5. Orthogonal matrices

- matrices with orthonormal columns
- orthogonal matrices
- tall matrices with orthonormal columns
- complex matrices with orthonormal columns
Orthonormal vectors

a set of real \(m \)-vectors \(\{a_1, a_2, \ldots, a_n\} \) is **orthonormal** if

- the vectors have unit norm: \(\|a_i\| = 1 \)
- they are mutually orthogonal: \(a_i^T a_j = 0 \) if \(i \neq j \)

Example

\[
\begin{bmatrix}
0 \\
0 \\
-1
\end{bmatrix}, \quad
\frac{1}{\sqrt{2}} \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \quad
\frac{1}{\sqrt{2}} \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}
\]
Matrix with orthonormal columns

$A \in \mathbb{R}^{m \times n}$ has orthonormal columns if its Gram matrix is the identity

\[
A^T A = \begin{bmatrix}
a_1 & a_2 & \cdots & a_n \\
a_1^T a_1 & a_1^T a_2 & \cdots & a_1^T a_n \\
a_2^T a_1 & a_2^T a_2 & \cdots & a_2^T a_n \\
\vdots & \vdots & \ddots & \vdots \\
a_n^T a_1 & a_n^T a_2 & \cdots & a_n^T a_n \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{bmatrix}
\]

there is no standard short name for ‘matrix with orthonormal columns’
Matrix-vector product

If $A \in \mathbb{R}^{m \times n}$ has orthonormal columns, then the linear function $f(x) = Ax$

- preserves inner products:

$$
(Ax)^T(Ay) = x^T A^T Ay = x^T y
$$

- preserves norms:

$$
\|Ax\| = \left((Ax)^T(Ax)\right)^{1/2} = (x^T x)^{1/2} = \|x\|
$$

- preserves distances: $\|Ax - Ay\| = \|x - y\|

- preserves angles:

$$
\angle(Ax, Ay) = \arccos \left(\frac{(Ax)^T(Ay)}{\|Ax\| \|Ay\|} \right) = \arccos \left(\frac{x^T y}{\|x\| \|y\|} \right) = \angle(x, y)
$$
Left invertibility

if $A \in \mathbb{R}^{m \times n}$ has orthonormal columns, then

- A is left invertible with left inverse A^T: by definition
 $$A^T A = I$$

- A has linearly independent columns (from p. 4-24 or p. 5-2):
 $$Ax = 0 \implies A^T Ax = x = 0$$

- A is tall or square: $m \geq n$ (see page 4-13)
Outline

- matrices with orthonormal columns
- **orthogonal matrices**
- tall matrices with orthonormal columns
- complex matrices with orthonormal columns
Orthogonal matrix

Orthogonal matrix: a square real matrix with orthonormal columns

Nonsingularity (from equivalences on page 4-14): if A is orthogonal, then

- A is invertible, with inverse A^T:

$$
\begin{align*}
A^T A &= I \\
A \text{ is square} \\
\end{align*}
\implies AA^T = I
$$

- A^T is also an orthogonal matrix
- rows of A are orthonormal (have norm one and are mutually orthogonal)

Note: if $A \in \mathbb{R}^{m \times n}$ has orthonormal columns and $m > n$, then $AA^T \neq I$
Permutation matrix

• let \(\pi = (\pi_1, \pi_2, \ldots, \pi_n) \) be a permutation (reordering) of \((1, 2, \ldots, n)\)
• we associate with \(\pi \) the \(n \times n \) permutation matrix \(A \)

\[
A_{i\pi_i} = 1, \quad A_{ij} = 0 \text{ if } j \neq \pi_i
\]

• \(Ax \) is a permutation of the elements of \(x \): \(Ax = (x_{\pi_1}, x_{\pi_2}, \ldots, x_{\pi_n}) \)
• \(A \) has exactly one element equal to 1 in each row and each column

Orthogonality: permutation matrices are orthogonal

• \(A^T A = I \) because \(A \) has exactly one element equal to one in each row

\[
(A^T A)_{ij} = \sum_{k=1}^{n} A_{ki} A_{kj} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}
\]

• \(A^T = A^{-1} \) is the inverse permutation matrix
Example

• permutation on \(\{1, 2, 3, 4\}\)

\[(\pi_1, \pi_2, \pi_3, \pi_4) = (2, 4, 1, 3)\]

• corresponding permutation matrix and its inverse

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}, \quad A^{-1} = A^T = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

• \(A^T\) is permutation matrix associated with the permutation

\[(\tilde{\pi}_1, \tilde{\pi}_2, \tilde{\pi}_3, \tilde{\pi}_4) = (3, 1, 4, 2)\]
Plane rotation

Rotation in a plane

\[A = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

Rotation in a coordinate plane in \(\mathbb{R}^n \): for example,

\[A = \begin{bmatrix} \cos \theta & 0 & - \sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix} \]

describes a rotation in the \((x_1, x_3)\) plane in \(\mathbb{R}^3 \)
Reflector

\[A = I - 2aa^T \quad \text{with } a \text{ a unit-norm vector (} \|a\| = 1 \) \]

- a reflector matrix is symmetric and orthogonal

\[A^T A = (I - 2aa^T)(I - 2aa^T) = I - 4aa^T + 4aa^Taa^T = I \]

- \(Ax\) is reflection of \(x\) through the hyperplane \(H = \{u \mid a^Tu = 0\}\)

\[
\begin{align*}
y & = x - (a^Tx)a \\
& = (I - aa^T)x \\
z & = y + (y - x) \\
& = (I - 2aa^T)x
\end{align*}
\]

(see page 2-35)
Product of orthogonal matrices

if A_1, \ldots, A_k are orthogonal matrices and of equal size, then the product

$$A = A_1 A_2 \cdots A_k$$

is orthogonal:

$$A^T A = (A_1 A_2 \cdots A_k)^T (A_1 A_2 \cdots A_k)$$
$$= A_k^T \cdots A_2^T A_1^T A_1 A_2 \cdots A_k$$
$$= I$$
Linear equation with orthogonal matrix

linear equation with orthogonal coefficient matrix A of size $n \times n$

$$Ax = b$$

solution is

$$x = A^{-1}b = A^Tb$$

• can be computed in $2n^2$ flops by matrix-vector multiplication

• cost is less than order n^2 if A has special properties; for example,

 permutation matrix: 0 flops
 reflector (given a): order n flops
 plane rotation: order 1 flops
Outline

- matrices with orthonormal columns
- orthogonal matrices
- tall matrices with orthonormal columns
- complex matrices with orthonormal columns
Tall matrix with orthonormal columns

suppose $A \in \mathbb{R}^{m \times n}$ is tall ($m > n$) and has orthonormal columns

- A^T is a left inverse of A:
 \[
 A^T A = I
 \]

- A has no right inverse; in particular
 \[
 A A^T \neq I
 \]

on the next pages, we give a geometric interpretation to the matrix $A A^T$
Range

• the \textit{span} of a set of vectors is the set of all their linear combinations:

\[\text{span}(a_1, a_2, \ldots, a_n) = \{ x_1a_1 + x_2a_2 + \cdots + x_na_n \mid x \in \mathbb{R}^n \} \]

• the \textit{range} of a matrix \(A \in \mathbb{R}^{m \times n}\) is the span of its column vectors:

\[\text{range}(A) = \{ Ax \mid x \in \mathbb{R}^n \} \]

\textbf{Example}

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 2 \\
0 & -1 & -1
\end{bmatrix}
\]

\[
\text{range}(A) = \left\{ \begin{bmatrix}
x_1 + x_3 \\
x_1 + x_2 + 2x_3 \\
x_1 - x_2 - x_3
\end{bmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}
\]

\[= \left\{ (u, u + v, -v) \mid u, v \in \mathbb{R} \right\} \]
Projection on range of matrix with orthonormal columns

suppose \(A \in \mathbb{R}^{m \times n} \) has orthonormal columns; we’ll show that the vector \(AA^T b \)

is the orthogonal projection of an \(m \)-vector \(b \) on \(\text{range}(A) \)

\[\text{range}(A) = \{ Ax \mid x \in \mathbb{R}^n \} \]

\[A\hat{x} = AA^T b \]

- \(\hat{x} = A^T b \) satisfies \(\| A\hat{x} - b \| < \| Ax - b \| \) for all \(x \)
- this extends the result on page 2-11 (where \(A = (1/\|a\|)a \))
Proof

the squared distance of \(b \) to an arbitrary point \(Ax \) in \(\text{range}(A) \) is

\[
\|Ax - b\|^2 = \|A(x - \hat{x}) + A\hat{x} - b\|^2 \quad \text{(where } \hat{x} = A^Tb) \\
= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(x - \hat{x})^T A^T(A\hat{x} - b) \\
= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \\
= \|x - \hat{x}\|^2 + \|A\hat{x} - b\|^2 \\
\geq \|A\hat{x} - b\|^2
\]

with equality only if \(x = \hat{x} \)

• line 3 follows because \(A^T(A\hat{x} - b) = \hat{x} - A^Tb = 0 \)
• line 4 follows from \(A^T A = I \)
Orthogonal decomposition

the vector \(b \) is decomposed as a sum \(b = z + y \) with

\[
z \in \text{range}(A), \quad y \perp \text{range}(A)
\]

\[
y = b - AA^T b
\]

such a decomposition exists and is unique for every \(b \)

\[
b = Ax + y, \quad A^T y = 0 \iff A^T b = x, \quad y = b - AA^T b
\]
Outline

- matrices with orthonormal columns
- orthogonal matrices
- tall matrices with orthonormal columns
- complex matrices with orthonormal columns
Gram matrix

$A \in \mathbb{C}^{m \times n}$ has orthonormal columns if its Gram matrix is the identity:

$$A^H A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}^H \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

$$= \begin{bmatrix}
 a_1^H a_1 & a_1^H a_2 & \cdots & a_1^H a_n \\
 a_2^H a_1 & a_2^H a_2 & \cdots & a_2^H a_n \\
 \vdots & \vdots & \ddots & \vdots \\
 a_n^H a_1 & a_n^H a_2 & \cdots & a_n^H a_n
\end{bmatrix}$$

$$= \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
\end{bmatrix}$$

- columns have unit norm: $\|a_i\|^2 = a_i^H a_i = 1$
- columns are mutually orthogonal: $a_i^H a_j = 0$ for $i \neq j$
Unitary matrix

Unitary matrix

A square complex matrix with orthonormal columns is called unitary

Inverse

\[A^H A = I \]
\[A \text{ is square} \] \[\implies A A^H = I \]

- a unitary matrix is nonsingular with inverse \(A^H \)
- if \(A \) is unitary, then \(A^H \) is unitary
Discrete Fourier transform matrix

recall definition from page 3-33 (with \(\omega = e^{2\pi j/n} \) and \(j = \sqrt{-1} \))

\[
W = \begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \ldots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \ldots & \omega^{-2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \ldots & \omega^{-(n-1)(n-1)}
\end{bmatrix}
\]

the matrix \((1/\sqrt{n})W \) is unitary (proof on next page):

\[
\frac{1}{n}W^HW = \frac{1}{n}WW^H = I
\]

- inverse of \(W \) is \(W^{-1} = (1/n)W^H \)
- inverse discrete Fourier transform of \(n \)-vector \(x \) is \(W^{-1}x = (1/n)W^Hx \)
Gram matrix of DFT matrix

we show that $W^H W = nI$

• conjugate transpose of W is

$$W^H = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\
1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}$$

• i, j element of Gram matrix is

$$(W^H W)_{ij} = 1 + \omega^{i-j} + \omega^{2(i-j)} + \cdots + \omega^{(n-1)(i-j)}$$

$$(W^H W)_{ii} = n, \quad (W^H W)_{ij} = \frac{\omega^{n(i-j)} - 1}{\omega^{i-j} - 1} = 0 \quad \text{if } i \neq j$$

(last step follows from $\omega^n = 1$)