕𝑥𝑘
(𝑥) = 2

𝑚∑︁
𝑖=1

(
𝜕 𝑓𝑖

𝜕𝑥 𝑗
(𝑥) 𝜕 𝑓𝑖

𝜕𝑥𝑘
(𝑥) + 𝑓𝑖 (𝑥) 𝜕2 𝑓𝑖

𝜕𝑥 𝑗𝜕𝑥𝑘
(𝑥)

)
• Hessian

∇2𝑔(𝑥) = 2𝐷 𝑓 (𝑥)𝑇𝐷 𝑓 (𝑥) + 2
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)∇2 𝑓𝑖 (𝑥)
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Newton and Gauss–Newton steps

(Undamped) Newton step at 𝑥 = 𝑥 (𝑘):

𝑣nt = −∇2𝑔(𝑥)−1∇𝑔(𝑥)

= −
(
𝐷 𝑓 (𝑥)𝑇𝐷 𝑓 (𝑥) +

𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)∇2 𝑓𝑖 (𝑥)
)−1

𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥)

Gauss–Newton step at 𝑥 = 𝑥 (𝑘) (from page 13.17):

𝑣gn = −
(
𝐷 𝑓 (𝑥)𝑇𝐷 𝑓 (𝑥)

)−1
𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥)

• can be written as 𝑣gn = −𝐻−1
gn ∇𝑔(𝑥) where 𝐻gn = 2𝐷 𝑓 (𝑥)𝑇𝐷 𝑓 (𝑥)

• 𝐻gn is the Hessian without the term ∑
𝑖 𝑓𝑖 (𝑥)∇2 𝑓𝑖 (𝑥)
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Comparison

Newton step

• requires second derivatives of 𝑓

• not always a descent direction (∇2𝑔(𝑥) is not necessarily positive definite)

• fast convergence near local minimum

Gauss–Newton step

• does not require second derivatives

• a descent direction (if columns of 𝐷 𝑓 (𝑥) are linearly independent):

∇𝑔(𝑥)𝑇𝑣gn = −2𝑣𝑇gn𝐷 𝑓 (𝑥)𝑇𝐷 𝑓 (𝑥)𝑣gn < 0 if 𝑣gn ≠ 0

• local convergence to 𝑥★ is similar to Newton method if
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥★)∇2 𝑓𝑖 (𝑥★)

is small (for each 𝑖, 𝑓𝑖 (𝑥★) is small or 𝑓𝑖 is nearly affine around 𝑥★)
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