13. Nonlinear least squares

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Nonlinear least squares

minimize \[\sum_{i=1}^{m} f_i(x)^2 = \|f(x)\|^2 \]

- \(f_1(x), \ldots, f_m(x) \) are differentiable functions of a vector variable \(x \)

- \(f \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) with components \(f_i(x) \):

\[
 f(x) = \begin{bmatrix}
 f_1(x) \\
 f_2(x) \\
 \vdots \\
 f_m(x)
 \end{bmatrix}
\]

- problem reduces to (linear) least squares if \(f(x) = Ax - b \)
Location from range measurements

- vector x_{ex} represents unknown location in 2-D or 3-D
- we estimate x_{ex} by measuring distances to known points a_1, \ldots, a_m:

$$\rho_i = \|x_{\text{ex}} - a_i\| + v_i, \quad i = 1, \ldots, m$$

- v_i is measurement error

Nonlinear least squares estimate: compute estimate \hat{x} by minimizing

$$\sum_{i=1}^{m} (\|x - a_i\| - \rho_i)^2$$

this is a nonlinear least squares problem with $f_i(x) = \|x - a_i\| - \rho_i$
Example

- correct position is $x_{ex} = (1, 1)$
- five points a_i, marked with blue dots
- red square marks nonlinear least squares estimate $\hat{x} = (1.18, 0.82)$
Location from multiple camera views

Camera model: described by parameters $A \in \mathbb{R}^{2 \times 3}$, $b \in \mathbb{R}^2$, $c \in \mathbb{R}^3$, $d \in \mathbb{R}$

- object at location $x \in \mathbb{R}^3$ creates image at location $x' \in \mathbb{R}^2$ in image plane

$$x' = \frac{1}{c^T x + d} (Ax + b)$$

$c^T x + d > 0$ if object is in front of the camera

- A, b, c, d characterize the camera, and its position and orientation
Location from multiple camera views

- an object at location \(x_{\text{ex}} \) is viewed by \(l \) cameras (described by \(A_i, b_i, c_i, d_i \))
- the image of the object in the image plane of camera \(i \) is at location
 \[
 y_i = \frac{1}{c_i^T x_{\text{ex}} + d_i} (A_i x_{\text{ex}} + b_i) + v_i
 \]
- \(v_i \) is measurement or quantization error
- goal is to estimate 3-D location \(x_{\text{ex}} \) from the \(l \) observations \(y_1, \ldots, y_l \)

Nonlinear least squares estimate: compute estimate \(\hat{x} \) by minimizing

\[
\sum_{i=1}^{l} \left\| \frac{1}{c_i^T x + d_i} (A_i x + b_i) - y_i \right\|^2
\]

this is a nonlinear least squares problem with \(m = 2l \),

\[
 f_i(x) = \frac{(A_i x + b_i)_1}{c_i^T x + d_i} - (y_i)_1, \quad f_{l+i}(x) = \frac{(A_i x + b_i)_2}{c_i^T x + d_i} - (y_i)_2
\]
Model fitting

\[
\text{minimize } \sum_{i=1}^{N} (\hat{f}(x^{(i)}, \theta) - y^{(i)})^2
\]

- model \(\hat{f}(x, \theta) \) is parameterized by parameters \(\theta_1, \ldots, \theta_p \)

- \((x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)}) \) are data points

- the minimization is over the model parameters \(\theta \)

- on page 9.9 we considered models that are linear in the parameters \(\theta \):

\[
\hat{f}(x, \theta) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)
\]

here we allow \(\hat{f}(x, \theta) \) to be a nonlinear function of \(\theta \)
Example

\[\hat{f}(x, \theta) = \theta_1 \exp(\theta_2 x) \cos(\theta_3 x + \theta_4) \]

a nonlinear least squares problem with four variables \(\theta_1, \theta_2, \theta_3, \theta_4 \):

\[
\text{minimize} \quad \sum_{i=1}^{N} \left(\theta_1 e^{\theta_2 x^{(i)}} \cos(\theta_3 x^{(i)} + \theta_4) - y^{(i)} \right)^2
\]
Orthogonal distance regression

minimize the mean square distance of data points to graph of $\hat{f}(x, \theta)$

Example: orthogonal distance regression with cubic polynomial

$$\hat{f}(x, \theta) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3$$
Nonlinear least squares formulation

\[
\text{minimize } \sum_{i=1}^{N} \left((\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + \|u^{(i)} - x^{(i)}\|^2 \right)
\]

- optimization variables are model parameters \(\theta \) and \(N \) points \(u^{(i)} \)
- \(i \)th term is squared distance of data point \((x^{(i)}, y^{(i)})\) to point \((u^{(i)}, \hat{f}(u^{(i)}, \theta))\)

\[
d_i^2 = (\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + \|u^{(i)} - x^{(i)}\|^2
\]

- minimizing \(d_i^2 \) over \(u^{(i)} \) gives squared distance of \((x^{(i)}, y^{(i)})\) to graph
- minimizing \(\sum_i d_i^2 \) over \(u^{(1)}, \ldots, u^{(N)} \) and \(\theta \) minimizes mean squared distance
Binary classification

\[\hat{f}(x, \theta) = \text{sign}\left(\theta_1 f_1(x) + \theta_2 f_2(x) + \cdots + \theta_p f_p(x) \right) \]

- in lecture 9 (p 9.25) we computed \(\theta \) by solving a linear least squares problem
- better results are obtained by solving a nonlinear least squares problem

\[
\text{minimize} \quad \sum_{i=1}^{N} \left(\phi(\theta_1 f_1(x^{(i)}) + \cdots + \theta_p f_p(x^{(i)})) - y^{(i)} \right)^2
\]

- \((x^{(i)}, y^{(i)})\) are data points, \(y^{(i)} \in \{-1, 1\} \)
- \(\phi(u) \) is the sigmoidal function

\[
\phi(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}
\]

a differentiable approximation of \(\text{sign}(u) \)
Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Gradient of differentiable function $g : \mathbb{R}^n \to \mathbb{R}$ at $z \in \mathbb{R}^n$ is

$$\nabla g(z) = \left(\frac{\partial g}{\partial x_1}(z), \frac{\partial g}{\partial x_2}(z), \ldots, \frac{\partial g}{\partial x_n}(z) \right)$$

Affine approximation (linearization) of g around z is

$$\hat{g}(x) = g(z) + \frac{\partial g}{\partial x_1}(z)(x_1 - z_1) + \cdots + \frac{\partial g}{\partial x_n}(z)(x_n - z_n)$$

$$= g(z) + \nabla g(z)^T (x - z)$$

(see page 1.27)
Derivative matrix (Jacobian) of differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$ at $z \in \mathbb{R}^n$:

$$Df(z) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\
\frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z)
\end{bmatrix} = \begin{bmatrix}
\nabla f_1(z)^T \\
\nabla f_2(z)^T \\
\vdots \\
\nabla f_m(z)^T
\end{bmatrix}$$

Affine approximation (linearization) of f around z is

$$\hat{f}(x) = f(z) + Df(z)(x - z)$$

- see page 3.40
- we also use notation $\hat{f}(x; z)$ to indicate the point z around which we linearize
Gradient of nonlinear least squares cost

\[g(x) = \| f(x) \|^2 = \sum_{i=1}^{m} f_i(x)^2 \]

- first derivative of \(g \) with respect to \(x_j \):

\[\frac{\partial g}{\partial x_j}(z) = 2 \sum_{i=1}^{m} f_i(z) \frac{\partial f_i}{\partial x_j}(z) \]

- gradient of \(g \) at \(z \):

\[
\nabla g(z) = \begin{bmatrix}
\frac{\partial g}{\partial x_1}(z) \\
\vdots \\
\frac{\partial g}{\partial x_n}(z)
\end{bmatrix} = 2 \sum_{i=1}^{m} f_i(z) \nabla f_i(z) = 2Df(z)^T f(z)
\]
Optimality condition

\[
\text{minimize} \quad g(x) = \sum_{i=1}^{m} f_i(x)^2
\]

- necessary condition for optimality: if \(x \) minimizes \(g(x) \) then it must satisfy

\[
\nabla g(x) = 2D f(x)^T f(x) = 0
\]

- this generalizes the normal equations: if \(f(x) = Ax - b \), then \(D f(x) = A \) and

\[
\nabla g(x) = 2A^T (Ax - b)
\]

- for general \(f \), the condition \(\nabla g(x) = 0 \) is not sufficient for optimality
Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Gauss–Newton method

\[
\text{minimize } g(x) = \| f(x) \|^2 = \sum_{i=1}^{m} f_i(x)^2
\]

start at some initial guess \(x^{(1)} \), and repeat for \(k = 1, 2, \ldots \):

- linearize \(f \) around \(x^{(k)} \):
 \[
 \hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})
 \]

- substitute affine approximation \(\hat{f}(x; x^{(k)}) \) for \(f \) in least squares problem:

 \[
 \text{minimize } \| \hat{f}(x; x^{(k)}) \|^2
 \]

- take the solution of this (linear) least squares problem as \(x^{(k+1)} \)
Gauss–Newton update

least squares problem solved in iteration k:

$$\text{minimize} \quad \|f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})\|^2$$

- if $Df(x^{(k)})$ has linearly independent columns, solution is given by

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

- Gauss–Newton step $\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$ is

$$\Delta x^{(k)} = -\left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

$$= -\frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} \nabla g(x^{(k)})$$

(using the expression for $\nabla g(x)$ on page 13.14)
Predicted cost reduction in iteration k

- predicted cost function at $x^{(k+1)}$, based on approximation $\hat{f}(x; x^{(k)})$:

\[
\|\hat{f}(x^{(k+1)}; x^{(k)})\|^2
= \|f(x^{(k)}) + Df(x^{(k)})\Delta x^{(k)}\|^2
= \|f(x^{(k)})\|^2 + 2f(x^{(k)})^T Df(x^{(k)})\Delta x^{(k)} + \|Df(x^{(k)})\Delta x^{(k)}\|^2
= \|f(x^{(k)})\|^2 - \|Df(x^{(k)})\Delta x^{(k)}\|^2
\]

- if columns of $Df(x^{(k)})$ are linearly independent and $\Delta x^{(k)} \neq 0$,

\[
\|\hat{f}(x^{(k+1)}; x^{(k)})\|^2 < \|f(x^{(k)})\|^2
\]

- however, $\hat{f}(x; x^{(k)})$ is only a local approximation of $f(x)$, so it is possible that

\[
\|f(x^{(k+1)})\|^2 > \|f(x^{(k)})\|^2
\]
Outline

• definition and examples

• derivatives and optimality condition

• Gauss–Newton method

• Levenberg–Marquardt method
Levenberg–Marquardt method

addresses two difficulties in Gauss–Newton method:

• how to update \(x^{(k)} \) when columns of \(D f(x^{(k)}) \) are linearly dependent
• what to do when the Gauss–Newton update does not reduce \(\| f(x) \|^2 \)

Levenberg–Marquardt method

compute \(x^{(k+1)} \) by solving a \textit{regularized} least squares problem

\[
\text{minimize} \quad \| \hat{f}(x; x^{(k)}) \|^2 + \lambda^{(k)} \| x - x^{(k)} \|^2
\]

• as before, \(\hat{f}(x; x^{(k)}) = f(x^{(k)}) + D f(x^{(k)})(x - x^{(k)}) \)
• second term forces \(x \) to be close to \(x^{(k)} \) where \(\hat{f}(x; x^{(k)}) \approx f(x) \).
• with \(\lambda^{(k)} > 0 \), always has a unique solution (no condition on \(D f(x^{(k)}) \))
Levenberg–Marquardt update

regularized least squares problem solved in iteration \(k \)

\[
\text{minimize} \quad \| f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)}) \|^2 + \lambda^{(k)} \| x - x^{(k)} \|^2
\]

• solution is given by

\[
x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} Df(x^{(k)})^T f(x^{(k)})
\]

• Levenberg–Marquardt step \(\Delta x^{(k)} = x^{(k+1)} - x^{(k)} \) is

\[
\Delta x^{(k)} = - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} Df(x^{(k)})^T f(x^{(k)})
\]

\[
= - \frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} \nabla g(x^{(k)})
\]

• for \(\lambda^{(k)} = 0 \) this is the Gauss–Newton step (if defined); for large \(\lambda^{(k)} \),

\[
\Delta x^{(k)} \approx - \frac{1}{2\lambda^{(k)}} \nabla g(x^{(k)})
\]
Regularization parameter

several strategies for adapting $\lambda^{(k)}$ are possible; for example:

- at iteration k, compute the solution \hat{x} of

 $$\text{minimize} \quad \| \hat{f}(x; x^{(k)}) \|^2 + \lambda^{(k)} \| x - x^{(k)} \|^2$$

- if $\| f(\hat{x}) \|^2 < \| f(x^{(k)}) \|^2$, take $x^{(k+1)} = \hat{x}$ and decrease λ
- otherwise, do not update x (take $x^{(k+1)} = x^{(k)}$), but increase λ

Some variations

- compare actual cost reduction with predicted cost reduction
- solve a least squares problem with “trust region”

 $$\text{minimize} \quad \| \hat{f}(x; x^{(k)}) \|^2$$
 $$\text{subject to} \quad \| x - x^{(k)} \|^2 \leq \gamma$$
choose $x^{(1)}$ and $\lambda^{(1)}$ and repeat for $k = 1, 2, \ldots$:

1. evaluate $f(x^{(k)})$ and $A = D f(x^{(k)})$

2. compute solution of regularized least squares problem:

$$\hat{x} = x^{(k)} - (A^T A + \lambda^{(k)} I)^{-1} A^T f(x^{(k)})$$

3. define $x^{(k+1)}$ and $\lambda^{(k+1)}$ as follows:

$$\begin{cases}
 x^{(k+1)} = \hat{x} \text{ and } \lambda^{(k+1)} = \beta_1 \lambda^{(k)} & \text{if } \|f(\hat{x})\|^2 < \|f(x^{(k)})\|^2 \\
 x^{(k+1)} = x^{(k)} \text{ and } \lambda^{(k+1)} = \beta_2 \lambda^{(k)} & \text{otherwise}
\end{cases}$$

- β_1, β_2 are constants with $0 < \beta_1 < 1 < \beta_2$
- in step 2, \hat{x} can be computed using a QR factorization
- terminate if $\nabla g(x^{(k)}) = 2A^T f(x^{(k)})$ is sufficiently small
• iterates from three starting points, with $\lambda^{(1)} = 0.1$, $\beta_1 = 0.8$, $\beta_2 = 2$

• algorithm started at (1.8, 3.5) and (3.0, 1.5) finds minimum (1.18, 0.82)

• started at (2.2, 3.5) converges to non-optimal point
Cost function and regularization parameter

cost function and $\lambda^{(k)}$ for the three starting points on previous page