
L. Vandenberghe ECE133A (Fall 2023)

6. QR factorization

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

6.1

Triangular matrix

a square matrix 𝐴 is lower triangular if 𝐴𝑖 𝑗 = 0 for 𝑗 > 𝑖

𝐴 =

𝐴11 0 · · · 0 0
𝐴21 𝐴22 · · · 0 0
... 0 0

𝐴𝑛−1,1 𝐴𝑛−1,2 · · · 𝐴𝑛−1,𝑛−1 0
𝐴𝑛1 𝐴𝑛2 · · · 𝐴𝑛,𝑛−1 𝐴𝑛𝑛

𝐴 is upper triangular if 𝐴𝑖 𝑗 = 0 for 𝑗 < 𝑖 (the transpose 𝐴𝑇 is lower triangular)

a triangular matrix is unit upper/lower triangular if 𝐴𝑖𝑖 = 1 for all 𝑖

QR factorization 6.2

Forward substitution

solve 𝐴𝑥 = 𝑏 when 𝐴 is lower triangular with nonzero diagonal elements

Algorithm

𝑥1 = 𝑏1/𝐴11

𝑥2 = (𝑏2 − 𝐴21𝑥1)/𝐴22

𝑥3 = (𝑏3 − 𝐴31𝑥1 − 𝐴32𝑥2)/𝐴33
...

𝑥𝑛 = (𝑏𝑛 − 𝐴𝑛1𝑥1 − 𝐴𝑛2𝑥2 − · · · − 𝐴𝑛,𝑛−1𝑥𝑛−1)/𝐴𝑛𝑛

Complexity: 1 + 3 + 5 + · · · + (2𝑛 − 1) = 𝑛2 flops

QR factorization 6.3

Back substitution

solve 𝐴𝑥 = 𝑏 when 𝐴 is upper triangular with nonzero diagonal elements

Algorithm

𝑥𝑛 = 𝑏𝑛/𝐴𝑛𝑛

𝑥𝑛−1 = (𝑏𝑛−1 − 𝐴𝑛−1,𝑛𝑥𝑛)/𝐴𝑛−1,𝑛−1

𝑥𝑛−2 = (𝑏𝑛−2 − 𝐴𝑛−2,𝑛−1𝑥𝑛−1 − 𝐴𝑛−2,𝑛𝑥𝑛)/𝐴𝑛−2,𝑛−2
...

𝑥1 = (𝑏1 − 𝐴12𝑥2 − 𝐴13𝑥3 − · · · − 𝐴1𝑛𝑥𝑛)/𝐴11

Complexity: 𝑛2 flops

QR factorization 6.4

Inverse of triangular matrix

a triangular matrix 𝐴 with nonzero diagonal elements is nonsingular:

𝐴𝑥 = 0 =⇒ 𝑥 = 0

this follows from forward or back substitution applied to the equation 𝐴𝑥 = 0

• inverse of 𝐴 can be computed by solving 𝐴𝑋 = 𝐼 column by column

𝐴
[
𝑥1 𝑥2 · · · 𝑥𝑛

]
=
[
𝑒1 𝑒2 · · · 𝑒𝑛

]
(𝑥𝑖 is column 𝑖 of 𝑋)

• inverse of lower triangular matrix is lower triangular

• inverse of upper triangular matrix is upper triangular

• complexity of computing inverse of 𝑛 × 𝑛 triangular matrix is

𝑛2 + (𝑛 − 1)2 + · · · + 1 ≈ 1
3𝑛

3 flops

QR factorization 6.5

Outline

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

QR factorization

if 𝐴 ∈ R𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 =
[
𝑞1 𝑞2 · · · 𝑞𝑛

]
𝑅11 𝑅12 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑛
...

0 0 · · · 𝑅𝑛𝑛

• vectors 𝑞1, . . . , 𝑞𝑛 are orthonormal 𝑚-vectors:

∥𝑞𝑖∥ = 1, 𝑞𝑇𝑖 𝑞 𝑗 = 0 if 𝑖 ≠ 𝑗

• diagonal elements 𝑅𝑖𝑖 are nonzero

• if 𝑅𝑖𝑖 < 0, we can switch the signs of 𝑅𝑖𝑖, . . . , 𝑅𝑖𝑛, and the vector 𝑞𝑖

• most definitions require 𝑅𝑖𝑖 > 0; this makes 𝑄 and 𝑅 unique

QR factorization 6.6

QR factorization in matrix notation

if 𝐴 ∈ R𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 = 𝑄𝑅

Q-factor

• 𝑄 is 𝑚 × 𝑛 with orthonormal columns (𝑄𝑇𝑄 = 𝐼)

• if 𝐴 is square (𝑚 = 𝑛), then 𝑄 is orthogonal (𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼)

R-factor

• 𝑅 is 𝑛 × 𝑛, upper triangular, with nonzero diagonal elements

• 𝑅 is nonsingular (diagonal elements are nonzero)

QR factorization 6.7

Example

−1 −1 1

1 3 3
−1 −1 5

1 3 7

 =

−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2

2 4 2
0 2 8
0 0 4

=

[
𝑞1 𝑞2 𝑞3

]
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33

= 𝑄𝑅

QR factorization 6.8

Full QR factorization

the QR factorization is often defined as a factorization

𝐴 =
[
𝑄 �̃�

] [𝑅

0

]
• 𝐴 = 𝑄𝑅 is the QR factorization as defined earlier (page 6.7)

• �̃� has size 𝑚 × (𝑚 − 𝑛), the zero block has size (𝑚 − 𝑛) × 𝑛

• the matrix
[
𝑄 �̃�

]
is 𝑚 × 𝑚 and orthogonal

• MATLAB’s function qr returns this factorization

• this is also known as the full QR factorization or QR decomposition

in this course we use the definition of page 6.7

QR factorization 6.9

Applications

in the following lectures, we will use the QR factorization to solve

• linear equations

• least squares problems

• constrained least squares problems

here, we show that it gives useful simple formulas for

• the pseudo-inverse of a matrix with linearly independent columns

• the inverse of a nonsingular matrix

• projection on the range of a matrix with linearly independent columns

QR factorization 6.10

QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix 𝐴 with linearly independent columns (page 4.22)

𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇

• pseudo-inverse in terms of QR factors of 𝐴:

𝐴† = ((𝑄𝑅)𝑇 (𝑄𝑅))−1(𝑄𝑅)𝑇
= (𝑅𝑇𝑄𝑇𝑄𝑅)−1𝑅𝑇𝑄𝑇

= (𝑅𝑇𝑅)−1𝑅𝑇𝑄𝑇 (𝑄𝑇𝑄 = 𝐼)
= 𝑅−1𝑅−𝑇𝑅𝑇𝑄𝑇 (𝑅 is nonsingular)
= 𝑅−1𝑄𝑇

• for square nonsingular 𝐴 this is the inverse:

𝐴−1 = (𝑄𝑅)−1 = 𝑅−1𝑄𝑇

QR factorization 6.11

Range

recall definition of range of a matrix 𝐴 ∈ R𝑚×𝑛 (page 5.16):

range(𝐴) = {𝐴𝑥 | 𝑥 ∈ R𝑛}

suppose 𝐴 has linearly independent columns with QR factors 𝑄, 𝑅

• 𝑄 has the same range as 𝐴:

𝑦 ∈ range(𝐴) ⇐⇒ 𝑦 = 𝐴𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑅𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑧 for some 𝑧

⇐⇒ 𝑦 ∈ range(𝑄)

• columns of 𝑄 are an orthonormal basis for range(𝐴)

QR factorization 6.12

Projection on range

• combining 𝐴 = 𝑄𝑅 and 𝐴† = 𝑅−1𝑄𝑇 (from page 6.11) gives

𝐴𝐴† = 𝑄𝑅𝑅−1𝑄𝑇 = 𝑄𝑄𝑇

note the order of the product in 𝐴𝐴† and the difference with 𝐴†𝐴 = 𝐼

• recall (from page 5.17) that 𝑄𝑄𝑇𝑥 is the projection of 𝑥 on the range of 𝑄

range(A) = range(Q)

x

AA†x = QQT x

QR factorization 6.13

QR factorization of complex matrices

if 𝐴 ∈ C𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 = 𝑄𝑅

• 𝑄 ∈ C𝑚×𝑛 has orthonormal columns (𝑄𝐻𝑄 = 𝐼)

• 𝑅 ∈ C𝑛×𝑛 is upper triangular with real nonzero diagonal elements

• most definitions choose diagonal elements 𝑅𝑖𝑖 to be positive

• in the rest of the lecture we assume 𝐴 is real

QR factorization 6.14

Algorithms for QR factorization

Gram–Schmidt algorithm (section 5.4 in textbook and page 6.16)

• complexity is 2𝑚𝑛2 flops

• not recommended in practice (sensitive to rounding errors)

Modified Gram–Schmidt algorithm (page 6.27)

• complexity is 2𝑚𝑛2 flops

• better numerical properties

Householder algorithm (page 6.34)

• complexity is 2𝑚𝑛2 − (2/3)𝑛3 flops

• represents 𝑄 as a product of elementary orthogonal matrices

• the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take 2𝑚𝑛2 for the complexity of QR factorization
QR factorization 6.15

Outline

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

Gram–Schmidt algorithm

Gram–Schmidt QR algorithm computes 𝑄 and 𝑅 column by column

• after 𝑘 steps we have a partial QR factorization

[
𝑎1 𝑎2 · · · 𝑎𝑘

]
=
[
𝑞1 𝑞2 · · · 𝑞𝑘

]
𝑅11 𝑅12 · · · 𝑅1𝑘
0 𝑅22 · · · 𝑅2𝑘
...

0 0 · · · 𝑅𝑘𝑘

this is the QR factorization for the first 𝑘 columns of 𝐴

• columns 𝑞1, . . . , 𝑞𝑘 are orthonormal

• diagonal elements 𝑅11, 𝑅22, . . . , 𝑅𝑘𝑘 are positive

• columns 𝑞1, . . . , 𝑞𝑘 have the same span as 𝑎1, . . . , 𝑎𝑘 (see page 6.12)

• in step 𝑘 of the algorithm we compute 𝑞𝑘 , 𝑅1𝑘 , . . . , 𝑅𝑘𝑘

QR factorization 6.16

Computing the 𝑘th columns of 𝑄 and 𝑅

suppose we have the partial factorization for the first 𝑘 − 1 columns of 𝑄 and 𝑅

• column 𝑘 of the equation 𝐴 = 𝑄𝑅 reads

𝑎𝑘 = 𝑅1𝑘𝑞1 + 𝑅2𝑘𝑞2 + · · · + 𝑅𝑘−1,𝑘𝑞𝑘−1 + 𝑅𝑘𝑘𝑞𝑘

• regardless of how we choose 𝑅1𝑘 , . . . , 𝑅𝑘−1,𝑘 , the vector

𝑞𝑘 = 𝑎𝑘 − 𝑅1𝑘𝑞1 − 𝑅2𝑘𝑞2 − · · · − 𝑅𝑘−1,𝑘𝑞𝑘−1

will be nonzero: 𝑎1, 𝑎2, . . . , 𝑎𝑘 are linearly independent and therefore

𝑎𝑘 ∉ span(𝑎1, . . . , 𝑎𝑘−1) = span(𝑞1, . . . , 𝑞𝑘−1)

• 𝑞𝑘 is 𝑞𝑘 normalized: choose 𝑅𝑘𝑘 = ∥𝑞𝑘 ∥ and 𝑞𝑘 = (1/𝑅𝑘𝑘)𝑞𝑘
• 𝑞𝑘 and 𝑞𝑘 are orthogonal to 𝑞1, . . . , 𝑞𝑘−1 if we choose 𝑅1𝑘 , . . . , 𝑅𝑘−1,𝑘 as

𝑅1𝑘 = 𝑞𝑇1𝑎𝑘 , 𝑅2𝑘 = 𝑞𝑇2𝑎𝑘 , . . . , 𝑅𝑘−1,𝑘 = 𝑞𝑇𝑘−1𝑎𝑘

QR factorization 6.17

Interpretation

on the previous page, 𝑞𝑘 = 𝑅𝑘𝑘𝑞𝑘 was computed as

𝑞𝑘 = 𝑎𝑘 − 𝑅1𝑘𝑞1 − 𝑅2𝑘𝑞2 − · · · − 𝑅𝑘−1,𝑘𝑞𝑘−1

= 𝑎𝑘 − 𝑞1(𝑞𝑇1𝑎𝑘) − 𝑞2(𝑞𝑇2𝑎𝑘) − · · · − 𝑞𝑘−1𝑞
𝑇
𝑘−1𝑎𝑘

=

(
𝐼 − 𝑞1𝑞

𝑇
1 − 𝑞2𝑞

𝑇
2 − · · · − 𝑞𝑘−1𝑞

𝑇
𝑘−1

)
𝑎𝑘

this is the residual of 𝑎𝑘 after subtracting its orthogonal projection on

span(𝑞1, 𝑞2, . . . , 𝑞𝑘−1) = span(𝑎1, 𝑎2, . . . , 𝑎𝑘−1)

QR factorization 6.18

Gram–Schmidt algorithm

Given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛

Algorithm

for 𝑘 = 1 to 𝑛

𝑅1𝑘 = 𝑞𝑇1𝑎𝑘

𝑅2𝑘 = 𝑞𝑇2𝑎𝑘
...

𝑅𝑘−1,𝑘 = 𝑞𝑇𝑘−1𝑎𝑘

𝑞𝑘 = 𝑎𝑘 − (𝑅1𝑘𝑞1 + 𝑅2𝑘𝑞2 + · · · + 𝑅𝑘−1,𝑘𝑞𝑘−1)
𝑅𝑘𝑘 = ∥𝑞𝑘 ∥
𝑞𝑘 =

1
𝑅𝑘𝑘

𝑞𝑘

QR factorization 6.19

Example

example on page 6.8:

[
𝑎1 𝑎2 𝑎3

]
=

−1 −1 1

1 3 3
−1 −1 5

1 3 7

=

[
𝑞1 𝑞2 𝑞3

]
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33

First column of 𝑄 and 𝑅

𝑞1 = 𝑎1 =

−1

1
−1

1

 , 𝑅11 = ∥𝑞1∥ = 2, 𝑞1 =
1
𝑅11

𝑞1 =

−1/2

1/2
−1/2

1/2

QR factorization 6.20

Example

Second column of 𝑄 and 𝑅

• compute 𝑅12 = 𝑞𝑇1𝑎2 = 4

• compute

𝑞2 = 𝑎2 − 𝑅12𝑞1 =

−1

3
−1

3

 − 4

−1/2

1/2
−1/2

1/2

 =

1
1
1
1

• normalize to get

𝑅22 = ∥𝑞2∥ = 2, 𝑞2 =
1
𝑅22

𝑞2 =

1/2
1/2
1/2
1/2

QR factorization 6.21

Example

Third column of 𝑄 and 𝑅

• compute 𝑅13 = 𝑞𝑇1𝑎3 = 2 and 𝑅23 = 𝑞𝑇2𝑎3 = 8

• compute

𝑞3 = 𝑎3 − 𝑅13𝑞1 − 𝑅23𝑞2 =

1
3
5
7

 − 2

−1/2

1/2
−1/2

1/2

 − 8

1/2
1/2
1/2
1/2

 =

−2
−2

2
2

• normalize to get

𝑅33 = ∥𝑞3∥ = 4, 𝑞3 =
1
𝑅33

𝑞3 =

−1/2
−1/2

1/2
1/2

QR factorization 6.22

Example

Final result
−1 −1 1

1 3 3
−1 −1 5

1 3 7

 =
[
𝑞1 𝑞2 𝑞3

]
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33

=

−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2

2 4 2
0 2 8
0 0 4

QR factorization 6.23

Complexity

Complexity of cycle 𝑘 (of algorithm on page 6.19)

• 𝑘 − 1 inner products with 𝑎𝑘 : (𝑘 − 1) (2𝑚 − 1) flops

• computation of 𝑞𝑘 : 2(𝑘 − 1)𝑚 flops

• computing 𝑅𝑘𝑘 and 𝑞𝑘 : 3𝑚 flops

total for cycle 𝑘 : (4𝑚 − 1) (𝑘 − 1) + 3𝑚 flops

Complexity for 𝑚 × 𝑛 factorization:

𝑛∑︁
𝑘=1

((4𝑚 − 1) (𝑘 − 1) + 3𝑚) = (4𝑚 − 1)𝑛(𝑛 − 1)
2

+ 3𝑚𝑛

≈ 2𝑚𝑛2 flops

QR factorization 6.24

Numerical experiment

• we use the following MATLAB implementation of the algorithm on page 6.19:

[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’ * A(:,k);
qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
R(k,k) = norm(qtilde);
Q(:,k) = qtilde / R(k,k);

end;

• we apply this to a square matrix 𝐴 of size 𝑚 = 𝑛 = 50

• 𝐴 is constructed as 𝐴 = 𝑈𝑆𝑉 with 𝑈, 𝑉 orthogonal, 𝑆 diagonal with

𝑆𝑖𝑖 = 10−10(𝑖−1)/(𝑛−1), 𝑖 = 1, . . . , 𝑛

QR factorization 6.25

Numerical experiment

plot shows deviation from orthogonality between 𝑞𝑘 and previous columns

𝑒𝑘 = max
1≤𝑖<𝑘

|𝑞𝑇𝑖 𝑞𝑘 |, 𝑘 = 2, . . . , 𝑛

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

k

e k

loss of orthogonality is due to rounding error
QR factorization 6.26

Outline

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

Modified Gram–Schmidt algorithm

a variation of the Gram–Schmidt algorithm for the QR factorization

[
𝑎1 𝑎2 · · · 𝑎𝑛

]
=
[
𝑞1 𝑞2 · · · 𝑞𝑛

]
𝑅11 𝑅12 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑛
...

0 0 · · · 𝑅𝑛𝑛

• has better numerical properties than the Gram–Schmidt algorithm

• computes 𝑄 column by column, 𝑅 row by row

• computes vectors 𝑞𝑘 as

𝑞𝑘 = (𝐼 − 𝑞𝑘−1𝑞
𝑇
𝑘−1) · · · (𝐼 − 𝑞2𝑞

𝑇
2) (𝐼 − 𝑞1𝑞

𝑇
1)𝑎𝑘

(see exercise on 5.20)

QR factorization 6.27

Modified Gram–Schmidt algorithm

after 𝑘 − 1 steps, the algorithm has computed a partial factorization

𝐴 =
[
𝑎1 · · · 𝑎𝑘−1 𝑎𝑘 · · · 𝑎𝑛

]
=

[
𝑞1 · · · 𝑞𝑘−1 �̃�𝑘

]
𝑅11 · · · 𝑅1,𝑘−1
...

0 · · · 𝑅𝑘−1,𝑘−1

𝑅1𝑘 · · · 𝑅1𝑛
... ...

𝑅𝑘−1,𝑘 · · · 𝑅𝑘−1,𝑛

0 𝐼

• columns of �̃�𝑘 are residuals of 𝑎𝑘 , . . . , 𝑎𝑛 after projection on span(𝑞1, . . . , 𝑞𝑘−1)
• 𝑞𝑘 is the first column of �̃�𝑘

• we start with 𝑘 = 0 and �̃�1 = 𝐴

• the factorization is complete when 𝑘 = 𝑛

• in step 𝑘 , we compute

𝑞𝑘 , 𝑅𝑘𝑘 , 𝑅𝑘,𝑘+1, . . . , 𝑅𝑘𝑛, �̃�𝑘+1

QR factorization 6.28

Modified Gram–Schmidt update

careful inspection of the update at step 𝑘 shows that

�̃�𝑘 =
[
𝑞𝑘 �̃�𝑘+1

] [𝑅𝑘𝑘 𝑅𝑘,(𝑘+1):𝑛
0 𝐼

]
partition �̃�𝑘 as �̃�𝑘 =

[
𝑞𝑘 𝐵

]
with 𝑞𝑘 the first column and 𝐵 of size 𝑚 × (𝑛 − 𝑘):

𝑞𝑘 = 𝑞𝑘𝑅𝑘𝑘 , 𝐵 = 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛 + �̃�𝑘+1

• from the first equation, and the required properties ∥𝑞𝑘 ∥ = 1 and 𝑅𝑘𝑘 > 0:

𝑅𝑘𝑘 = ∥𝑞𝑘 ∥, 𝑞𝑘 =
1
𝑅𝑘𝑘

𝑞𝑘

• from the second equation, and the requirement that 𝑞𝑇
𝑘
�̃�𝑘+1 = 0:

𝑅𝑘,(𝑘+1):𝑛 = 𝑞𝑇𝑘𝐵, �̃�𝑘+1 = (𝐼 − 𝑞𝑘𝑞
𝑇
𝑘)𝐵 = 𝐵 − 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛

QR factorization 6.29

Summary: modified Gram–Schmidt algorithm

Algorithm (𝐴 is 𝑚 × 𝑛 with linearly independent columns)

define �̃�1 = 𝐴; for 𝑘 = 1 to 𝑛,

• compute 𝑅𝑘𝑘 = ∥𝑞𝑘 ∥ and 𝑞𝑘 = (1/𝑅𝑘𝑘)𝑞𝑘 where 𝑞𝑘 is the first column of �̃�𝑘

• compute [
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
= 𝑞𝑇𝑘𝐵, �̃�𝑘+1 = 𝐵 − 𝑞𝑘

[
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
where 𝐵 is �̃�𝑘 with first column removed

MATLAB code (Q(:,k:n) is used to store �̃�𝑘)
Q = A; R = zeros(n,n);
for k = 1:n

R(k,k) = norm(Q(:,k));
Q(:,k) = Q(:,k) / R(k,k);
R(k,k+1:n) = Q(:,k)’ * Q(:,k+1:n);
Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);

end;

QR factorization 6.30

Example

example on page 6.8

[
𝑎1 𝑎2 𝑎3

]
=

−1 −1 1

1 3 3
−1 −1 5

1 3 7

Step 1: first column of 𝑄, first row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=

−1/2 1 2

1/2 1 2
−1/2 1 6

1/2 1 6

2 4 2
0 1 0
0 0 1

=

[
𝑞1 �̃�2

] [𝑅11 𝑅1,2:3
0 𝐼

]

QR factorization 6.31

Example

Step 2: second column of 𝑄, second row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=

−1/2 1/2 −2

1/2 1/2 −2
−1/2 1/2 2

1/2 1/2 2

2 4 2
0 2 8
0 0 1

=

[
𝑞1 𝑞2 �̃�3

]
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 1

Step 3: third column of 𝑄, third row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=

−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2

2 4 2
0 2 8
0 0 4

=

[
𝑞1 𝑞2 𝑞3

]
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33

QR factorization 6.32

Complexity

Complexity of cycle 𝑘 (of algorithm on page 6.30)

• computing 𝑅𝑘𝑘 and 𝑞𝑘 : 3𝑚 flops

• computing 𝑅𝑘,𝑘+1, . . . , 𝑅𝑘𝑛: (𝑛 − 𝑘) (2𝑚 − 1) flops

• computing �̃�𝑘+1: 2(𝑛 − 𝑘)𝑚 flops

total for cycle 𝑘 : (4𝑚 − 1) (𝑛 − 𝑘) + 3𝑚 flops

Complexity for 𝑚 × 𝑛 factorization:

𝑛∑︁
𝑘=1

((4𝑚 − 1) (𝑛 − 𝑘) + 3𝑚) = (4𝑚 − 1)𝑛(𝑛 − 1)
2

+ 3𝑚𝑛

≈ 2𝑚𝑛2 flops

QR factorization 6.33

Outline

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

Householder algorithm

• the most widely used algorithm for QR factorization (qr in MATLAB and Julia)

• less sensitive to rounding error than Gram–Schmidt algorithm

• computes a “full” QR factorization (QR decomposition)

𝐴 =
[
𝑄 �̃�

] [𝑅

0

]
,

[
𝑄 �̃�

]
orthogonal

• the full Q-factor is constructed as a product of orthogonal matrices[
𝑄 �̃�

]
= 𝐻1𝐻2 · · ·𝐻𝑛

each 𝐻𝑖 is an 𝑚 × 𝑚 symmetric, orthogonal “reflector” (page 5.10)

QR factorization 6.34

Reflector

𝐻 = 𝐼 − 2𝑣𝑣𝑇 with ∥𝑣∥ = 1

• 𝐻𝑥 is reflection of 𝑥 through hyperplane {𝑧 | 𝑣𝑇 𝑧 = 0} (see page 5.10)

• 𝐻 is symmetric

• 𝐻 is orthogonal

• matrix–vector product 𝐻𝑥 can be computed efficiently as

𝐻𝑥 = 𝑥 − 2(𝑣𝑇𝑥)𝑣

complexity is 4𝑝 flops if 𝑣 and 𝑥 have length 𝑝

QR factorization 6.35

Reflection to multiple of unit vector

given nonzero 𝑝-vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑝), define

𝑤 =

𝑦1 + sign(𝑦1)∥𝑦∥

𝑦2
...

𝑦𝑝

 , 𝑣 =
1

∥𝑤∥𝑤

• we define sign(0) = 1

• vector 𝑤 satisfies
∥𝑤∥2 = 2 (𝑤𝑇 𝑦) = 2∥𝑦∥ (∥𝑦∥ + |𝑦1 |)

• reflector 𝐻 = 𝐼 − 2𝑣𝑣𝑇 maps 𝑦 to multiple of 𝑒1 = (1, 0, . . . , 0):

𝐻𝑦 = 𝑦 − 2(𝑤𝑇 𝑦)
∥𝑤∥2 𝑤 = 𝑦 − 𝑤 = −sign(𝑦1)∥𝑦∥𝑒1

QR factorization 6.36

Geometry

first coordinate axis

y

−sign(y1)‖y‖e1

w

hyperplane {x | wT x = 0}

the reflection through the hyperplane {𝑥 | 𝑤𝑇𝑥 = 0} with normal vector

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1

maps 𝑦 to the vector −sign(𝑦1)∥𝑦∥𝑒1

QR factorization 6.37

Householder triangularization

• computes reflectors 𝐻1, . . . , 𝐻𝑛 that reduce 𝐴 to triangular form:

𝐻𝑛𝐻𝑛−1 · · ·𝐻1𝐴 =

[
𝑅

0

]
• after step 𝑘 , the matrix 𝐻𝑘𝐻𝑘−1 · · ·𝐻1𝐴 has the following structure:

k n − k

k

m − k

(elements in positions 𝑖, 𝑗 for 𝑖 > 𝑗 and 𝑗 ≤ 𝑘 are zero)

QR factorization 6.38

Householder algorithm

the following algorithm overwrites 𝐴 with
[
𝑅

0

]

Algorithm: for 𝑘 = 1 to 𝑛,

1. define 𝑦 = 𝐴𝑘:𝑚,𝑘 and compute (𝑚 − 𝑘 + 1)-vector 𝑣𝑘 :

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1, 𝑣𝑘 =
1

∥𝑤∥𝑤

2. multiply 𝐴𝑘:𝑚,𝑘:𝑛 with reflector 𝐼 − 2𝑣𝑘𝑣𝑇𝑘 :

𝐴𝑘:𝑚,𝑘:𝑛 := 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣𝑇𝑘 𝐴𝑘:𝑚,𝑘:𝑛)

QR factorization 6.39

Comments

• in step 2 we multiply 𝐴𝑘:𝑚,𝑘:𝑛 with the reflector 𝐼 − 2𝑣𝑘𝑣𝑇𝑘 :

(𝐼 − 2𝑣𝑘𝑣𝑇𝑘)𝐴𝑘:𝑚,𝑘:𝑛 = 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣𝑇𝑘 𝐴𝑘:𝑚,𝑘:𝑛)

• this is equivalent to multiplying 𝐴 with 𝑚 × 𝑚 reflector

𝐻𝑘 =

[
𝐼 0
0 𝐼 − 2𝑣𝑘𝑣𝑇𝑘

]
= 𝐼 − 2

[
0
𝑣𝑘

] [
0
𝑣𝑘

]𝑇
• algorithm overwrites 𝐴 with [

𝑅

0

]
and returns the vectors 𝑣1, . . . , 𝑣𝑛, with 𝑣𝑘 of length 𝑚 − 𝑘 + 1

QR factorization 6.40

Example

example on page 6.8:

𝐴 =

−1 −1 1

1 3 3
−1 −1 5

1 3 7

 = 𝐻1𝐻2𝐻3

[
𝑅

0

]

we compute reflectors 𝐻1, 𝐻2, 𝐻3 that triangularize 𝐴:

𝐻3𝐻2𝐻1𝐴 =

𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33
0 0 0

QR factorization 6.41

Example

First column of 𝑅

• compute reflector that maps first column of 𝐴 to multiple of 𝑒1:

𝑦 =

−1

1
−1

1

 , 𝑤 = 𝑦 − ∥𝑦∥𝑒1 =

−3

1
−1

1

 , 𝑣1 =
1

∥𝑤∥𝑤 =
1

2
√

3

−3

1
−1

1

• overwrite 𝐴 with product of 𝐼 − 2𝑣1𝑣

𝑇
1 and 𝐴

𝐴 := (𝐼 − 2𝑣1𝑣
𝑇
1)𝐴 =

2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3

QR factorization 6.42

Example

Second column of 𝑅

• compute reflector that maps 𝐴2:4,2 to multiple of 𝑒1:

𝑦 =

4/3
2/3
4/3

 , 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =

10/3

2/3
4/3

 , 𝑣2 =
1

∥𝑤∥𝑤 =
1√
30

5
1
2

• overwrite 𝐴2:4,2:3 with product of 𝐼 − 2𝑣2𝑣

𝑇
2 and 𝐴2:4,2:3:

𝐴 :=
[

1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

]
𝐴 =

2 4 2
0 −2 −8
0 0 16/5
0 0 12/5

QR factorization 6.43

Example

Third column of 𝑅

• compute reflector that maps 𝐴3:4,3 to multiple of 𝑒1:

𝑦 =

[
16/5
12/5

]
, 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =

[
36/5
12/5

]
, 𝑣3 =

1
∥𝑤∥𝑤 =

1√
10

[
3
1

]
• overwrite 𝐴3:4,3 with product of 𝐼 − 2𝑣3𝑣

𝑇
3 and 𝐴3:4,3:

𝐴 :=
[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

]
𝐴 =

2 4 2
0 −2 −8
0 0 −4
0 0 0

QR factorization 6.44

Example

Final result

𝐻3𝐻2𝐻1𝐴 =

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

]
(𝐼 − 2𝑣1𝑣

𝑇
1)𝐴

=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

]
2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3

=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

]
2 4 2
0 −2 −8
0 0 16/5
0 0 12/5

=

2 4 2
0 −2 −8
0 0 −4
0 0 0

QR factorization 6.45

Complexity

Complexity in cycle 𝑘 (of algorithm on page 6.39): the dominant terms are

• (2(𝑚 − 𝑘 + 1) − 1) (𝑛 − 𝑘 + 1) flops for product 𝑣𝑇
𝑘
(𝐴𝑘:𝑚,𝑘:𝑛)

• (𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops for outer product with 𝑣𝑘

• (𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops for subtraction from 𝐴𝑘:𝑚,𝑘:𝑛

sum is roughly 4(𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops

Total for computing 𝑅 and vectors 𝑣1, . . . , 𝑣𝑛:

𝑛∑︁
𝑘=1

4(𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) ≈
∫ 𝑛

0
4(𝑚 − 𝑡) (𝑛 − 𝑡)𝑑𝑡

= 2𝑚𝑛2 − 2
3
𝑛3 flops

QR factorization 6.46

Q-factor

the Householder algorithm returns the vectors 𝑣1, . . . , 𝑣𝑛 that define[
𝑄 �̃�

]
= 𝐻1𝐻2 · · ·𝐻𝑛

• usually there is no need to compute the matrix [𝑄 �̃�] explicitly

• the vectors 𝑣1, . . . , 𝑣𝑛 are an economical representation of [𝑄 �̃�]
• products with [𝑄 �̃�] or its transpose can be computed as[

𝑄 �̃�
]
𝑥 = 𝐻1𝐻2 · · ·𝐻𝑛𝑥[

𝑄 �̃�
]𝑇

𝑦 = 𝐻𝑛𝐻𝑛−1 · · ·𝐻1𝑦

QR factorization 6.47

Multiplication with Q-factor

• the matrix–vector product 𝐻𝑘𝑥 is defined as

𝐻𝑘𝑥 =

[
𝐼 0
0 𝐼 − 2𝑣𝑘𝑣𝑇𝑘

] [
𝑥1:𝑘−1
𝑥𝑘:𝑚

]
=

[
𝑥1:𝑘−1

𝑥𝑘:𝑚 − 2(𝑣𝑇
𝑘
𝑥𝑘:𝑚)𝑣𝑘

]
• complexity of multiplication 𝐻𝑘𝑥 is 4(𝑚 − 𝑘 + 1) flops:

• complexity of multiplication with 𝐻1𝐻2 · · ·𝐻𝑛 or its transpose is

𝑛∑︁
𝑘=1

4(𝑚 − 𝑘 + 1) ≈ 4𝑚𝑛 − 2𝑛2 flops

• roughly equal to matrix–vector product with 𝑚 × 𝑛 matrix (2𝑚𝑛 flops)

QR factorization 6.48

