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2. Norm, distance, angle

• norm

• distance

• 𝑘-means algorithm

• angle

• complex vectors

2.1



Euclidean norm

(Euclidean) norm of vector 𝑎 ∈ R𝑛:

∥𝑎∥ =

√︃
𝑎2

1 + 𝑎2
2 + · · · + 𝑎2

𝑛

=
√︁
𝑎𝑇𝑎

• if 𝑛 = 1, ∥𝑎∥ is the absolute value |𝑎 |
• measures the magnitude of 𝑎

• sometimes written as ∥𝑎∥2 to distinguish from other norms, e.g.,

∥𝑎∥1 = |𝑎1 | + |𝑎2 | + · · · + |𝑎𝑛 |
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Properties

Positive definiteness

∥𝑎∥ ≥ 0 for all 𝑎, ∥𝑎∥ = 0 only if 𝑎 = 0

Homogeneity

∥𝛽𝑎∥ = |𝛽 |∥𝑎∥ for all vectors 𝑎 and scalars 𝛽

Triangle inequality (proved on page 2.7)

∥𝑎 + 𝑏∥ ≤ ∥𝑎∥ + ∥𝑏∥ for all vectors 𝑎 and 𝑏 of equal length

Norm of block vector: if 𝑎, 𝑏 are vectors,[ 𝑎
𝑏

] = √︃
∥𝑎∥2 + ∥𝑏∥2
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Cauchy–Schwarz inequality

|𝑎𝑇𝑏 | ≤ ∥𝑎∥∥𝑏∥ for all 𝑎, 𝑏 ∈ R𝑛

moreover, equality |𝑎𝑇𝑏 | = ∥𝑎∥∥𝑏∥ holds if:

• 𝑎 = 0 or 𝑏 = 0; in this case 𝑎𝑇𝑏 = 0 = ∥𝑎∥∥𝑏∥
• 𝑎 ≠ 0 and 𝑏 ≠ 0, and 𝑏 = 𝛾𝑎 for some 𝛾 > 0; in this case

0 < 𝑎𝑇𝑏 = 𝛾∥𝑎∥2 = ∥𝑎∥∥𝑏∥

• 𝑎 ≠ 0 and 𝑏 ≠ 0, and 𝑏 = −𝛾𝑎 for some 𝛾 > 0; in this case

0 > 𝑎𝑇𝑏 = −𝛾∥𝑎∥2 = −∥𝑎∥∥𝑏∥
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Proof of Cauchy–Schwarz inequality

1. trivial if 𝑎 = 0 or 𝑏 = 0

2. assume ∥𝑎∥ = ∥𝑏∥ = 1; we show that −1 ≤ 𝑎𝑇𝑏 ≤ 1

0 ≤ ∥𝑎 − 𝑏∥2

= (𝑎 − 𝑏)𝑇 (𝑎 − 𝑏)
= ∥𝑎∥2 − 2𝑎𝑇𝑏 + ∥𝑏∥2

= 2(1 − 𝑎𝑇𝑏)

with equality only if 𝑎 = 𝑏

0 ≤ ∥𝑎 + 𝑏∥2

= (𝑎 + 𝑏)𝑇 (𝑎 + 𝑏)
= ∥𝑎∥2 + 2𝑎𝑇𝑏 + ∥𝑏∥2

= 2(1 + 𝑎𝑇𝑏)

with equality only if 𝑎 = −𝑏

3. for general nonzero 𝑎, 𝑏, apply case 2 to the unit-norm vectors

1
∥𝑎∥𝑎,

1
∥𝑏∥𝑏
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Average and RMS value

let 𝑎 be a real 𝑛-vector

• the average of the elements of 𝑎 is

avg(𝑎) = 𝑎1 + 𝑎2 + · · · + 𝑎𝑛
𝑛

=
1𝑇𝑎
𝑛

• the root-mean-square value is the root of the average squared entry

rms(𝑎) =
√︄
𝑎2

1 + 𝑎2
2 + · · · + 𝑎2

𝑛

𝑛
=
∥𝑎∥√
𝑛

Exercise: show that | avg(𝑎) | ≤ rms(𝑎)
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Triangle inequality from Cauchy–Schwarz inequality

for vectors 𝑎, 𝑏 of equal size

∥𝑎 + 𝑏∥2 = (𝑎 + 𝑏)𝑇 (𝑎 + 𝑏)
= 𝑎𝑇𝑎 + 𝑏𝑇𝑎 + 𝑎𝑇𝑏 + 𝑏𝑇𝑏

= ∥𝑎∥2 + 2𝑎𝑇𝑏 + ∥𝑏∥2

≤ ∥𝑎∥2 + 2∥𝑎∥∥𝑏∥ + ∥𝑏∥2 (by Cauchy–Schwarz)
= (∥𝑎∥ + ∥𝑏∥)2

• taking squareroots gives the triangle inequality

• triangle inequality is an equality if and only if 𝑎𝑇𝑏 = ∥𝑎∥∥𝑏∥ (see page 2.4)

• also note from line 3 that ∥𝑎 + 𝑏∥2 = ∥𝑎∥2 + ∥𝑏∥2 if 𝑎𝑇𝑏 = 0
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Distance

the (Euclidean) distance between vectors 𝑎 and 𝑏 is defined as ∥𝑎 − 𝑏∥

• ∥𝑎 − 𝑏∥ ≥ 0 for all 𝑎, 𝑏 and ∥𝑎 − 𝑏∥ = 0 only if 𝑎 = 𝑏

• triangle inequality

∥𝑎 − 𝑐∥ ≤ ∥𝑎 − 𝑏∥ + ∥𝑏 − 𝑐∥ for all 𝑎, 𝑏, 𝑐

‖a − b‖

‖b − c‖
‖a − c‖

a b

c

• RMS deviation between 𝑛-vectors 𝑎 and 𝑏 is rms(𝑎 − 𝑏) = ∥𝑎 − 𝑏∥√
𝑛
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Standard deviation

let 𝑎 be a real 𝑛-vector

• the de-meaned vector is the vector of deviations from the average

𝑎 − avg(𝑎)1 =


𝑎1 − avg(𝑎)
𝑎2 − avg(𝑎)

...
𝑎𝑛 − avg(𝑎)

 =


𝑎1 − (1𝑇𝑎)/𝑛
𝑎2 − (1𝑇𝑎)/𝑛

...
𝑎𝑛 − (1𝑇𝑎)/𝑛


• the standard deviation is the RMS deviation from the average

std(𝑎) = rms(𝑎 − avg(𝑎)1) =
𝑎 − ((1𝑇𝑎)/𝑛)1


√
𝑛

• the de-meaned vector in standard units is

1
std(𝑎) (𝑎 − avg(𝑎)1)
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Mean return and risk of investment

• vectors represent time series of returns on an investment (as a percentage)

• average value is (mean) return of the investment

• standard deviation measures variation around the mean, i.e., risk
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Exercise

show that
avg(𝑎)2 + std(𝑎)2 = rms(𝑎)2

Solution

std(𝑎)2 =
∥𝑎 − avg(𝑎)1∥2

𝑛

=
1
𝑛

(
𝑎 − 1𝑇𝑎

𝑛
1
)𝑇 (

𝑎 − 1𝑇𝑎
𝑛

1
)

=
1
𝑛

(
𝑎𝑇𝑎 − (1𝑇𝑎)2

𝑛
− (1𝑇𝑎)2

𝑛
+

(
1𝑇𝑎
𝑛

)2
𝑛

)
=

1
𝑛

(
𝑎𝑇𝑎 − (1𝑇𝑎)2

𝑛

)
= rms(𝑎)2 − avg(𝑎)2
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Exercise: nearest scalar multiple

given two vectors 𝑎, 𝑏 ∈ R𝑛, with 𝑎 ≠ 0, find scalar multiple 𝑡𝑎 closest to 𝑏

line {ta | t ∈ R}

b

t̂a

Solution

• squared distance between 𝑡𝑎 and 𝑏 is

∥𝑡𝑎 − 𝑏∥2 = (𝑡𝑎 − 𝑏)𝑇 (𝑡𝑎 − 𝑏) = 𝑡2𝑎𝑇𝑎 − 2𝑡𝑎𝑇𝑏 + 𝑏𝑇𝑏

a quadratic function of 𝑡 with positive leading coefficient 𝑎𝑇𝑎

• derivative with respect to 𝑡 is zero for

𝑡 =
𝑎𝑇𝑏

𝑎𝑇𝑎
=

𝑎𝑇𝑏

∥𝑎∥2
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Exercise: average of collection of vectors

given 𝑁 vectors 𝑥1, . . . , 𝑥𝑁 ∈ R𝑛, find the 𝑛-vector 𝑧 that minimizes

∥𝑧 − 𝑥1∥2 + ∥𝑧 − 𝑥2∥2 + · · · + ∥𝑧 − 𝑥𝑁 ∥2

x1

x2

x3

x4

x5 z

𝑧 is also known as the centroid of the points 𝑥1, . . . , 𝑥𝑁
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Solution: sum of squared distances is

∥𝑧 − 𝑥1∥2 + ∥𝑧 − 𝑥2∥2 + · · · + ∥𝑧 − 𝑥𝑁 ∥2

=
𝑛∑︁
𝑖=1

(
(𝑧𝑖 − (𝑥1)𝑖)2 + (𝑧𝑖 − (𝑥2)𝑖)2 + · · · + (𝑧𝑖 − (𝑥𝑁)𝑖)2

)
=

𝑛∑︁
𝑖=1

(
𝑁𝑧2

𝑖 − 2𝑧𝑖 ((𝑥1)𝑖 + (𝑥2)𝑖 + · · · + (𝑥𝑁)𝑖) + (𝑥1)2𝑖 + · · · + (𝑥𝑁)2𝑖
)

here (𝑥 𝑗)𝑖 is 𝑖th element of the vector 𝑥 𝑗

• term 𝑖 in the sum is minimized by

𝑧𝑖 =
1
𝑁
((𝑥1)𝑖 + (𝑥2)𝑖 + · · · + (𝑥𝑁)𝑖)

• solution 𝑧 is component-wise average of the points 𝑥1, . . . , 𝑥𝑁 :

𝑧 =
1
𝑁

(𝑥1 + 𝑥2 + · · · + 𝑥𝑁)
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𝑘-means clustering

a popular iterative algorithm for partitioning 𝑁 vectors 𝑥1, . . . , 𝑥𝑁 in 𝑘 clusters
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Algorithm

choose initial ‘representatives’ 𝑧1, . . . , 𝑧𝑘 for the 𝑘 groups and repeat:

1. assign each vector 𝑥𝑖 to the nearest group representative 𝑧 𝑗

2. set the representative 𝑧 𝑗 to the mean of the vectors assigned to it

• initial representatives are often chosen randomly

• as a variation, choose a random initial partition and start with step 2

• solution depends on choice of initial representatives or partition

• can be shown to converge in a finite number of iterations

• in practice, often restarted a few times, with different starting points
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Example: first iteration

assignment to groups updated representatives
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Iteration 2

assignment to groups updated representatives
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Iteration 3

assignment to groups updated representatives
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Iteration 11

assignment to groups updated representatives
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Iteration 12

assignment to groups updated representatives
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Iteration 13

assignment to groups updated representatives
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Iteration 14

assignment to groups updated representatives
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Final clustering
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Image clustering

• MNIST dataset of handwritten digits

• 𝑁 = 60000 grayscale images of size 28 × 28 (vectors 𝑥𝑖 of size 282 = 784)

• 25 examples:
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Group representatives (𝑘 = 20)

• 𝑘-means algorithm, with 𝑘 = 20 and randomly chosen initial partition

• 20 group representatives
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Group representatives (𝑘 = 20)

result for another initial partition
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Document topic discovery

• 𝑁 = 500 Wikipedia articles, from weekly most popular lists (9/2015–6/2016)

• dictionary of 4423 words

• each article represented by a word histogram vector of size 4423

• result of 𝑘-means algorithm with 𝑘 = 9 and randomly chosen initial partition

Cluster 1

• largest coefficients in cluster representative 𝑧1

word fight win event champion fighter . . .
coefficient 0.038 0.022 0.019 0.015 0.015 . . .

• documents in cluster 1 closest to representative

“Floyd Mayweather, Jr”, “Kimbo Slice”, “Ronda Rousey”, “José Aldo”, “Joe Frazier”, . . .
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Cluster 2

• largest coefficients in cluster representative 𝑧2

word holiday celebrate festival celebration calendar . . .
coefficient 0.012 0.009 0.007 0.006 0.006 . . .

• documents in cluster 2 closest to representative

“Halloween”, “Guy Fawkes Night”, “Diwali”, “Hannukah”, “Groundhog Day”, . . .

Cluster 3

• largest coefficients in cluster representative 𝑧3

word united family party president government . . .
coefficient 0.004 0.003 0.003 0.003 0.003 . . .

• documents in cluster 3 closest to representative

“Mahatma Gandhi”, “Sigmund Freund”, “Carly Fiorina”, “Frederick Douglass”, “Marco
Rubio”, . . .
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Cluster 4

• largest coefficients in cluster representative 𝑧4

word album release song music single . . .
coefficient 0.031 0.016 0.015 0.014 0.011 . . .

• documents in cluster 4 closest to representative

“David Bowie”, “Kanye West”, “Celine Dion”, “Kesha”, “Ariana Grande”, . . .

Cluster 5

• largest coefficients in cluster representative 𝑧5

word game season team win player . . .
coefficient 0.023 0.020 0.018 0.017 0.014 . . .

• documents in cluster 5 closest to representative

“Kobe Bryant”, “Lamar Odom”, “Johan Cruyff”, “Yogi Berra”, “José Mourinho”, . . .
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Cluster 6

• largest coefficients in representative 𝑧6

word series season episode character film . . .
coefficient 0.029 0.027 0.013 0.011 0.008 . . .

• documents in cluster 6 closest to cluster representative

“The X-Files”, “Game of Thrones”, “House of Cards”, “Daredevil”, “Supergirl”, . . .

Cluster 7

• largest coefficients in representative 𝑧7

word match win championship team event . . .
coefficient 0.065 0.018 0.016 0.015 0.015 . . .

• documents in cluster 7 closest to cluster representative

“Wrestlemania 32”, “Payback (2016)”, “Survivor Series (2015)”, “Royal Rumble (2016)”,
“Night of Champions (2015)”, . . .
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Cluster 8

• largest coefficients in representative 𝑧8

word film star role play series . . .
coefficient 0.036 0.014 0.014 0.010 0.009 . . .

• documents in cluster 8 closest to cluster representative
“Ben Affleck”, “Johnny Depp”, “Maureen O’Hara”, “Kate Beckinsale”, “Leonardo
DiCaprio”, . . .

Cluster 9

• largest coefficients in representative 𝑧9

word film million release star character . . .
coefficient 0.061 0.019 0.013 0.010 0.006 . . .

• documents in cluster 9 closest to cluster representative
“Star Wars: The Force Awakens”, “Star Wars Episode I: The Phantom Menace”, “The
Martian (film)”, “The Revenant (2015 film)”, “The Hateful Eight”, . . .
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Angle between vectors

the angle between nonzero real vectors 𝑎, 𝑏 is defined as

arccos
(

𝑎𝑇𝑏

∥𝑎∥ ∥𝑏∥

)
• this is the unique value of 𝜃 ∈ [0, 𝜋] that satisfies 𝑎𝑇𝑏 = ∥𝑎∥∥𝑏∥ cos 𝜃

a

b

θ

• Cauchy–Schwarz inequality guarantees that

−1 ≤ 𝑎𝑇𝑏

∥𝑎∥ ∥𝑏∥ ≤ 1
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Terminology

𝜃 = 0 𝑎𝑇𝑏 = ∥𝑎∥∥𝑏∥ vectors are aligned or parallel

0 ≤ 𝜃 < 𝜋/2 𝑎𝑇𝑏 > 0 vectors make an acute angle

𝜃 = 𝜋/2 𝑎𝑇𝑏 = 0 vectors are orthogonal (𝑎 ⊥ 𝑏)

𝜋/2 < 𝜃 ≤ 𝜋 𝑎𝑇𝑏 < 0 vectors make an obtuse angle

𝜃 = 𝜋 𝑎𝑇𝑏 = −∥𝑎∥∥𝑏∥ vectors are anti-aligned or opposed
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Correlation coefficient

the correlation coefficient between non-constant vectors 𝑎, 𝑏 is

𝜌𝑎𝑏 =
�̃�𝑇 �̃�

∥�̃�∥ ∥�̃�∥

where �̃� = 𝑎 − avg(𝑎)1 and �̃� = 𝑏 − avg(𝑏)1 are the de-meaned vectors

• only defined when 𝑎 and 𝑏 are not constant (�̃� ≠ 0 and �̃� ≠ 0)

• 𝜌𝑎𝑏 is the cosine of the angle between the de-meaned vectors

• a number between −1 and 1

• 𝜌𝑎𝑏 is the average product of the deviations from the mean in standard units

𝜌𝑎𝑏 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑎𝑖 − avg(𝑎))
std(𝑎)

(𝑏𝑖 − avg(𝑏))
std(𝑏)
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Examples
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Regression line

• scatter plot shows two 𝑛-vectors 𝑎, 𝑏 as 𝑛 points (𝑎𝑘 , 𝑏𝑘)
• straight line shows affine function 𝑓 (𝑥) = 𝑐1 + 𝑐2𝑥 with

𝑓 (𝑎𝑘) ≈ 𝑏𝑘 , 𝑘 = 1, . . . , 𝑛

x

f (x)
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Least squares regression

use coefficients 𝑐1, 𝑐2 that minimize 𝐽 =
1
𝑛

𝑛∑︁
𝑘=1

( 𝑓 (𝑎𝑘) − 𝑏𝑘)2

• 𝐽 is a quadratic function of 𝑐1 and 𝑐2:

𝐽 =
1
𝑛

𝑛∑︁
𝑘=1

(𝑐1 + 𝑐2𝑎𝑘 − 𝑏𝑘)2

=
1
𝑛

(
𝑛𝑐2

1 + 2𝑛 avg(𝑎)𝑐1𝑐2 + ∥𝑎∥2𝑐2
2 − 2𝑛 avg(𝑏)𝑐1 − 2𝑎𝑇𝑏𝑐2 + ∥𝑏∥2

)
• to minimize 𝐽, set derivatives with respect to 𝑐1, 𝑐2 to zero:

𝑐1 + avg(𝑎)𝑐2 = avg(𝑏), 𝑛 avg(𝑎)𝑐1 + ∥𝑎∥2𝑐2 = 𝑎𝑇𝑏

• solution is

𝑐2 =
𝑎𝑇𝑏 − 𝑛 avg(𝑎) avg(𝑏)

∥𝑎∥2 − 𝑛 avg(𝑎)2 , 𝑐1 = avg(𝑏) − avg(𝑎)𝑐2
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Interpretation

slope 𝑐2 can be written in terms of correlation coefficient of 𝑎 and 𝑏:

𝑐2 =
(𝑎 − avg(𝑎)1)𝑇 (𝑏 − avg(𝑏)1)

∥𝑎 − avg(𝑎)1∥2 = 𝜌𝑎𝑏
std(𝑏)
std(𝑎)

• hence, expression for regression line can be written as

𝑓 (𝑥) = avg(𝑏) + 𝜌𝑎𝑏 std(𝑏)
std(𝑎) (𝑥 − avg(𝑎))

• correlation coefficient 𝜌𝑎𝑏 is the slope after converting to standard units:

𝑓 (𝑥) − avg(𝑏)
std(𝑏) = 𝜌𝑎𝑏

𝑥 − avg(𝑎)
std(𝑎)
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Examples

𝜌𝑎𝑏 = 0.91 𝜌𝑎𝑏 = −0.89 𝜌𝑎𝑏 = 0.25

• dashed lines in top row show average ± standard deviation

• bottom row shows scatter plots of top row in standard units
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Norm

norm of vector 𝑎 ∈ C𝑛:

∥𝑎∥ =

√︃
|𝑎1 |2 + |𝑎2 |2 + · · · + |𝑎𝑛 |2

=
√︁
𝑎𝐻𝑎

• positive definite:

∥𝑎∥ ≥ 0 for all 𝑎, ∥𝑎∥ = 0 only if 𝑎 = 0

• homogeneous:

∥𝛽𝑎∥ = |𝛽 |∥𝑎∥ for all vectors 𝑎, complex scalars 𝛽

• triangle inequality:

∥𝑎 + 𝑏∥ ≤ ∥𝑎∥ + ∥𝑏∥ for all vectors 𝑎, 𝑏 of equal size
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Cauchy–Schwarz inequality for complex vectors

|𝑎𝐻𝑏 | ≤ ∥𝑎∥∥𝑏∥ for all 𝑎, 𝑏 ∈ C𝑛

moreover, equality |𝑎𝐻𝑏 | = ∥𝑎∥∥𝑏∥ holds if:

• 𝑎 = 0 or 𝑏 = 0

• 𝑎 ≠ 0 and 𝑏 ≠ 0, and 𝑏 = 𝛾𝑎 for some (complex) scalar 𝛾

• exercise: generalize proof for real vectors on page 2.4

• we say 𝑎 and 𝑏 are orthogonal if 𝑎𝐻𝑏 = 0

• we will not need definition of angle, correlation coefficient, . . . in C𝑛
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