6. QR factorization

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- Householder algorithm

Triangular matrix

a square matrix A is lower triangular if $A_{i j}=0$ for $j>i$

$$
A=\left[\begin{array}{ccccc}
A_{11} & 0 & \cdots & 0 & 0 \\
A_{21} & A_{22} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 & 0 \\
A_{n-1,1} & A_{n-1,2} & \cdots & A_{n-1, n-1} & 0 \\
A_{n 1} & A_{n 2} & \cdots & A_{n, n-1} & A_{n n}
\end{array}\right]
$$

A is upper triangular if $A_{i j}=0$ for $j<i$ (the transpose A^{T} is lower triangular)
a triangular matrix is unit upper/lower triangular if $A_{i i}=1$ for all i

Forward substitution

solve $A x=b$ when A is lower triangular with nonzero diagonal elements

Algorithm

$$
\begin{aligned}
x_{1} & =b_{1} / A_{11} \\
x_{2} & =\left(b_{2}-A_{21} x_{1}\right) / A_{22} \\
x_{3} & =\left(b_{3}-A_{31} x_{1}-A_{32} x_{2}\right) / A_{33} \\
& \vdots \\
x_{n} & =\left(b_{n}-A_{n 1} x_{1}-A_{n 2} x_{2}-\cdots-A_{n, n-1} x_{n-1}\right) / A_{n n}
\end{aligned}
$$

Complexity: $1+3+5+\cdots+(2 n-1)=n^{2}$ flops

Back substitution

solve $A x=b$ when A is upper triangular with nonzero diagonal elements

Algorithm

$$
\begin{aligned}
x_{n} & =b_{n} / A_{n n} \\
x_{n-1} & =\left(b_{n-1}-A_{n-1, n} x_{n}\right) / A_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-A_{n-2, n-1} x_{n-1}-A_{n-2, n} x_{n}\right) / A_{n-2, n-2} \\
& \vdots \\
x_{1} & =\left(b_{1}-A_{12} x_{2}-A_{13} x_{3}-\cdots-A_{1 n} x_{n}\right) / A_{11}
\end{aligned}
$$

Complexity: n^{2} flops

Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:

$$
A x=0 \quad \Longrightarrow \quad x=0
$$

this follows from forward or back substitution applied to the equation $A x=0$

- inverse of A can be computed by solving $A X=I$ column by column

$$
A\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right] \quad\left(x_{i} \text { is column } i \text { of } X\right)
$$

- inverse of lower triangular matrix is lower triangular
- inverse of upper triangular matrix is upper triangular
- complexity of computing inverse of $n \times n$ triangular matrix is

$$
n^{2}+(n-1)^{2}+\cdots+1 \approx \frac{1}{3} n^{3} \text { flops }
$$

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- Householder algorithm

QR factorization

if $A \in \mathbf{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$
A=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 n} \\
0 & R_{22} & \cdots & R_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & R_{n n}
\end{array}\right]
$$

- vectors q_{1}, \ldots, q_{n} are orthonormal m-vectors:

$$
\left\|q_{i}\right\|=1, \quad q_{i}^{T} q_{j}=0 \quad \text { if } i \neq j
$$

- diagonal elements $R_{i i}$ are nonzero
- if $R_{i i}<0$, we can switch the signs of $R_{i i}, \ldots, R_{i n}$, and the vector q_{i}
- most definitions require $R_{i i}>0$; this makes Q and R unique

QR factorization in matrix notation

if $A \in \mathbf{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$
A=Q R
$$

Q-factor

- Q is $m \times n$ with orthonormal columns ($Q^{T} Q=I$)
- if A is square $(m=n)$, then Q is orthogonal ($\left.Q^{T} Q=Q Q^{T}=I\right)$

R-factor

- R is $n \times n$, upper triangular, with nonzero diagonal elements
- R is nonsingular (diagonal elements are nonzero)

Example

$$
\begin{aligned}
{\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 3 & 3 \\
-1 & -1 & 5 \\
1 & 3 & 7
\end{array}\right] } & =\left[\begin{array}{rrr}
-1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 2 & 8 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33}
\end{array}\right] \\
& =Q R
\end{aligned}
$$

Full QR factorization

the QR factorization is often defined as a factorization

$$
A=\left[\begin{array}{ll}
Q & \tilde{Q}
\end{array}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

- $A=Q R$ is the QR factorization as defined earlier (page 6.7)
- \tilde{Q} has size $m \times(m-n)$, the zero block has size $(m-n) \times n$
- the matrix $\left[\begin{array}{ll}Q & \tilde{Q}\end{array}\right]$ is $m \times m$ and orthogonal
- MATLAB's function qr returns this factorization
- this is also known as the full $Q R$ factorization or $Q R$ decomposition
in this course we use the definition of page 6.7

Applications

in the following lectures, we will use the QR factorization to solve

- linear equations
- least squares problems
- constrained least squares problems
here, we show that it gives useful simple formulas for
- the pseudo-inverse of a matrix with linearly independent columns
- the inverse of a nonsingular matrix
- projection on the range of a matrix with linearly independent columns

QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix A with linearly independent columns (page 4.22)

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

- pseudo-inverse in terms of QR factors of A :

$$
\begin{aligned}
A^{\dagger} & =\left((Q R)^{T}(Q R)\right)^{-1}(Q R)^{T} \\
& =\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} \\
& =\left(R^{T} R\right)^{-1} R^{T} Q^{T} \quad\left(Q^{T} Q=I\right) \\
& =R^{-1} R^{-T} R^{T} Q^{T} \quad(R \text { is nonsingular }) \\
& =R^{-1} Q^{T}
\end{aligned}
$$

- for square nonsingular A this is the inverse:

$$
A^{-1}=(Q R)^{-1}=R^{-1} Q^{T}
$$

Range

recall definition of range of a matrix $A \in \mathbf{R}^{m \times n}$ (page 5.16):

$$
\operatorname{range}(A)=\left\{A x \mid x \in \mathbf{R}^{n}\right\}
$$

suppose A has linearly independent columns with QR factors Q, R

- Q has the same range as A :

$$
\begin{aligned}
y \in \operatorname{range}(A) & \Longleftrightarrow y=A x \text { for some } x \\
& \Longleftrightarrow y=Q R x \text { for some } x \\
& \Longleftrightarrow y=Q z \text { for some } z \\
& \Longleftrightarrow y \in \operatorname{range}(Q)
\end{aligned}
$$

- columns of Q are an orthonormal basis for range (A)

Projection on range

- combining $A=Q R$ and $A^{\dagger}=R^{-1} Q^{T}$ (from page 6.11) gives

$$
A A^{\dagger}=Q R R^{-1} Q^{T}=Q Q^{T}
$$

note the order of the product in $A A^{\dagger}$ and the difference with $A^{\dagger} A=I$

- recall (from page 5.17) that $Q Q^{T} x$ is the projection of x on the range of Q

QR factorization of complex matrices

if $A \in \mathbf{C}^{m \times n}$ has linearly independent columns then it can be factored as

$$
A=Q R
$$

- $Q \in \mathbf{C}^{m \times n}$ has orthonormal columns ($Q^{H} Q=I$)
- $R \in \mathbf{C}^{n \times n}$ is upper triangular with real nonzero diagonal elements
- most definitions choose diagonal elements $R_{i i}$ to be positive
- in the rest of the lecture we assume A is real

Algorithms for QR factorization

Gram-Schmidt algorithm (section 5.4 in textbook and page 6.16)

- complexity is $2 m n^{2}$ flops
- not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt algorithm (page 6.27)

- complexity is $2 m n^{2}$ flops
- better numerical properties

Householder algorithm (page 6.34)

- complexity is $2 m n^{2}-(2 / 3) n^{3}$ flops
- represents Q as a product of elementary orthogonal matrices
- the most widely used algorithm (used by the function qr in MATLAB and Julia)
in the rest of the course we will take $2 m n^{2}$ for the complexity of $Q R$ factorization

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- Householder algorithm

Gram-Schmidt algorithm

Gram-Schmidt QR algorithm computes Q and R column by column

- after k steps we have a partial QR factorization

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{k}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{k}
\end{array}\right]\left[\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 k} \\
0 & R_{22} & \cdots & R_{2 k} \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & R_{k k}
\end{array}\right]
$$

this is the QR factorization for the first k columns of A

- columns q_{1}, \ldots, q_{k} are orthonormal
- diagonal elements $R_{11}, R_{22}, \ldots, R_{k k}$ are positive
- columns q_{1}, \ldots, q_{k} have the same span as a_{1}, \ldots, a_{k} (see page 6.12)
- in step k of the algorithm we compute $q_{k}, R_{1 k}, \ldots, R_{k k}$

Computing the k th columns of Q and R

suppose we have the partial factorization for the first $k-1$ columns of Q and R

- column k of the equation $A=Q R$ reads

$$
a_{k}=R_{1 k} q_{1}+R_{2 k} q_{2}+\cdots+R_{k-1, k} q_{k-1}+R_{k k} q_{k}
$$

- regardless of how we choose $R_{1 k}, \ldots, R_{k-1, k}$, the vector

$$
\tilde{q}_{k}=a_{k}-R_{1 k} q_{1}-R_{2 k} q_{2}-\cdots-R_{k-1, k} q_{k-1}
$$

will be nonzero: $a_{1}, a_{2}, \ldots, a_{k}$ are linearly independent and therefore

$$
a_{k} \notin \operatorname{span}\left(a_{1}, \ldots, a_{k-1}\right)=\operatorname{span}\left(q_{1}, \ldots, q_{k-1}\right)
$$

- q_{k} is \tilde{q}_{k} normalized: choose $R_{k k}=\left\|\tilde{q}_{k}\right\|$ and $q_{k}=\left(1 / R_{k k}\right) \tilde{q}_{k}$
- \tilde{q}_{k} and q_{k} are orthogonal to q_{1}, \ldots, q_{k-1} if we choose $R_{1 k}, \ldots, R_{k-1, k}$ as

$$
R_{1 k}=q_{1}^{T} a_{k}, \quad R_{2 k}=q_{2}^{T} a_{k}, \quad \ldots, \quad R_{k-1, k}=q_{k-1}^{T} a_{k}
$$

Interpretation

on the previous page, $\tilde{q}_{k}=R_{k k} q_{k}$ was computed as

$$
\begin{aligned}
\tilde{q}_{k} & =a_{k}-R_{1 k} q_{1}-R_{2 k} q_{2}-\cdots-R_{k-1, k} q_{k-1} \\
& =a_{k}-q_{1}\left(q_{1}^{T} a_{k}\right)-q_{2}\left(q_{2}^{T} a_{k}\right)-\cdots-q_{k-1} q_{k-1}^{T} a_{k} \\
& =\left(I-q_{1} q_{1}^{T}-q_{2} q_{2}^{T}-\cdots-q_{k-1} q_{k-1}^{T}\right) a_{k}
\end{aligned}
$$

this is the residual of a_{k} after subtracting its orthogonal projection on

$$
\operatorname{span}\left(q_{1}, q_{2}, \ldots, q_{k-1}\right)=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{k-1}\right)
$$

Gram-Schmidt algorithm

Given: $m \times n$ matrix A with linearly independent columns a_{1}, \ldots, a_{n}

Algorithm

for $k=1$ to n

$$
\begin{aligned}
R_{1 k} & =q_{1}^{T} a_{k} \\
R_{2 k} & =q_{2}^{T} a_{k} \\
& \vdots \\
R_{k-1, k} & =q_{k-1}^{T} a_{k} \\
\tilde{q}_{k} & =a_{k}-\left(R_{1 k} q_{1}+R_{2 k} q_{2}+\cdots+R_{k-1, k} q_{k-1}\right) \\
R_{k k} & =\left\|\tilde{q}_{k}\right\| \\
q_{k} & =\frac{1}{R_{k k}} \tilde{q}_{k}
\end{aligned}
$$

Example

example on page 6.8:

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 3 & 3 \\
-1 & -1 & 5 \\
1 & 3 & 7
\end{array}\right] \\
& =\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33}
\end{array}\right]
\end{aligned}
$$

First column of Q and R

$$
\tilde{q}_{1}=a_{1}=\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right], \quad R_{11}=\left\|\tilde{q}_{1}\right\|=2, \quad q_{1}=\frac{1}{R_{11}} \tilde{q}_{1}=\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]
$$

Example

Second column of Q and R

- compute $R_{12}=q_{1}^{T} a_{2}=4$
- compute

$$
\tilde{q}_{2}=a_{2}-R_{12} q_{1}=\left[\begin{array}{r}
-1 \\
3 \\
-1 \\
3
\end{array}\right]-4\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- normalize to get

$$
R_{22}=\left\|\tilde{q}_{2}\right\|=2, \quad q_{2}=\frac{1}{R_{22}} \tilde{q}_{2}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]
$$

Example

Third column of Q and R

- compute $R_{13}=q_{1}^{T} a_{3}=2$ and $R_{23}=q_{2}^{T} a_{3}=8$
- compute

$$
\tilde{q}_{3}=a_{3}-R_{13} q_{1}-R_{23} q_{2}=\left[\begin{array}{l}
1 \\
3 \\
5 \\
7
\end{array}\right]-2\left[\begin{array}{r}
-1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]-8\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{r}
-2 \\
-2 \\
2 \\
2
\end{array}\right]
$$

- normalize to get

$$
R_{33}=\left\|\tilde{q}_{3}\right\|=4, \quad q_{3}=\frac{1}{R_{33}} \tilde{q}_{3}=\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]
$$

Example

Final result

$$
\begin{aligned}
{\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 3 & 3 \\
-1 & -1 & 5 \\
1 & 3 & 7
\end{array}\right]=} & {\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33}
\end{array}\right] } \\
& =\left[\begin{array}{rrr}
-1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 2 & 8 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Complexity

Complexity of cycle k (of algorithm on page 6.19)

- $k-1$ inner products with $a_{k}:(k-1)(2 m-1)$ flops
- computation of $\tilde{q}_{k}: 2(k-1) m$ flops
- computing $R_{k k}$ and $q_{k}: 3 m$ flops
total for cycle $k:(4 m-1)(k-1)+3 m$ flops

Complexity for $m \times n$ factorization:

$$
\begin{aligned}
\sum_{k=1}^{n}((4 m-1)(k-1)+3 m) & =(4 m-1) \frac{n(n-1)}{2}+3 m n \\
& \approx 2 m n^{2} \text { flops }
\end{aligned}
$$

Numerical experiment

- we use the following MATLAB implementation of the algorithm on page 6.19:

```
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
    R(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
    qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
    R(k,k) = norm(qtilde);
    Q(:,k) = qtilde / R(k,k);
end;
```

- we apply this to a square matrix A of size $m=n=50$
- A is constructed as $A=U S V$ with U, V orthogonal, S diagonal with

$$
S_{i i}=10^{-10(i-1) /(n-1)}, \quad i=1, \ldots, n
$$

Numerical experiment

plot shows deviation from orthogonality between q_{k} and previous columns

$$
e_{k}=\max _{1 \leq i<k}\left|q_{i}^{T} q_{k}\right|, \quad k=2, \ldots, n
$$

loss of orthogonality is due to rounding error

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- Householder algorithm

Modified Gram-Schmidt algorithm

a variation of the Gram-Schmidt algorithm for the QR factorization

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{cccc}
R_{11} & R_{12} & \cdots & R_{1 n} \\
0 & R_{22} & \cdots & R_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & R_{n n}
\end{array}\right]
$$

- has better numerical properties than the Gram-Schmidt algorithm
- computes Q column by column, R row by row
- computes vectors \tilde{q}_{k} as

$$
\tilde{q}_{k}=\left(I-q_{k-1} q_{k-1}^{T}\right) \cdots\left(I-q_{2} q_{2}^{T}\right)\left(I-q_{1} q_{1}^{T}\right) a_{k}
$$

(see exercise on 5.20)

Modified Gram-Schmidt algorithm

after $k-1$ steps, the algorithm has computed a partial factorization

$$
\begin{aligned}
A & =\left[a_{1} \cdots a_{k-1} \mid a_{k} \cdots a_{n}\right] \\
& =\left[q_{1} \cdots q_{k-1} \mid \tilde{Q}_{k}\right]\left[\right]
\end{aligned}
$$

- columns of \tilde{Q}_{k} are residuals of a_{k}, \ldots, a_{n} after projection on $\operatorname{span}\left(q_{1}, \ldots, q_{k-1}\right)$
- \tilde{q}_{k} is the first column of \tilde{Q}_{k}
- we start with $k=0$ and $\tilde{Q}_{1}=A$
- the factorization is complete when $k=n$
- in step k, we compute

$$
q_{k}, \quad R_{k k}, \quad R_{k, k+1}, \quad \ldots, R_{k n}, \quad \tilde{Q}_{k+1}
$$

Modified Gram-Schmidt update

careful inspection of the update at step k shows that

$$
\tilde{Q}_{k}=\left[\begin{array}{ll}
q_{k} & \tilde{Q}_{k+1}
\end{array}\right]\left[\begin{array}{cc}
R_{k k} & R_{k,(k+1): n} \\
0 & I
\end{array}\right]
$$

partition \tilde{Q}_{k} as $\tilde{Q}_{k}=\left[\begin{array}{ll}\tilde{q}_{k} & B\end{array}\right]$ with \tilde{q}_{k} the first column and B of size $m \times(n-k)$:

$$
\tilde{q}_{k}=q_{k} R_{k k}, \quad B=q_{k} R_{k,(k+1): n}+\tilde{Q}_{k+1}
$$

- from the first equation, and the required properties $\left\|q_{k}\right\|=1$ and $R_{k k}>0$:

$$
R_{k k}=\left\|\tilde{q}_{k}\right\|, \quad q_{k}=\frac{1}{R_{k k}} \tilde{q}_{k}
$$

- from the second equation, and the requirement that $q_{k}^{T} \tilde{Q}_{k+1}=0$:

$$
R_{k,(k+1): n}=q_{k}^{T} B, \quad \tilde{Q}_{k+1}=\left(I-q_{k} q_{k}^{T}\right) B=B-q_{k} R_{k,(k+1): n}
$$

Summary: modified Gram-Schmidt algorithm

Algorithm (A is $m \times n$ with linearly independent columns)
define $\tilde{Q}_{1}=A$; for $k=1$ to n,

- compute $R_{k k}=\left\|\tilde{q}_{k}\right\|$ and $q_{k}=\left(1 / R_{k k}\right) \tilde{q}_{k}$ where \tilde{q}_{k} is the first column of \tilde{Q}_{k}
- compute

$$
\left[R_{k, k+1} \cdots R_{k n}\right]=q_{k}^{T} B, \quad \tilde{Q}_{k+1}=B-q_{k}\left[R_{k, k+1} \cdots R_{k n}\right]
$$

where B is \tilde{Q}_{k} with first column removed
MATLAB code $\left(\mathrm{Q}(:, \mathrm{k}: \mathrm{n})\right.$ is used to store $\left.\tilde{Q}_{k}\right)$

$$
\begin{aligned}
& Q=A ; R=\operatorname{zeros}(n, n) ; \\
& \text { for } k=1: n \\
& R(k, k)=\operatorname{norm}(Q(:, k)) ; \\
& \quad Q(:, k)=Q(:, k) / R(k, k) ; \\
& R(k, k+1: n)=Q(:, k) * Q(:, k+1: n) ; \\
& \\
& Q(:, k+1: n)=Q(:, k+1: n)-Q(:, k) * R(k, k+1: n) ;
\end{aligned}
$$

Example

example on page 6.8

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]=\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 3 & 3 \\
-1 & -1 & 5 \\
1 & 3 & 7
\end{array}\right]
$$

Step 1: first column of Q, first row of R

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] } & =\left[\begin{array}{r|rr}
-1 / 2 & 1 & 2 \\
1 / 2 & 1 & 2 \\
-1 / 2 & 1 & 6 \\
1 / 2 & 1 & 6
\end{array}\right]\left[\begin{array}{c|cc}
2 & 4 & 2 \\
\hline 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[q_{1} \mid \tilde{Q}_{2}\right]\left[\begin{array}{c|c}
R_{11} & R_{1,2: 3} \\
\hline 0 & I
\end{array}\right]
\end{aligned}
$$

Example

Step 2: second column of Q, second row of R

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] } & =\left[\begin{array}{rr|r}
-1 / 2 & 1 / 2 & -2 \\
1 / 2 & 1 / 2 & -2 \\
-1 / 2 & 1 / 2 & 2 \\
1 / 2 & 1 / 2 & 2
\end{array}\right]\left[\begin{array}{ll|l}
2 & 4 & 2 \\
0 & 2 & 8 \\
\hline 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
q_{1} & q_{2} & \tilde{Q}_{3}
\end{array}\right]\left[\begin{array}{cc|c}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
\hline 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Step 3: third column of Q, third row of R

$$
\begin{aligned}
{\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
-1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 2 \\
0 & 2 & 8 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33}
\end{array}\right]
\end{aligned}
$$

Complexity

Complexity of cycle k (of algorithm on page 6.30)

- computing $R_{k k}$ and $q_{k}: 3 m$ flops
- computing $R_{k, k+1}, \ldots, R_{k n}$: $(n-k)(2 m-1)$ flops
- computing $\tilde{Q}_{k+1}: 2(n-k) m$ flops
total for cycle $k:(4 m-1)(n-k)+3 m$ flops

Complexity for $m \times n$ factorization:

$$
\begin{aligned}
\sum_{k=1}^{n}((4 m-1)(n-k)+3 m) & =(4 m-1) \frac{n(n-1)}{2}+3 m n \\
& \approx 2 m n^{2} \text { flops }
\end{aligned}
$$

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- Householder algorithm

Householder algorithm

- the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
- less sensitive to rounding error than Gram-Schmidt algorithm
- computes a "full" QR factorization (QR decomposition)

$$
A=\left[\begin{array}{ll}
Q & \tilde{Q}
\end{array}\right]\left[\begin{array}{l}
R \\
0
\end{array}\right], \quad\left[\begin{array}{cc}
Q & \tilde{Q}
\end{array}\right] \text { orthogonal }
$$

- the full Q-factor is constructed as a product of orthogonal matrices

$$
\left[\begin{array}{ll}
Q & \tilde{Q}
\end{array}\right]=H_{1} H_{2} \cdots H_{n}
$$

each H_{i} is an $m \times m$ symmetric, orthogonal "reflector" (page 5.10)

Reflector

$$
H=I-2 v v^{T} \quad \text { with }\|v\|=1
$$

- $H x$ is reflection of x through hyperplane $\left\{z \mid v^{T} z=0\right\}$ (see page 5.10)
- H is symmetric
- H is orthogonal
- matrix-vector product $H x$ can be computed efficiently as

$$
H x=x-2\left(v^{T} x\right) v
$$

complexity is $4 p$ flops if v and x have length p

Reflection to multiple of unit vector

given nonzero p-vector $y=\left(y_{1}, y_{2}, \ldots, y_{p}\right)$, define

$$
w=\left[\begin{array}{c}
y_{1}+\operatorname{sign}\left(y_{1}\right)\|y\| \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right], \quad v=\frac{1}{\|w\|} w
$$

- we define $\operatorname{sign}(0)=1$
- vector w satisfies

$$
\|w\|^{2}=2\left(w^{T} y\right)=2\|y\|\left(\|y\|+\left|y_{1}\right|\right)
$$

- reflector $H=I-2 v v^{T}$ maps y to multiple of $e_{1}=(1,0, \ldots, 0)$:

$$
H y=y-\frac{2\left(w^{T} y\right)}{\|w\|^{2}} w=y-w=-\operatorname{sign}\left(y_{1}\right)\|y\| e_{1}
$$

Geometry

the reflection through the hyperplane $\left\{x \mid w^{T} x=0\right\}$ with normal vector

$$
w=y+\operatorname{sign}\left(y_{1}\right)\|y\| e_{1}
$$

maps y to the vector $-\operatorname{sign}\left(y_{1}\right)\|y\| e_{1}$

Householder triangularization

- computes reflectors H_{1}, \ldots, H_{n} that reduce A to triangular form:

$$
H_{n} H_{n-1} \cdots H_{1} A=\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

- after step k, the matrix $H_{k} H_{k-1} \cdots H_{1} A$ has the following structure:

(elements in positions i, j for $i>j$ and $j \leq k$ are zero)

Householder algorithm

the following algorithm overwrites A with $\left[\begin{array}{l}R \\ 0\end{array}\right]$

Algorithm: for $k=1$ to n,

1. define $y=A_{k: m, k}$ and compute $(m-k+1)$-vector v_{k} :

$$
w=y+\operatorname{sign}\left(y_{1}\right)\|y\| e_{1}, \quad v_{k}=\frac{1}{\|w\|} w
$$

2. multiply $A_{k: m, k: n}$ with reflector $I-2 v_{k} v_{k}^{T}$:

$$
A_{k: m, k: n}:=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{T} A_{k: m, k: n}\right)
$$

Comments

- in step 2 we multiply $A_{k: m, k: n}$ with the reflector $I-2 v_{k} v_{k}^{T}$:

$$
\left(I-2 v_{k} v_{k}^{T}\right) A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{T} A_{k: m, k: n}\right)
$$

- this is equivalent to multiplying A with $m \times m$ reflector

$$
H_{k}=\left[\begin{array}{cc}
I & 0 \\
0 & I-2 v_{k} v_{k}^{T}
\end{array}\right]=I-2\left[\begin{array}{c}
0 \\
v_{k}
\end{array}\right]\left[\begin{array}{c}
0 \\
v_{k}
\end{array}\right]^{T}
$$

- algorithm overwrites A with

$$
\left[\begin{array}{l}
R \\
0
\end{array}\right]
$$

and returns the vectors v_{1}, \ldots, v_{n}, with v_{k} of length $m-k+1$

Example

example on page 6.8:

$$
A=\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 3 & 3 \\
-1 & -1 & 5 \\
1 & 3 & 7
\end{array}\right]=H_{1} H_{2} H_{3}\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

we compute reflectors H_{1}, H_{2}, H_{3} that triangularize A :

$$
H_{3} H_{2} H_{1} A=\left[\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23} \\
0 & 0 & R_{33} \\
0 & 0 & 0
\end{array}\right]
$$

Example

First column of R

- compute reflector that maps first column of A to multiple of e_{1} :

$$
y=\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right], \quad w=y-\|y\| e_{1}=\left[\begin{array}{r}
-3 \\
1 \\
-1 \\
1
\end{array}\right], \quad v_{1}=\frac{1}{\|w\|} w=\frac{1}{2 \sqrt{3}}\left[\begin{array}{r}
-3 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- overwrite A with product of $I-2 v_{1} v_{1}^{T}$ and A

$$
A:=\left(I-2 v_{1} v_{1}^{T}\right) A=\left[\begin{array}{ccc}
2 & 4 & 2 \\
0 & 4 / 3 & 8 / 3 \\
0 & 2 / 3 & 16 / 3 \\
0 & 4 / 3 & 20 / 3
\end{array}\right]
$$

Example

Second column of R

- compute reflector that maps $A_{2: 4,2}$ to multiple of e_{1} :

$$
y=\left[\begin{array}{l}
4 / 3 \\
2 / 3 \\
4 / 3
\end{array}\right], \quad w=y+\|y\| e_{1}=\left[\begin{array}{r}
10 / 3 \\
2 / 3 \\
4 / 3
\end{array}\right], \quad v_{2}=\frac{1}{\|w\|} w=\frac{1}{\sqrt{30}}\left[\begin{array}{l}
5 \\
1 \\
2
\end{array}\right]
$$

- overwrite $A_{2: 4,2: 3}$ with product of $I-2 v_{2} v_{2}^{T}$ and $A_{2: 4,2: 3}$:

$$
A:=\left[\begin{array}{cc}
1 & 0 \\
0 & I-2 v_{2} v_{2}^{T}
\end{array}\right] A=\left[\begin{array}{rrr}
2 & 4 & 2 \\
0 & -2 & -8 \\
0 & 0 & 16 / 5 \\
0 & 0 & 12 / 5
\end{array}\right]
$$

Example

Third column of R

- compute reflector that maps $A_{3: 4,3}$ to multiple of e_{1} :

$$
y=\left[\begin{array}{l}
16 / 5 \\
12 / 5
\end{array}\right], \quad w=y+\|y\| e_{1}=\left[\begin{array}{c}
36 / 5 \\
12 / 5
\end{array}\right], \quad v_{3}=\frac{1}{\|w\|} w=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- overwrite $A_{3: 4,3}$ with product of $I-2 v_{3} v_{3}^{T}$ and $A_{3: 4,3}$:

$$
A:=\left[\begin{array}{cc}
I & 0 \\
0 & I-2 v_{3} v_{3}^{T}
\end{array}\right] A=\left[\begin{array}{rrr}
2 & 4 & 2 \\
0 & -2 & -8 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Example

Final result

$$
\begin{aligned}
H_{3} H_{2} H_{1} A & =\left[\begin{array}{cc}
I & 0 \\
0 & I-2 v_{3} v_{3}^{T}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & I-2 v_{2} v_{2}^{T}
\end{array}\right]\left(I-2 v_{1} v_{1}^{T}\right) A \\
& =\left[\begin{array}{cc}
I & 0 \\
0 & I-2 v_{3} v_{3}^{T}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & I-2 v_{2} v_{2}^{T}
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & 2 \\
0 & 4 / 3 & 8 / 3 \\
0 & 2 / 3 & 16 / 3 \\
0 & 4 / 3 & 20 / 3
\end{array}\right] \\
& =\left[\begin{array}{rr}
I & 0 \\
0 & I-2 v_{3} v_{3}^{T}
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & 2 \\
0 & -2 & -8 \\
0 & 0 & 16 / 5 \\
0 & 0 & 12 / 5
\end{array}\right] \\
& =\left[\begin{array}{rrr}
2 & 4 & 2 \\
0 & -2 & -8 \\
0 & 0 & -4 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Complexity

Complexity in cycle k (of algorithm on page 6.39): the dominant terms are

- $(2(m-k+1)-1)(n-k+1)$ flops for product $v_{k}^{T}\left(A_{k: m, k: n}\right)$
- $(m-k+1)(n-k+1)$ flops for outer product with v_{k}
- $(m-k+1)(n-k+1)$ flops for subtraction from $A_{k: m, k: n}$
sum is roughly $4(m-k+1)(n-k+1)$ flops

Total for computing R and vectors v_{1}, \ldots, v_{n} :

$$
\begin{aligned}
\sum_{k=1}^{n} 4(m-k+1)(n-k+1) & \approx \int_{0}^{n} 4(m-t)(n-t) d t \\
& =2 m n^{2}-\frac{2}{3} n^{3} \text { flops }
\end{aligned}
$$

Q-factor

the Householder algorithm returns the vectors v_{1}, \ldots, v_{n} that define

$$
\left[\begin{array}{ll}
Q & \tilde{Q}
\end{array}\right]=H_{1} H_{2} \cdots H_{n}
$$

- usually there is no need to compute the matrix [$Q \quad \tilde{Q}$] explicitly
- the vectors v_{1}, \ldots, v_{n} are an economical representation of [$Q \quad \tilde{Q}$]
- products with [$\left.\begin{array}{ll}Q & \tilde{Q}\end{array}\right]$ or its transpose can be computed as

$$
\begin{gathered}
{\left[\begin{array}{cc}
Q & \tilde{Q}
\end{array}\right] x=H_{1} H_{2} \cdots H_{n} x} \\
{\left[\begin{array}{ll}
Q & \tilde{Q}
\end{array}\right]^{T} y=H_{n} H_{n-1} \cdots H_{1} y}
\end{gathered}
$$

Multiplication with Q-factor

- the matrix-vector product $H_{k} x$ is defined as

$$
H_{k} x=\left[\begin{array}{cc}
I & 0 \\
0 & I-2 v_{k} v_{k}^{T}
\end{array}\right]\left[\begin{array}{c}
x_{1: k-1} \\
x_{k: m}
\end{array}\right]=\left[\begin{array}{c}
x_{1: k-1} \\
x_{k: m}-2\left(v_{k}^{T} x_{k: m}\right) v_{k}
\end{array}\right]
$$

- complexity of multiplication $H_{k} x$ is $4(m-k+1)$ flops:
- complexity of multiplication with $H_{1} H_{2} \cdots H_{n}$ or its transpose is

$$
\sum_{k=1}^{n} 4(m-k+1) \approx 4 m n-2 n^{2} \text { flops }
$$

- roughly equal to matrix-vector product with $m \times n$ matrix ($2 m n$ flops)

