L. Vandenberghe ECE133A (Fall 2024)

14. Nonlinear equations

e Newton method for nonlinear equations
e damped Newton method for unconstrained minimization

e Newton method for nonlinear least squares
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Set of nonlinear equations

n nonlinear equations in n variables x, xo, ..., xj:

fl(xl,...,xn) = 0
foxt,.o.xq) = 0

fulx1,...,xp) = 0

in vector notation: f(x) = 0 with

— X1 - [ fi(xy, ..., xn) ]
¥ = X2 f(x): fz(xl,...,xn)
| xn | i fn(xl,...,xn) ]
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Example: nonlinear resistive circuit

AVAAY E/R

v2(x) g(x)

(E - x)/R

E —
x:O

g(x) —

a nonlinear equation in the variable x, with three solutions
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Newton method

assume f : R" — R" is differentiable

Algorithm: choose x!) and repeat for k = 1,2, . ..

xEHD) = ) _ p ()T £ (0

e D f(xM) is the derivative matrix of f at x(¥) (see page 3.40)
e each iteration requires one evaluation of f(x) and D f(x)
e ecach iteration requires factorization of the n x n matrix D f(x)

e we assume D f(x) is nonsingular
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Interpretation

LD — (k) _ Df(x(k))_lf(x(k))
e linearize f (i.e., make affine approximation) around current iterate x (k)
Fleax®) = fa) + DFED) (-2 M)

e solve the linearized equation f(x;x¥)) = 0; the solution is

x =2 = D))

e take the solution x of the linearized equation as the next iterate x(*1)
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One variable

fOex0) = fx®) + f1(x®)x = x0)

f(x)

x(k+1

/ xtk)

e affine approximation of f around x%) is
Flea®) = fa) + @0 (-2
e solve the linearized equation f(x;x¥)) = 0 and take the solution as x(¥*D):;
(k)
L) _ o _ ST

£ (xR)
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Relation to Gauss—-Newton method

recall Gauss—Newton method for nonlinear least squares problem
minimize || f(x)|?

where f is a differentiable function from R” to R

e Gauss—Newton update

K =0 (D)D) D) )

e if m =n,then D f(x) is square and this is the Newton update

xEHD) = () _ p ()T £ (R
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Example 1

Newton method applied to

f(x)y=e"—e™, xM =10

| x|
10° ¢
10° | 1
| 10() |
107 | *
| 107 | *
10_10 ’ . 10—10 - |
0 0
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Example 2

f(x)

f(x)=e"—e™ —3x

e starting point x{) = —1: converges to x* = —1.62
e starting pointx(l) = —0.8: converges to x* = 1.62

e starting point x(!) = —0.7: converges to x* = 0
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Example 3

f(x)

e’ —e

eX+e X

f(x) =

e starting point x(1) = 0.9: converges very rapidly to x* = 0

e starting point x(!) = 1.1: does not converge
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Example 4

log(x7 +2x5+1)—0.5=0

X —x3+02=0

f1(x1,x2)
f2(x1,x2)

two equations in two variables; two solutions (0.70, 0.29), (-0.70, 0.29)
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Example 4

Newton iteration

e evaluate g = f(x) and

— 2x1/(x%+2x§+1) 4x2/(x%+2x§+1) |
H=Df(x)=

—2X1 1

e solve Hv = —g (two linear equations in two variables)
e update x :=x+v
Results

e xV =(1,1): converges to x* = (0.70, 0.29) in about 4 iterations
e x) = (=1, 1): converges to x* = (=0.70, 0.29) in about 4 iterations

o x(D=(1,-1) orx® = (=1, -1): does not converge
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Observations

e Newton’s method works very well if started near a solution
e may not work otherwise
e can converge to different solutions depending on the starting point

e does not necessarily find the solution closest to the starting point
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Convergence of Newton’s method

if £(x*)=0and D f(x*)is nonsingular, and x(!) is sufficiently close to x*, then

* (k+1) 2

xO x| ek < x|

forsomec > 0

e this is called quadratic convergence

e explains fast convergence when started near solution
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Outline

e Newton’s method for sets of nonlinear equations
e damped Newton for unconstrained minimization

e Newton method for nonlinear least squares



Unconstrained minimization problem

minimize g(x1,x2,...,X,)

g is a function from R” to R

e x = (x1,x2,...,Xx,) IS n-vector of optimization variables
e g(x) is the cost function or objective function
e to solve a maximization problem (i.e., maximize g(x)), minimize —g(x)

e we will assume that g is twice differentiable
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Local and global optimum

e x* is an optimal point (or a minimum) if
g(x*) < g(x) forallx

also called globally optimal

e x* is a locally optimal point (local minimum) if for some R > 0

g(x*) < g(x) forall x with ||x —x*|| < R

Example
y is locally optimal

z is (globally) optimal
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Gradient

Gradient: the gradient of ¢ : R" — R at z € R" is the n-vector
Gg
Vg(z) = (Z) (Z) —(2)
Oxp

Directional derivative

e for given z and nonzero v, define h(t) = g(z +tv)

e derivativeof hatr=0

, d Og d
H(O) = FE@vitg @t 2@
= Vg()'v

e this is called the directional derivative of g (at z, in the direction v)

e v is a descent direction of g at z if Vg(z)Tv < 0
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Hessian

Hessian of g at z: a symmetric n X n matrix V2g(z) with elements

a2g
(9xl-(9xj

Vig(2)ij = (2)

this is also the derivative matrix D f(z) of f(x) = Vg(x) at z

Quadratic (second order) approximation of g around z:

gq(x) = g(2) +Vg(2) (x —2) + %(x - 2)'V%g(2)(x - 2)

for n = 1 this reduces to

20(x) = 2(0) +£/()(x = 9 + 58" () (v ~ 2)°
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Examples

Affine function: g(x) = a’x + b

Vg(x) =a, VZg(x) =0

Quadratic function: g(x) = x! Px + ¢’ x + r with P symmetric

Vg(x) =2Px +q, Vzg(x) =2P

Least squares cost: g(x) = ||Ax — b||? = xTATAx - 26T Ax + b7 b

Ve(x) =2ATAx —2ATh,  V?g(x) =24TA

Nonlinear equations
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Properties

Linear combination: if g(x) = a1g21(x) + axg>(x), then

Vg(x) a1Vg1(x) + a2Vga(x)

Vig(x)

a1 Vg1 (x) + a2 Vg (x)

Composition with affine mapping: if g(x) = Z(Cx + d), then

Ve(x) = CIVA(Cx+d)

VZg(x) CTV?h(Cx +d)C
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Gradient

Hessian

Vig(x) =

Nonlinear equations

Example

g(xla-XZ) — eX1+X2—1 +ex1—x2—l +e—x1—1
eX1+XQ—1 +exl—X2—1 _ e—x1—1
Vg(x) =
g( ) X1+x—1 _ x1—xr—1

eX1+XQ—1 + exl—xz—l + e—xl—l €x1+x2—1 _

ex1+x2—1 _ x1—xp—1

e (4

€

xl—xz—l

X1+XZ—1 + exl—xz—l
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Gradient and Hessian via composition property

express g as g(x) = h(Cx + d) with h(yq, ya2, y3) = e’ + Y2+ €73 and

1 1] —1
C = 1 -1, d=1] -1
-1 0| —1

Gradient: Vg(x) = C!'Vh(Cx + d)

1 { { eX1+X2—1 i
Vg(x)=[ ) ] et
1 -1 0 .
Hessian: V2g(x) = CTVh*(Cx + d)C
o ] eetoo o [ 1 1]
Vg (x) = [ 1 -1 0 ] 0 e¥1—x2~ 1 0 1 -1
0 0 e || -1 0
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Optimality conditions for twice differentiable g

Necessary condition: if x* is locally optimal, then

Vg(x*) =0 and V?g(x*) is positive semidefinite

Sufficient condition: if x* satisfies
Ve(x*) =0 and VZ2g(x*) is positive definite

then x* is locally optimal

Necessary and sufficient condition for convex functions

e g is called convex if Vg (x) is positive semidefinite everywhere

e if g is convex then x* is optimal if and only if Vg(x*) =0

Nonlinear equations
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Examples (n = 1)

o 2(x) =log(e*+e™)

X — X 4

/ 144
X) = , =
80 eX +eX g ) (eX + e7*)?

g”(x) = 0 everywhere; x* = 0 is the unique optimal point

¢ g(x)=x"
g'(x) = 4x°, g’ (x) = 12x2
g”(x) = 0 everywhere; x* = 0 is the unique optimal point
¢ g(x)=x’
g'(x) = 3x7, g’ (x) = 6x

g’(0) =0, g”(0) =0 but x = 0 is not locally optimal

Nonlinear equations
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Examples

o g(x) =x"Px+q'x +r (Pis symmetric positive definite)
Vg(x) =2Px +q, V2g(x) =2P
V2g(x) is positive definite everywhere, hence the unique optimal point is

x*=—(1/2)P7 g

e 2(x) = ||Ax — b||* (A is a matrix with linearly independent columns)
Ve(x) =24TAx = 2A4Th,  V?g(x) =24TA
V2¢(x) is positive definite everywhere, hence the unique optimal point is
x* = (ATA)1ATD

Nonlinear equations 14.25



Examples

example of page 14.21: we can express Vg (x) as

o1 [ Xl 0 o J[1 1]
Vzg(x)=l1 1 o] 0 il 1 -1
0 0 e 1|1 0

this shows that V2g(x) is positive definite for all x

therefore x* is optimal if and only if

* * * * *
ex1+x2—1 +ex1—x2—1 . e—xl—l

I
-

*\
Vg(x ) B xpxy—-1 _ xf—

*
el o511

two nonlinear equations in two variables
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Newton’s method for minimizing a convex function

if V2g(x) is positive definite everywhere, we can minimize g(x) by solving

Vg(x) =0

Algorithm: choose x!) and repeat for k = 1,2, ...

D) = () 20 (x(K))~ly g ((K)y

o v=-V2g(x)"'Vg(x) is called the Newton step at x

e converges if started sufficiently close to the solution

e Newton step is computed by a Cholesky factorization of the Hessian
e for n = 1, the iteration can be written as

L)) _ (0 _ 8
g" (x(k))
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Interpretations of Newton step

Affine approximation of gradient

e affine approximation of f(x) = Vg(x) around x¥) is
fex®) = Ve (x™M) + V2 () (x — 2 0)

e Newton update x**1) is solution of linear equation f(x;x*)) =0

Quadratic approximation of function

e quadratic approximation of g(x) around x¥) is

1
8q(x:x)) = g () + Ve () (x = x')) 4~ (x = 2TV (r) (x - 1)

o Newton update x(**1) satisfies Vgq(x; x(¥)) = 0

Nonlinear equations
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gq(rix) = g () + g/ (¢ (x =2y +

Nonlinear equations

Example (n = 1)

gq(x; xRy

g(x)

x(k) x(k+1) x*
g x0) = f(ae; x)

g'(x)

g” (xR

> (x —x(k))2
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Example

() =log(e* +e™),  gW=2"C )= —"
x) = e’ +e ), x)= —, x) =
J g & eX+e* & (e* + e¥)?2
g(x) g'(x)
3 1* —
2f
R 1 3 3 7
1f
_—/ 11
3 2 1 1 2 3

does not converge when started at x(!) = 1.15
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Damped Newton method

Algorithm: choose x!) and repeat for k = 1,2, . ..

1. compute Newton step v = —V2g(x(0))~1vg(x (k)
2. find largest ¢ in {1, 0.5, 0.5, 0.5°, ...} that satisfies

g(x(k) +1v) < g(x(k))

and take xkt1) = x(5) 4 4y,

e positive scalar r is called the step size

e step 2 in algorithm is called line search
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Interpretation of line search
to determine a suitable step size, consider the function 2 : R — R

h(t) = g(x® +1v)

h(0) + 1 (0)t

!

e 1/(0) = Vg(x*)Ty is the directional derivative at x(¥) in the direction v
¢ line search terminates with positive ¢ if 4’(0) < 0 (v is a descent direction)

e if VZg(x(%)) is positive definite, the Newton step is a descent direction

K (0) = Vg(x"N)Ty = -vTv2g(xM))y < 0
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Example

g(x) =log(e* +e™), xD =4

X
1 2 3 4 5
lteration

. very fast convergence, no backtracking steps

close to the solution

14.33
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Example

example of page 14.21

X1+x—1 +ex1—xz—1 +e—x1—1

g(xy,x) =e

damped Newton method started at x = (-2, 2)

2 100 - i
1} ~ 1072} :

Na)
% 107 1

S0 o
< 107 1

o)
_1 s Qo 10—8 i |
2 10—10 - i

_3 1 2 3 4 5 6
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Newton method for nonconvex functions

if V2g(x%)) is not positive definite, it is possible that Newton step v satisfies
Ve(x"N)Ty = -vg(x)Tv2g (x) Vg (x¥) > 0
gq(x;x(k))

g(x)

x() x4y

e if Newton step is not descent direction, replace it with descent direction

e simplest choiceisv = —Vg(x(k)); practical methods make other choices
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Outline

e Newton’s method for sets of nonlinear equations
e damped Newton for unconstrained minimization

e Newton method for nonlinear least squares



Hessian of nonlinear least squares cost

g(x) = If)IIF= > filx)?
=1
e gradient (from page 13.14):

Vg(x) =2 > fi(x)Vfi(x) =2Df(x)" f(x)
=1

e second derivatives:

2 2
02g (x)—ZZ ofi  af 8ﬁ

(X)

(X) + i) 5 (X)

ax]axk

e Hessian

Vig(x) =2Df(x)' Df(x) +2 > fi(x)V*fi(x)
=1
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Newton and Gauss—Newton steps

(Undamped) Newton step at x = x(K):

vae = —VZg(x) 'Vg(x)
-1

Df(x)" f(x)

Df(x)'Df(x)+ > fi(x)V*fi(x)
=1

Gauss—Newton step at x = xX) (from page 13.17):

ven =~ (DWTDF) DA S ()

e can be written as vy, = —Hg_ang(x) where Hgp = 2D f(x)I'D f(x)

o Hg, is the Hessian without the term 3; £ (x) V2 fi(x)

Nonlinear equations
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Comparison

Newton step
e requires second derivatives of f
e not always a descent direction (Vg (x) is not necessarily positive definite)

e fast convergence near local minimum

Gauss—Newton step
e does not require second derivatives

e a descent direction (if columns of D f(x) are linearly independent):
Vg(x)Tvgn = —ZVgan(x)TDf(x)vgn <0 ifvgn#0
e local convergence to x* is similar to Newton method if
S 2
2 i)V fi(x™)
i=1

is small (for each i, f;(x*) is small or f; is nearly affine around x*)
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