
L. Vandenberghe ECE133A (Fall 2024)

13. Nonlinear least squares

• definition and examples

• derivatives and optimality condition

• Gauss–Newton method

• Levenberg–Marquardt method
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Nonlinear least squares

minimize
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)2 = ∥ 𝑓 (𝑥)∥2

• 𝑓1(𝑥), . . . , 𝑓𝑚 (𝑥) are differentiable functions of a vector variable 𝑥

• 𝑓 is a function from R𝑛 to R𝑚 with components 𝑓𝑖 (𝑥):

𝑓 (𝑥) =


𝑓1(𝑥)
𝑓2(𝑥)
...

𝑓𝑚 (𝑥)


• problem reduces to (linear) least squares if 𝑓 (𝑥) = 𝐴𝑥 − 𝑏
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Location from range measurements

• vector 𝑥ex represents unknown location in 2-D or 3-D

• we estimate 𝑥ex by measuring distances to known points 𝑎1, . . . , 𝑎𝑚:

𝜌𝑖 = ∥𝑥ex − 𝑎𝑖∥ + 𝑣𝑖, 𝑖 = 1, . . . , 𝑚

• 𝑣𝑖 is measurement error

Nonlinear least squares estimate: compute estimate 𝑥 by minimizing

𝑚∑︁
𝑖=1

(∥𝑥 − 𝑎𝑖∥ − 𝜌𝑖)2

this is a nonlinear least squares problem with 𝑓𝑖 (𝑥) = ∥𝑥 − 𝑎𝑖∥ − 𝜌𝑖
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Example
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• correct position is 𝑥ex = (1, 1)
• five points 𝑎𝑖, marked with blue dots

• red square marks nonlinear least squares estimate 𝑥 = (1.18, 0.82)
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Location from multiple camera views

camera center

G′ G

principal axis

image plane

Camera model: described by parameters 𝐴 ∈ R2×3, 𝑏 ∈ R2, 𝑐 ∈ R3, 𝑑 ∈ R

• object at location 𝑥 ∈ R3 creates image at location 𝑥′ ∈ R2 in image plane

𝑥′ =
1

𝑐𝑇𝑥 + 𝑑
(𝐴𝑥 + 𝑏)

𝑐𝑇𝑥 + 𝑑 > 0 if object is in front of the camera

• 𝐴, 𝑏, 𝑐, 𝑑 characterize the camera, and its position and orientation
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Location from multiple camera views

• an object at location 𝑥ex is viewed by 𝑙 cameras (described by 𝐴𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖)

• the image of the object in the image plane of camera 𝑖 is at location

𝑦𝑖 =
1

𝑐𝑇𝑖 𝑥ex + 𝑑𝑖
(𝐴𝑖𝑥ex + 𝑏𝑖) + 𝑣𝑖

• 𝑣𝑖 is measurement or quantization error

• goal is to estimate 3-D location 𝑥ex from the 𝑙 observations 𝑦1, . . . , 𝑦𝑙

Nonlinear least squares estimate: compute estimate 𝑥 by minimizing

𝑙∑︁
𝑖=1






 1
𝑐𝑇𝑖 𝑥 + 𝑑𝑖

(𝐴𝑖𝑥 + 𝑏𝑖) − 𝑦𝑖






2

this is a nonlinear least squares problem with 𝑚 = 2𝑙,

𝑓𝑖 (𝑥) = (𝐴𝑖𝑥 + 𝑏𝑖)1
𝑐𝑇𝑖 𝑥 + 𝑑𝑖

− (𝑦𝑖)1, 𝑓𝑙+𝑖 (𝑥) =
(𝐴𝑖𝑥 + 𝑏𝑖)2
𝑐𝑇𝑖 𝑥 + 𝑑𝑖

− (𝑦𝑖)2
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Model fitting

minimize
𝑁∑︁
𝑖=1

( 𝑓 (𝑥 (𝑖), 𝜃) − 𝑦(𝑖))2

• model 𝑓 (𝑥, 𝜃) is parameterized by parameters 𝜃1, . . . , 𝜃𝑝

• (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁)) are data points

• the minimization is over the model parameters 𝜃

• on page 9.9 we considered models that are linear in the parameters 𝜃:

𝑓 (𝑥, 𝜃) = 𝜃1 𝑓1(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

here we allow 𝑓 (𝑥, 𝜃) to be a nonlinear function of 𝜃
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Example

5̂ (G, \)

5̂ (G, \) = \1 exp(\2G) cos(\3G + \4)

G

a nonlinear least squares problem with four variables 𝜃1, 𝜃2, 𝜃3, 𝜃4:

minimize
𝑁∑︁
𝑖=1

(
𝜃1𝑒

𝜃2𝑥
(𝑖)

cos(𝜃3𝑥
(𝑖) + 𝜃4) − 𝑦(𝑖)

)2
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Orthogonal distance regression

minimize the mean square distance of data points to graph of 𝑓 (𝑥, 𝜃)

Example: orthogonal distance regression with cubic polynomial

𝑓 (𝑥, 𝜃) = 𝜃1 + 𝜃2𝑥 + 𝜃3𝑥
2 + 𝜃4𝑥

3

standard least squares fit
G

5̂ (G, \)

orthogonal distance fit
G

5̂ (G, \)
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Nonlinear least squares formulation

minimize
𝑁∑︁
𝑖=1

(
( 𝑓 (𝑢(𝑖), 𝜃) − 𝑦(𝑖))2 + ∥𝑢(𝑖) − 𝑥 (𝑖)∥2

)
• optimization variables are model parameters 𝜃 and 𝑁 points 𝑢(𝑖)

• 𝑖th term is squared distance of data point (𝑥 (𝑖), 𝑦(𝑖)) to point (𝑢(𝑖), 𝑓 (𝑢(𝑖), 𝜃))

38

(D(8), 5̂ (D(8), \))

(G (8), H (8))

32
8 = ( 5̂ (D(8), \) − H(8))2 + ‖D(8) − G (8)‖2

• minimizing 𝑑2
𝑖 over 𝑢(𝑖) gives squared distance of (𝑥 (𝑖), 𝑦(𝑖)) to graph

• minimizing ∑
𝑖 𝑑

2
𝑖 over 𝑢(1), . . . , 𝑢(𝑁) and 𝜃 minimizes mean squared distance
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Binary classification

𝑓 (𝑥, 𝜃) = sign
(
𝜃1 𝑓1(𝑥) + 𝜃2 𝑓2(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

)
• in lecture 9 (p 9.25) we computed 𝜃 by solving a linear least squares problem

• better results are obtained by solving a nonlinear least squares problem

minimize
𝑁∑︁
𝑖=1

(
𝜙(𝜃1 𝑓1(𝑥 (𝑖)) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥 (𝑖))) − 𝑦(𝑖)

)2

−4 −2 2 4

−1

1

D

q(D)
• (𝑥 (𝑖), 𝑦(𝑖)) are data points, 𝑦(𝑖) ∈ {−1, 1}
• 𝜙(𝑢) is the sigmoidal function

𝜙(𝑢) = 𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢

a differentiable approximation of sign(𝑢)
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Gradient

Gradient of differentiable function 𝑔 : R𝑛 → R at 𝑧 ∈ R𝑛 is

∇𝑔(𝑧) =
(
𝜕𝑔

𝜕𝑥1
(𝑧), 𝜕𝑔

𝜕𝑥2
(𝑧), . . . , 𝜕𝑔

𝜕𝑥𝑛
(𝑧)

)

Affine approximation (linearization) of 𝑔 around 𝑧 is

𝑔̂(𝑥) = 𝑔(𝑧) + 𝜕𝑔

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + · · · + 𝜕𝑔

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛)

= 𝑔(𝑧) + ∇𝑔(𝑧)𝑇 (𝑥 − 𝑧)

(see page 1.27)
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Derivative matrix

Derivative matrix (Jacobian) of differentiable function 𝑓 : R𝑛 → R𝑚 at 𝑧 ∈ R𝑛:

𝐷 𝑓 (𝑧) =



𝜕 𝑓1
𝜕𝑥1

(𝑧) 𝜕 𝑓1
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓1
𝜕𝑥𝑛

(𝑧)
𝜕 𝑓2
𝜕𝑥1

(𝑧) 𝜕 𝑓2
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓2
𝜕𝑥𝑛

(𝑧)
... ... ...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑧) 𝜕 𝑓𝑚
𝜕𝑥2

(𝑧) · · · 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑧)


=


∇ 𝑓1(𝑧)𝑇
∇ 𝑓2(𝑧)𝑇

...
∇ 𝑓𝑚 (𝑧)𝑇


Affine approximation (linearization) of 𝑓 around 𝑧 is

𝑓 (𝑥) = 𝑓 (𝑧) + 𝐷 𝑓 (𝑧) (𝑥 − 𝑧)

• see page 3.40

• we also use notation 𝑓 (𝑥; 𝑧) to indicate the point 𝑧 around which we linearize
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Gradient of nonlinear least squares cost

𝑔(𝑥) = ∥ 𝑓 (𝑥)∥2 =
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)2

• first derivative of 𝑔 with respect to 𝑥 𝑗 :

𝜕𝑔

𝜕𝑥 𝑗
(𝑧) = 2

𝑚∑︁
𝑖=1

𝑓𝑖 (𝑧) 𝜕 𝑓𝑖
𝜕𝑥 𝑗

(𝑧)

• gradient of 𝑔 at 𝑧:

∇𝑔(𝑧) =


𝜕𝑔

𝜕𝑥1
(𝑧)
...

𝜕𝑔

𝜕𝑥𝑛
(𝑧)


= 2

𝑚∑︁
𝑖=1

𝑓𝑖 (𝑧)∇ 𝑓𝑖 (𝑧) = 2𝐷 𝑓 (𝑧)𝑇 𝑓 (𝑧)
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Optimality condition

minimize 𝑔(𝑥) =
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)2

• necessary condition for optimality: if 𝑥 minimizes 𝑔(𝑥) then it must satisfy

∇𝑔(𝑥) = 2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) = 0

• this generalizes the normal equations: if 𝑓 (𝑥) = 𝐴𝑥 − 𝑏, then 𝐷 𝑓 (𝑥) = 𝐴 and

∇𝑔(𝑥) = 2𝐴𝑇 (𝐴𝑥 − 𝑏)

• for general 𝑓 , the condition ∇𝑔(𝑥) = 0 is not sufficient for optimality
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Gauss–Newton method

minimize 𝑔(𝑥) = ∥ 𝑓 (𝑥)∥2 =
𝑚∑︁
𝑖=1

𝑓𝑖 (𝑥)2

start at some initial guess 𝑥 (1), and repeat for 𝑘 = 1, 2, . . .:

• linearize 𝑓 around 𝑥 (𝑘):

𝑓 (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))

• substitute affine approximation 𝑓 (𝑥; 𝑥 (𝑘)) for 𝑓 in least squares problem:

minimize ∥ 𝑓 (𝑥; 𝑥 (𝑘))∥2

• take the solution of this (linear) least squares problem as 𝑥 (𝑘+1)
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Gauss–Newton update

least squares problem solved in iteration 𝑘 :

minimize ∥ 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))∥2

• if 𝐷 𝑓 (𝑥 (𝑘)) has linearly independent columns, solution is given by

𝑥 (𝑘+1) = 𝑥 (𝑘) −
(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘))

)−1
𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘))

• Gauss–Newton step Δ𝑥 (𝑘) = 𝑥 (𝑘+1) − 𝑥 (𝑘) is

Δ𝑥 (𝑘) = −
(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘))

)−1
𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘))

= −1
2

(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘))

)−1
∇𝑔(𝑥 (𝑘))

(using the expression for ∇𝑔(𝑥) on page 13.14)
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Levenberg–Marquardt method

addresses two difficulties in Gauss–Newton method:

• how to update 𝑥 (𝑘) when columns of 𝐷 𝑓 (𝑥 (𝑘)) are linearly dependent

• what to do when the Gauss–Newton update does not reduce ∥ 𝑓 (𝑥)∥2

Levenberg–Marquardt method

compute 𝑥 (𝑘+1) by solving a regularized least squares problem

minimize ∥ 𝑓 (𝑥; 𝑥 (𝑘))∥2 + 𝜆(𝑘)∥𝑥 − 𝑥 (𝑘)∥2

• as before, 𝑓 (𝑥; 𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))
• second term forces 𝑥 to be close to 𝑥 (𝑘) where 𝑓 (𝑥; 𝑥 (𝑘)) ≈ 𝑓 (𝑥)
• with 𝜆(𝑘) > 0, always has a unique solution (no condition on 𝐷 𝑓 (𝑥 (𝑘)))
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Levenberg–Marquardt update

regularized least squares problem solved in iteration 𝑘

minimize ∥ 𝑓 (𝑥 (𝑘)) + 𝐷 𝑓 (𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘))∥2 + 𝜆(𝑘)∥𝑥 − 𝑥 (𝑘)∥2

• solution is given by

𝑥 (𝑘+1) = 𝑥 (𝑘) −
(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘)) + 𝜆(𝑘) 𝐼

)−1
𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘))

• Levenberg–Marquardt step Δ𝑥 (𝑘) = 𝑥 (𝑘+1) − 𝑥 (𝑘) is

Δ𝑥 (𝑘) = −
(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘)) + 𝜆(𝑘) 𝐼

)−1
𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘))

= −1
2

(
𝐷 𝑓 (𝑥 (𝑘))𝑇𝐷 𝑓 (𝑥 (𝑘)) + 𝜆(𝑘) 𝐼

)−1
∇𝑔(𝑥 (𝑘))

• for 𝜆(𝑘) = 0 this is the Gauss–Newton step (if defined); for large 𝜆(𝑘),

Δ𝑥 (𝑘) ≈ − 1
2𝜆(𝑘)

∇𝑔(𝑥 (𝑘))
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Regularization parameter

several strategies for adapting 𝜆(𝑘) are possible; for example:

• at iteration 𝑘 , compute the solution 𝑥 of

minimize ∥ 𝑓 (𝑥; 𝑥 (𝑘))∥2 + 𝜆(𝑘)∥𝑥 − 𝑥 (𝑘)∥2

• if ∥ 𝑓 (𝑥)∥2 < ∥ 𝑓 (𝑥 (𝑘)∥2, take 𝑥 (𝑘+1) = 𝑥 and decrease 𝜆

• otherwise, do not update 𝑥 (take 𝑥 (𝑘+1) = 𝑥 (𝑘)), but increase 𝜆

Some variations

• compare actual cost reduction with predicted cost reduction

• solve a least squares problem with “trust region”

minimize ∥ 𝑓 (𝑥; 𝑥 (𝑘))∥2

subject to ∥𝑥 − 𝑥 (𝑘)∥2 ≤ 𝛾
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Summary: Levenberg–Marquardt method

choose 𝑥 (1) and 𝜆(1) and repeat for 𝑘 = 1, 2, . . .:

1. evaluate 𝑓 (𝑥 (𝑘)) and 𝐴 = 𝐷 𝑓 (𝑥 (𝑘))
2. compute solution of regularized least squares problem:

𝑥 = 𝑥 (𝑘) − (𝐴𝑇𝐴 + 𝜆(𝑘) 𝐼)−1𝐴𝑇 𝑓 (𝑥 (𝑘))

3. define 𝑥 (𝑘+1) and 𝜆(𝑘+1) as follows:{
𝑥 (𝑘+1) = 𝑥 and 𝜆(𝑘+1) = 𝛽1𝜆

(𝑘) if ∥ 𝑓 (𝑥)∥2 < ∥ 𝑓 (𝑥 (𝑘))∥2

𝑥 (𝑘+1) = 𝑥 (𝑘) and 𝜆(𝑘+1) = 𝛽2𝜆
(𝑘) otherwise

• 𝛽1, 𝛽2 are constants with 0 < 𝛽1 < 1 < 𝛽2

• in step 2, 𝑥 can be computed using a QR factorization

• terminate if ∇𝑔(𝑥 (𝑘)) = 2𝐴𝑇 𝑓 (𝑥 (𝑘)) is sufficiently small
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Location from range measurements

0 1 2 3 4
0

1

2

3

4

G1

G 2

• iterates from three starting points, with 𝜆(1) = 0.1, 𝛽1 = 0.8, 𝛽2 = 2

• algorithm started at (1.8, 3.5) and (3.0, 1.5) finds minimum (1.18, 0.82)
• started at (2.2, 3.5) converges to non-optimal point
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Cost function and regularization parameter

1 2 3 4 5 6 7 8 9 10
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2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

:
_
(:
)

cost function and 𝜆(𝑘) for the three starting points on previous page
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