13. Nonlinear least squares

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method

Nonlinear least squares

minimize
$$\sum_{i=1}^{m} f_i(x)^2 = ||f(x)||^2$$

- $f_1(x), \ldots, f_m(x)$ are differentiable functions of a vector variable *x*
- *f* is a function from \mathbf{R}^n to \mathbf{R}^m with components $f_i(x)$:

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}$$

• problem reduces to (linear) least squares if f(x) = Ax - b

Location from range measurements

- vector x_{ex} represents unknown location in 2-D or 3-D
- we estimate x_{ex} by measuring distances to known points a_1, \ldots, a_m :

$$\rho_i = ||x_{\text{ex}} - a_i|| + v_i, \quad i = 1, \dots, m$$

• *v_i* is measurement error

Nonlinear least squares estimate: compute estimate \hat{x} by minimizing

$$\sum_{i=1}^{m} (\|x - a_i\| - \rho_i)^2$$

this is a nonlinear least squares problem with $f_i(x) = ||x - a_i|| - \rho_i$

Example

- correct position is $x_{ex} = (1, 1)$
- five points a_i , marked with blue dots
- red square marks nonlinear least squares estimate $\hat{x} = (1.18, 0.82)$

Location from multiple camera views

Camera model: described by parameters $A \in \mathbb{R}^{2\times 3}$, $b \in \mathbb{R}^2$, $c \in \mathbb{R}^3$, $d \in \mathbb{R}$

• object at location $x \in \mathbf{R}^3$ creates image at location $x' \in \mathbf{R}^2$ in image plane

$$x' = \frac{1}{c^T x + d} (Ax + b)$$

 $c^T x + d > 0$ if object is in front of the camera

• *A*, *b*, *c*, *d* characterize the camera, and its position and orientation

Location from multiple camera views

- an object at location x_{ex} is viewed by l cameras (described by A_i , b_i , c_i , d_i)
- the image of the object in the image plane of camera *i* is at location

$$y_i = \frac{1}{c_i^T x_{\text{ex}} + d_i} (A_i x_{\text{ex}} + b_i) + v_i$$

- v_i is measurement or quantization error
- goal is to estimate 3-D location x_{ex} from the *l* observations y_1, \ldots, y_l

Nonlinear least squares estimate: compute estimate \hat{x} by minimizing

$$\sum_{i=1}^{l} \left\| \frac{1}{c_i^T x + d_i} (A_i x + b_i) - y_i \right\|^2$$

this is a nonlinear least squares problem with m = 2l,

$$f_i(x) = \frac{(A_i x + b_i)_1}{c_i^T x + d_i} - (y_i)_1, \qquad f_{l+i}(x) = \frac{(A_i x + b_i)_2}{c_i^T x + d_i} - (y_i)_2$$

Model fitting

minimize
$$\sum_{i=1}^{N} (\hat{f}(x^{(i)}, \theta) - y^{(i)})^2$$

- model $\hat{f}(x,\theta)$ is parameterized by parameters $\theta_1, \ldots, \theta_p$
- $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})$ are data points
- the minimization is over the model parameters θ
- on page 9.9 we considered models that are linear in the parameters θ :

$$\hat{f}(x,\theta) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

here we allow $\hat{f}(x, \theta)$ to be a nonlinear function of θ

Example

a nonlinear least squares problem with four variables θ_1 , θ_2 , θ_3 , θ_4 :

minimize
$$\sum_{i=1}^{N} \left(\theta_1 e^{\theta_2 x^{(i)}} \cos(\theta_3 x^{(i)} + \theta_4) - y^{(i)} \right)^2$$

Orthogonal distance regression

 $\hat{f}(x,\theta) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3$

minimize the mean square distance of data points to graph of $\hat{f}(x, \theta)$

Example: orthogonal distance regression with cubic polynomial

Nonlinear least squares formulation

minimize
$$\sum_{i=1}^{N} \left((\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + \|u^{(i)} - x^{(i)}\|^2 \right)$$

- optimization variables are model parameters θ and N points $u^{(i)}$
- *i*th term is squared distance of data point $(x^{(i)}, y^{(i)})$ to point $(u^{(i)}, \hat{f}(u^{(i)}, \theta))$

$$(x^{(i)}, y^{(i)})$$

$$d_i$$

$$(u^{(i)}, \hat{f}(u^{(i)}, \theta))$$

$$d_i^2 = (\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + ||u^{(i)} - x^{(i)}||^2$$

- minimizing d_i^2 over $u^{(i)}$ gives squared distance of $(x^{(i)}, y^{(i)})$ to graph
- minimizing $\sum_i d_i^2$ over $u^{(1)}, \ldots, u^{(N)}$ and θ minimizes mean squared distance

Binary classification

$$\hat{f}(x,\theta) = \operatorname{sign} \left(\theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x) \right)$$

- in lecture 9 (p 9.25) we computed θ by solving a linear least squares problem
- better results are obtained by solving a nonlinear least squares problem

minimize
$$\sum_{i=1}^{N} \left(\phi(\theta_1 f_1(x^{(i)}) + \dots + \theta_p f_p(x^{(i)})) - y^{(i)} \right)^2$$

- $(x^{(i)}, y^{(i)})$ are data points, $y^{(i)} \in \{-1, 1\}$
- $\phi(u)$ is the sigmoidal function

$$\phi(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

a differentiable approximation of sign(u)

Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method

Gradient

Gradient of differentiable function $g : \mathbf{R}^n \to \mathbf{R}$ at $z \in \mathbf{R}^n$ is

$$\nabla g(z) = \left(\frac{\partial g}{\partial x_1}(z), \frac{\partial g}{\partial x_2}(z), \dots, \frac{\partial g}{\partial x_n}(z)\right)$$

Affine approximation (linearization) of g around z is

$$\hat{g}(x) = g(z) + \frac{\partial g}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial g}{\partial x_n}(z)(x_n - z_n)$$
$$= g(z) + \nabla g(z)^T(x - z)$$

(see page 1.27)

Derivative matrix

Derivative matrix (Jacobian) of differentiable function $f : \mathbf{R}^n \to \mathbf{R}^m$ at $z \in \mathbf{R}^n$:

$$Df(z) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\ \frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z) \end{bmatrix} = \begin{bmatrix} \nabla f_1(z)^T \\ \nabla f_2(z)^T \\ \vdots \\ \nabla f_m(z)^T \end{bmatrix}$$

Affine approximation (linearization) of f around z is

$$\hat{f}(x) = f(z) + Df(z)(x - z)$$

- see page 3.40
- we also use notation $\hat{f}(x; z)$ to indicate the point z around which we linearize

Gradient of nonlinear least squares cost

$$g(x) = ||f(x)||^2 = \sum_{i=1}^m f_i(x)^2$$

• first derivative of g with respect to x_j :

$$\frac{\partial g}{\partial x_j}(z) = 2\sum_{i=1}^m f_i(z)\frac{\partial f_i}{\partial x_j}(z)$$

• gradient of *g* at *z*:

$$\nabla g(z) = \begin{bmatrix} \frac{\partial g}{\partial x_1}(z) \\ \vdots \\ \frac{\partial g}{\partial x_n}(z) \end{bmatrix} = 2 \sum_{i=1}^m f_i(z) \nabla f_i(z) = 2Df(z)^T f(z)$$

Optimality condition

minimize
$$g(x) = \sum_{i=1}^{m} f_i(x)^2$$

• necessary condition for optimality: if x minimizes g(x) then it must satisfy

$$\nabla g(x) = 2Df(x)^T f(x) = 0$$

• this generalizes the normal equations: if f(x) = Ax - b, then Df(x) = A and

$$\nabla g(x) = 2A^T (Ax - b)$$

• for general *f*, the condition $\nabla g(x) = 0$ is not sufficient for optimality

Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method

Gauss–Newton method

minimize
$$g(x) = ||f(x)||^2 = \sum_{i=1}^{m} f_i(x)^2$$

start at some initial guess $x^{(1)}$, and repeat for k = 1, 2, ...

• linearize f around $x^{(k)}$:

$$\hat{f}(x;x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$$

• substitute affine approximation $\hat{f}(x; x^{(k)})$ for f in least squares problem:

minimize $\|\hat{f}(x;x^{(k)})\|^2$

• take the solution of this (linear) least squares problem as $x^{(k+1)}$

Gauss–Newton update

least squares problem solved in iteration k:

minimize
$$||f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})||^2$$

• if $Df(x^{(k)})$ has linearly independent columns, solution is given by

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

• Gauss–Newton step
$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$$
 is

$$\Delta x^{(k)} = -\left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$
$$= -\frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} \nabla g(x^{(k)})$$

(using the expression for $\nabla g(x)$ on page 13.14)

Nonlinear least squares

Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method

Levenberg–Marquardt method

addresses two difficulties in Gauss-Newton method:

- how to update $x^{(k)}$ when columns of $Df(x^{(k)})$ are linearly dependent
- what to do when the Gauss–Newton update does not reduce $||f(x)||^2$

Levenberg–Marquardt method

compute $x^{(k+1)}$ by solving a *regularized* least squares problem

minimize
$$\|\hat{f}(x;x^{(k)})\|^2 + \lambda^{(k)} \|x - x^{(k)}\|^2$$

- as before, $\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x x^{(k)})$
- second term forces x to be close to $x^{(k)}$ where $\hat{f}(x; x^{(k)}) \approx f(x)$
- with $\lambda^{(k)} > 0$, always has a unique solution (no condition on $Df(x^{(k)})$)

Levenberg–Marquardt update

regularized least squares problem solved in iteration k

minimize
$$||f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})||^2 + \lambda^{(k)}||x - x^{(k)}||^2$$

• solution is given by

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)}I\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

• Levenberg–Marquardt step $\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$ is

$$\Delta x^{(k)} = -\left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)}I\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$
$$= -\frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)}I\right)^{-1} \nabla g(x^{(k)})$$

• for $\lambda^{(k)} = 0$ this is the Gauss–Newton step (if defined); for large $\lambda^{(k)}$,

$$\Delta x^{(k)} \approx -\frac{1}{2\lambda^{(k)}} \nabla g(x^{(k)})$$

Regularization parameter

several strategies for adapting $\lambda^{(k)}$ are possible; for example:

• at iteration k, compute the solution \hat{x} of

minimize
$$\|\hat{f}(x;x^{(k)})\|^2 + \lambda^{(k)} \|x - x^{(k)}\|^2$$

- if $||f(\hat{x})||^2 < ||f(x^{(k)})|^2$, take $x^{(k+1)} = \hat{x}$ and decrease λ
- otherwise, do not update x (take $x^{(k+1)} = x^{(k)}$), but increase λ

Some variations

- compare actual cost reduction with predicted cost reduction
- solve a least squares problem with "trust region"

minimize $\|\hat{f}(x;x^{(k)})\|^2$ subject to $\|x - x^{(k)}\|^2 \le \gamma$

Summary: Levenberg–Marquardt method

choose $x^{(1)}$ and $\lambda^{(1)}$ and repeat for k = 1, 2, ...:

- 1. evaluate $f(x^{(k)})$ and $A = Df(x^{(k)})$
- 2. compute solution of regularized least squares problem:

$$\hat{x} = x^{(k)} - (A^T A + \lambda^{(k)} I)^{-1} A^T f(x^{(k)})$$

3. define $x^{(k+1)}$ and $\lambda^{(k+1)}$ as follows:

$$\begin{cases} x^{(k+1)} = \hat{x} \text{ and } \lambda^{(k+1)} = \beta_1 \lambda^{(k)} & \text{if } \|f(\hat{x})\|^2 < \|f(x^{(k)})\|^2 \\ x^{(k+1)} = x^{(k)} \text{ and } \lambda^{(k+1)} = \beta_2 \lambda^{(k)} & \text{otherwise} \end{cases}$$

- β_1, β_2 are constants with $0 < \beta_1 < 1 < \beta_2$
- in step 2, \hat{x} can be computed using a QR factorization
- terminate if $\nabla g(x^{(k)}) = 2A^T f(x^{(k)})$ is sufficiently small

Location from range measurements

- iterates from three starting points, with $\lambda^{(1)} = 0.1$, $\beta_1 = 0.8$, $\beta_2 = 2$
- algorithm started at (1.8, 3.5) and (3.0, 1.5) finds minimum (1.18, 0.82)
- started at (2.2, 3.5) converges to non-optimal point

Cost function and regularization parameter

cost function and $\lambda^{(k)}$ for the three starting points on previous page