L. Vandenberghe ECE133A (Fall 2024)

13. Nonlinear least squares

e definition and examples
e derivatives and optimality condition
e Gauss—Newton method

e |evenberg—Marquardt method
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Nonlinear least squares

minimize f:f,-(x)2 =[£I
i=1

o f1(x),..., fm(x) are differentiable functions of a vector variable x

e fis a function from R” to R with components f;(x):

- fi(x) ]
f2(x)

f(x) =

e problem reduces to (linear) least squares if f(x) = Ax — b
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Location from range measurements

e vector x¢x represents unknown location in 2-D or 3-D

e we estimate x.x by measuring distances to known points ay, ..., a;:

0i = ||xex —ajl| +vi, 1=1,...,m
e V; IS measurement error

Nonlinear least squares estimate: compute estimate £ by minimizing
S 2
2> (= aill = pi)
i=1

this is a nonlinear least squares problem with f;(x) = |[|x — a;|| — p;
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graph of || f(x)]|

e correct position is xex = (1, 1)
e five points a;, marked with blue dots

e red square marks nonlinear least squares estimate £ = (1.18,0.82)
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Location from multiple camera views

/
X
S
/
o/ >
camera center principal axis
image plane

Camera model: described by parameters A e R¥3, b e R?,c e R?,d e R

e object at location x € R3 creates image at location x” € R? in image plane

1
" = Ax+Db
* ch+d( *x+b)

c'x +d > 0 if object is in front of the camera

e A, b, c, d characterize the camera, and its position and orientation
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Location from multiple camera views

e an object at location x¢ is viewed by [ cameras (described by A;, b;, c;, d;)

e the image of the object in the image plane of camera i is at location

1
Vi = cheX+d (Ajxex + bj) +v;

e V; is measurement or quantization error

e goal is to estimate 3-D location x.x from the [ observations yq, ..., y;

Nonlinear least squares estimate: compute estimate £ by minimizing

1 | 2
—(Aix + b;) — y;
; ClTx N di( ; i) = Vi
this is a nonlinear least squares problem with m = 21,
(Ax+b)1 (Ax+b)2
Ji(x) = -1, fiei(x) = — - (yi)2
cx+d cx+d
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Model fitting

N

minimize (f(xD, 9) = y()?
i=1

e model f(x,0) is parameterized by parameters 6, ..., 6,

o (xW yMy " (x™),y(N)) are data points

e the minimization is over the model parameters 6

e on page 9.9 we considered models that are linear in the parameters 6:

S

f(x,0)=01f1(x)+---+0,f(x)

here we allow f(x, 6) to be a nonlinear function of ¢
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Example

f(x,0) = 01 exp(0x) cos(6zx + 04)

v -

a nonlinear least squares problem with four variables 0y, 6,, 03, 04:

N i : N\ 2
minimize Z (gleezxo cos(93x(l) +04) — y(z))
i=1
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Orthogonal distance regression

minimize the mean square distance of data points to graph of f(x, 6)
Example: orthogonal distance regression with cubic polynomial
f(x,0) = 0] + 02x + O3x° + O4x>

f(x,0) f(x,0)

standard least squares fit orthogonal distance fit
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Nonlinear least squares formulation

N . . . .
minimize > ((f(u(l), 0) — yD)2 4 || —x(l)||2)
i=1

e optimization variables are model parameters 6 and N points u ()

e ith term is squared distance of data point (x(?, y®) to point (¢, f(u?, §))

(x@, y)

@2 = (f(u®,0) = y )2+ u® - 5O
@, fu®,0)

e minimizing d? over u'!) gives squared distance of (x(), y(V) to graph

e minimizing ; d? over uV, ..., u'™ and 6 minimizes mean squared distance
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Binary classification

f(x,0) = sign (01 £1(x) + 02f5(x) + -+ + 0, f(x))

e in lecture 9 (p 9.25) we computed 6 by solving a linear least squares problem

e Detter results are obtained by solving a nonlinear least squares problem

N
minimize Z (q§(91f1 (x(i)) + -+ prp(x(i))) — y("))2

i=1

¢(u)
(| o (x1,y()) are data points, y? € {-1,1}
e ¢(u) is the sigmoidal function
| | | | | | oy ~ el — o7
4 2 2 4 ¢(u) = TR
a differentiable approximation of sign(u)
-1+t
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Gradient

Gradient of differentiable function g : R” — Ratz € R" is

0g 0g 0g
\Y = | =2 (7). == ==
2(z2) axl(z), axz(z), : 6xn(Z)

Affine approximation (linearization) of g around z is

g

20 = 2D+ S5 @ -2+ S () e~ )
X1 Xn

= g(2)+Vg(2)'(x-2)

(see page 1.27)
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Derivative matrix

Derivative matrix (Jacobian) of differentiable function f : R" — R™ at z € R™:

[ 0] dfi dfi

(2)

I A _ .
012 P of V/i(2)
pr=| @ T @ | sz;(Z)T
. . Vi)
Jm Jm Jm
A

Affine approximation (linearization) of f around z is
f(x)=f(2)+Df(2)(x -2)

e see page 3.40

e we also use notation f(x;z) to indicate the point z around which we linearize
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Gradient of nonlinear least squares cost

m
g = IF (I* = > fi(x)?
i=1
o first derivative of g with respect to x;:

dfi

( )—ZZﬁ(Z) (Z)

e gradient of g at z:

(9_x1(z)

Vg(z) = fi(DVfi(z) =2Df(2)' f(2)

&Ms

i ﬁxn(z) |
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Optimality condition

minimize g(x) = ﬁ]f,-(x)2
i=1

e necessary condition for optimality: if x minimizes g(x) then it must satisfy

Vg(x) =2Df(x)' f(x) =0

e this generalizes the normal equations: if f(x) = Ax — b, then D f(x) = A and

Vg(x) = 2AT (Ax - b)

e for general f, the condition Vg(x) = 0 is not sufficient for optimality
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Gauss—Newton method

minimize  g(x) = | f()II* = 3 fi(x)*
i=1

start at some initial guess x'!, and repeat for k = 1,2, .. .:

e linearize f around x():

Foex®y = ) + Df ) (6 - x0)

e substitute affine approximation £ (x;x¥)) for f in least squares problem:

minimize || £ (x; x%)) |2

e take the solution of this (linear) least squares problem as x(**1)
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Gauss—Newton update

least squares problem solved in iteration k:
minimize || f(x®)) + D F(x®) (x = x50y ||?

e if D f(x%)) has linearly independent columns, solution is given by

K = 0 (DY D p(x8)) D p () 0

e Gauss—Newton step Ax(K) = x(k+1) _ (k) jg

A = (DO DO D) (0
= 2 (DA D)) Teeh)
(using the expression for Vg(x) on page 13.14)
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Levenberg—Marquardt method

addresses two difficulties in Gauss—Newton method:

e how to update x(¥) when columns of D f(x¥)) are linearly dependent

e what to do when the Gauss—Newton update does not reduce ||f(x)||2

Levenberg—Marquardt method

compute x(k+1) by solving a regularized least squares problem
minimize || £ (e x) |12 + A0 ||x — x0)2

o as before, f(x;x®)) = F(x®) + D £(x®)(x — x¥))
e second term forces x to be close to x(¥) where f(x;x®)) ~ f(x)

e with 1¥) > 0, always has a unique solution (no condition on D f(x(¥)))
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Levenberg—Marquardt update

regularized least squares problem solved in iteration k
minimize || f(x%)) + D f(x®) (x — x50 |12 + 20| x — x 02

e solution is given by

L) — (k) _ ( D £ (xUNTD £(x®) 4 1) ,)‘1 D £ (xUNT £(x(0)

e Levenberg-Marquardt step Ax(%) = x(k+D) _ (k) jg

A = (DO DO +a01) D) pab)

2 (DGO DO +a01) v ()

e for 1K) = 0 this is the Gauss—Newton step (if defined); for large 1(%),

1
AxF) ~ —Wv(g (x()
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Regularization parameter

several strategies for adapting 1(¥) are possible; for example:

e at iteration k, compute the solution x of

minimize || £ ;x5 [12 + A0 ||x — x B2

o if |FX)|? < |IF(x5))?, take xk+D) = £ and decrease A

e otherwise, do not update x (take x¥*1) = x(K)) but increase A

Some variations
e compare actual cost reduction with predicted cost reduction

e solve a least squares problem with “trust region”

minimize || £ (x;x(%))]?

subjectto  |lx —x®|2 <y

Nonlinear least squares
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Summary: Levenberg—Marquardt method

choose x1) and A1) and repeat for k = 1,2, .. .:

1. evaluate f(x¥)) and A = D f(x(%))

2. compute solution of regularized least squares problem:

£=x®) — (ATA + A0 N71AT £(x(0))

3. define x**1) and A%+ as follows:

{ 2 = g and A = g a® it [ F@)12 < 1 E))1?

x(K+D) = x(K) gnd Ak+D) = B, 1K) otherwise

e (1, BrareconstantswithO < 81 <1 < 3
e in step 2, X can be computed using a QR factorization

e terminate if Vg(x(K)) = 247 £(x0) is sufficiently small
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Location from range measurements

e iterates from three starting points, with A = 0.1, =0.8, 8, =2
e algorithm started at (1.8,3.5) and (3.0, 1.5) finds minimum (1.18,0.82)

e started at (2.2, 3.5) converges to non-optimal point
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Cost function and regularization parameter
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cost function and 1% for the three starting points on previous page
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