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6. QR factorization

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm

6.1



Triangular matrix

a square matrix 𝐴 is lower triangular if 𝐴𝑖 𝑗 = 0 for 𝑗 > 𝑖

𝐴 =


𝐴11 0 · · · 0 0
𝐴21 𝐴22 · · · 0 0
... ... . . . 0 0

𝐴𝑛−1,1 𝐴𝑛−1,2 · · · 𝐴𝑛−1,𝑛−1 0
𝐴𝑛1 𝐴𝑛2 · · · 𝐴𝑛,𝑛−1 𝐴𝑛𝑛



𝐴 is upper triangular if 𝐴𝑖 𝑗 = 0 for 𝑗 < 𝑖 (the transpose 𝐴𝑇 is lower triangular)

a triangular matrix is unit upper/lower triangular if 𝐴𝑖𝑖 = 1 for all 𝑖
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Forward substitution

solve 𝐴𝑥 = 𝑏 when 𝐴 is lower triangular with nonzero diagonal elements

Algorithm

𝑥1 = 𝑏1/𝐴11

𝑥2 = (𝑏2 − 𝐴21𝑥1)/𝐴22

𝑥3 = (𝑏3 − 𝐴31𝑥1 − 𝐴32𝑥2)/𝐴33
...

𝑥𝑛 = (𝑏𝑛 − 𝐴𝑛1𝑥1 − 𝐴𝑛2𝑥2 − · · · − 𝐴𝑛,𝑛−1𝑥𝑛−1)/𝐴𝑛𝑛

Complexity: 1 + 3 + 5 + · · · + (2𝑛 − 1) = 𝑛2 flops
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Back substitution

solve 𝐴𝑥 = 𝑏 when 𝐴 is upper triangular with nonzero diagonal elements

Algorithm

𝑥𝑛 = 𝑏𝑛/𝐴𝑛𝑛

𝑥𝑛−1 = (𝑏𝑛−1 − 𝐴𝑛−1,𝑛𝑥𝑛)/𝐴𝑛−1,𝑛−1

𝑥𝑛−2 = (𝑏𝑛−2 − 𝐴𝑛−2,𝑛−1𝑥𝑛−1 − 𝐴𝑛−2,𝑛𝑥𝑛)/𝐴𝑛−2,𝑛−2
...

𝑥1 = (𝑏1 − 𝐴12𝑥2 − 𝐴13𝑥3 − · · · − 𝐴1𝑛𝑥𝑛)/𝐴11

Complexity: 𝑛2 flops
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Inverse of triangular matrix

a triangular matrix 𝐴 with nonzero diagonal elements is nonsingular:

𝐴𝑥 = 0 =⇒ 𝑥 = 0

this follows from forward or back substitution applied to the equation 𝐴𝑥 = 0

• inverse of 𝐴 can be computed by solving 𝐴𝑋 = 𝐼 column by column

𝐴
[
𝑥1 𝑥2 · · · 𝑥𝑛

]
=
[
𝑒1 𝑒2 · · · 𝑒𝑛

]
(𝑥𝑖 is column 𝑖 of 𝑋)

• inverse of lower triangular matrix is lower triangular

• inverse of upper triangular matrix is upper triangular

• complexity of computing inverse of 𝑛 × 𝑛 triangular matrix is

𝑛2 + (𝑛 − 1)2 + · · · + 1 ≈ 1
3𝑛

3 flops
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QR factorization

if 𝐴 ∈ R𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 =
[
𝑞1 𝑞2 · · · 𝑞𝑛

] 
𝑅11 𝑅12 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑛
... ... . . . ...

0 0 · · · 𝑅𝑛𝑛


• vectors 𝑞1, . . . , 𝑞𝑛 are orthonormal 𝑚-vectors:

∥𝑞𝑖∥ = 1, 𝑞𝑇𝑖 𝑞 𝑗 = 0 if 𝑖 ≠ 𝑗

• diagonal elements 𝑅𝑖𝑖 are nonzero

• if 𝑅𝑖𝑖 < 0, we can switch the signs of 𝑅𝑖𝑖, . . . , 𝑅𝑖𝑛, and the vector 𝑞𝑖

• most definitions require 𝑅𝑖𝑖 > 0; this makes 𝑄 and 𝑅 unique

QR factorization 6.6



QR factorization in matrix notation

if 𝐴 ∈ R𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 = 𝑄𝑅

Q-factor

• 𝑄 is 𝑚 × 𝑛 with orthonormal columns (𝑄𝑇𝑄 = 𝐼)

• if 𝐴 is square (𝑚 = 𝑛), then 𝑄 is orthogonal (𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼)

R-factor

• 𝑅 is 𝑛 × 𝑛, upper triangular, with nonzero diagonal elements

• 𝑅 is nonsingular (diagonal elements are nonzero)
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Example


−1 −1 1

1 3 3
−1 −1 5

1 3 7

 =


−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2




2 4 2
0 2 8
0 0 4


=

[
𝑞1 𝑞2 𝑞3

] 
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33


= 𝑄𝑅
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Full QR factorization

the QR factorization is often defined as a factorization

𝐴 =
[
𝑄 �̃�

] [ 𝑅

0

]
• 𝐴 = 𝑄𝑅 is the QR factorization as defined earlier (page 6.7)

• �̃� has size 𝑚 × (𝑚 − 𝑛), the zero block has size (𝑚 − 𝑛) × 𝑛

• the matrix
[
𝑄 �̃�

]
is 𝑚 × 𝑚 and orthogonal

• MATLAB’s function qr returns this factorization

• this is also known as the full QR factorization or QR decomposition

in this course we use the definition of page 6.7
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Applications

in the following lectures, we will use the QR factorization to solve

• linear equations

• least squares problems

• constrained least squares problems

here, we show that it gives useful simple formulas for

• the pseudo-inverse of a matrix with linearly independent columns

• the inverse of a nonsingular matrix

• projection on the range of a matrix with linearly independent columns
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QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix 𝐴 with linearly independent columns (page 4.22)

𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇

• pseudo-inverse in terms of QR factors of 𝐴:

𝐴† = ((𝑄𝑅)𝑇 (𝑄𝑅))−1(𝑄𝑅)𝑇
= (𝑅𝑇𝑄𝑇𝑄𝑅)−1𝑅𝑇𝑄𝑇

= (𝑅𝑇𝑅)−1𝑅𝑇𝑄𝑇 (𝑄𝑇𝑄 = 𝐼)
= 𝑅−1𝑅−𝑇𝑅𝑇𝑄𝑇 (𝑅 is nonsingular)
= 𝑅−1𝑄𝑇

• for square nonsingular 𝐴 this is the inverse:

𝐴−1 = (𝑄𝑅)−1 = 𝑅−1𝑄𝑇
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Range

recall definition of range of a matrix 𝐴 ∈ R𝑚×𝑛 (page 5.16):

range(𝐴) = {𝐴𝑥 | 𝑥 ∈ R𝑛}

suppose 𝐴 has linearly independent columns with QR factors 𝑄, 𝑅

• 𝑄 has the same range as 𝐴:

𝑦 ∈ range(𝐴) ⇐⇒ 𝑦 = 𝐴𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑅𝑥 for some 𝑥

⇐⇒ 𝑦 = 𝑄𝑧 for some 𝑧

⇐⇒ 𝑦 ∈ range(𝑄)

• columns of 𝑄 are an orthonormal basis for range(𝐴)
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Projection on range

• combining 𝐴 = 𝑄𝑅 and 𝐴† = 𝑅−1𝑄𝑇 (from page 6.11) gives

𝐴𝐴† = 𝑄𝑅𝑅−1𝑄𝑇 = 𝑄𝑄𝑇

note the order of the product in 𝐴𝐴† and the difference with 𝐴†𝐴 = 𝐼

• recall (from page 5.17) that 𝑄𝑄𝑇𝑥 is the projection of 𝑥 on the range of 𝑄

range(A) = range(Q)

x

AA†x = QQT x
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QR factorization of complex matrices

if 𝐴 ∈ C𝑚×𝑛 has linearly independent columns then it can be factored as

𝐴 = 𝑄𝑅

• 𝑄 ∈ C𝑚×𝑛 has orthonormal columns (𝑄𝐻𝑄 = 𝐼)

• 𝑅 ∈ C𝑛×𝑛 is upper triangular with real nonzero diagonal elements

• most definitions choose diagonal elements 𝑅𝑖𝑖 to be positive

• in the rest of the lecture we assume 𝐴 is real
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Algorithms for QR factorization

Gram–Schmidt algorithm (section 5.4 in textbook and page 6.16)

• complexity is 2𝑚𝑛2 flops

• not recommended in practice (sensitive to rounding errors)

Modified Gram–Schmidt algorithm (page 6.27)

• complexity is 2𝑚𝑛2 flops

• better numerical properties

Householder algorithm (page 6.34)

• complexity is 2𝑚𝑛2 − (2/3)𝑛3 flops

• represents 𝑄 as a product of elementary orthogonal matrices

• the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take 2𝑚𝑛2 for the complexity of QR factorization
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Gram–Schmidt algorithm

Gram–Schmidt QR algorithm computes 𝑄 and 𝑅 column by column

• after 𝑘 steps we have a partial QR factorization

[
𝑎1 𝑎2 · · · 𝑎𝑘

]
=
[
𝑞1 𝑞2 · · · 𝑞𝑘

] 
𝑅11 𝑅12 · · · 𝑅1𝑘
0 𝑅22 · · · 𝑅2𝑘
... ... . . . ...

0 0 · · · 𝑅𝑘𝑘


this is the QR factorization for the first 𝑘 columns of 𝐴

• columns 𝑞1, . . . , 𝑞𝑘 are orthonormal

• diagonal elements 𝑅11, 𝑅22, . . . , 𝑅𝑘𝑘 are positive

• columns 𝑞1, . . . , 𝑞𝑘 have the same span as 𝑎1, . . . , 𝑎𝑘 (see page 6.12)

• in step 𝑘 of the algorithm we compute 𝑞𝑘 , 𝑅1𝑘 , . . . , 𝑅𝑘𝑘
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Computing the 𝑘th columns of 𝑄 and 𝑅

suppose we have the partial factorization for the first 𝑘 − 1 columns of 𝑄 and 𝑅

• column 𝑘 of the equation 𝐴 = 𝑄𝑅 reads

𝑎𝑘 = 𝑅1𝑘𝑞1 + 𝑅2𝑘𝑞2 + · · · + 𝑅𝑘−1,𝑘𝑞𝑘−1 + 𝑅𝑘𝑘𝑞𝑘

• regardless of how we choose 𝑅1𝑘 , . . . , 𝑅𝑘−1,𝑘 , the vector

𝑞𝑘 = 𝑎𝑘 − 𝑅1𝑘𝑞1 − 𝑅2𝑘𝑞2 − · · · − 𝑅𝑘−1,𝑘𝑞𝑘−1

will be nonzero: 𝑎1, 𝑎2, . . . , 𝑎𝑘 are linearly independent and therefore

𝑎𝑘 ∉ span(𝑎1, . . . , 𝑎𝑘−1) = span(𝑞1, . . . , 𝑞𝑘−1)

• 𝑞𝑘 is 𝑞𝑘 normalized: choose 𝑅𝑘𝑘 = ∥𝑞𝑘 ∥ and 𝑞𝑘 = (1/𝑅𝑘𝑘)𝑞𝑘
• 𝑞𝑘 and 𝑞𝑘 are orthogonal to 𝑞1, . . . , 𝑞𝑘−1 if we choose 𝑅1𝑘 , . . . , 𝑅𝑘−1,𝑘 as

𝑅1𝑘 = 𝑞𝑇1𝑎𝑘 , 𝑅2𝑘 = 𝑞𝑇2𝑎𝑘 , . . . , 𝑅𝑘−1,𝑘 = 𝑞𝑇𝑘−1𝑎𝑘
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Interpretation

on the previous page, 𝑞𝑘 = 𝑅𝑘𝑘𝑞𝑘 was computed as

𝑞𝑘 = 𝑎𝑘 − 𝑅1𝑘𝑞1 − 𝑅2𝑘𝑞2 − · · · − 𝑅𝑘−1,𝑘𝑞𝑘−1

= 𝑎𝑘 − 𝑞1(𝑞𝑇1𝑎𝑘) − 𝑞2(𝑞𝑇2𝑎𝑘) − · · · − 𝑞𝑘−1𝑞
𝑇
𝑘−1𝑎𝑘

=

(
𝐼 − 𝑞1𝑞

𝑇
1 − 𝑞2𝑞

𝑇
2 − · · · − 𝑞𝑘−1𝑞

𝑇
𝑘−1

)
𝑎𝑘

this is the residual of 𝑎𝑘 after subtracting its orthogonal projection on

span(𝑞1, 𝑞2, . . . , 𝑞𝑘−1) = span(𝑎1, 𝑎2, . . . , 𝑎𝑘−1)
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Gram–Schmidt algorithm

Given: 𝑚 × 𝑛 matrix 𝐴 with linearly independent columns 𝑎1, . . . , 𝑎𝑛

Algorithm

for 𝑘 = 1 to 𝑛

𝑅1𝑘 = 𝑞𝑇1𝑎𝑘

𝑅2𝑘 = 𝑞𝑇2𝑎𝑘
...

𝑅𝑘−1,𝑘 = 𝑞𝑇𝑘−1𝑎𝑘

𝑞𝑘 = 𝑎𝑘 − (𝑅1𝑘𝑞1 + 𝑅2𝑘𝑞2 + · · · + 𝑅𝑘−1,𝑘𝑞𝑘−1)
𝑅𝑘𝑘 = ∥𝑞𝑘 ∥
𝑞𝑘 =

1
𝑅𝑘𝑘

𝑞𝑘
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Example

example on page 6.8:

[
𝑎1 𝑎2 𝑎3

]
=


−1 −1 1

1 3 3
−1 −1 5

1 3 7


=

[
𝑞1 𝑞2 𝑞3

] 
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33


First column of 𝑄 and 𝑅

𝑞1 = 𝑎1 =


−1

1
−1

1

 , 𝑅11 = ∥𝑞1∥ = 2, 𝑞1 =
1
𝑅11

𝑞1 =


−1/2

1/2
−1/2

1/2
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Example

Second column of 𝑄 and 𝑅

• compute 𝑅12 = 𝑞𝑇1𝑎2 = 4

• compute

𝑞2 = 𝑎2 − 𝑅12𝑞1 =


−1

3
−1

3

 − 4


−1/2

1/2
−1/2

1/2

 =


1
1
1
1


• normalize to get

𝑅22 = ∥𝑞2∥ = 2, 𝑞2 =
1
𝑅22

𝑞2 =


1/2
1/2
1/2
1/2
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Example

Third column of 𝑄 and 𝑅

• compute 𝑅13 = 𝑞𝑇1𝑎3 = 2 and 𝑅23 = 𝑞𝑇2𝑎3 = 8

• compute

𝑞3 = 𝑎3 − 𝑅13𝑞1 − 𝑅23𝑞2 =


1
3
5
7

 − 2


−1/2

1/2
−1/2

1/2

 − 8


1/2
1/2
1/2
1/2

 =

−2
−2

2
2


• normalize to get

𝑅33 = ∥𝑞3∥ = 4, 𝑞3 =
1
𝑅33

𝑞3 =


−1/2
−1/2

1/2
1/2
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Example

Final result
−1 −1 1

1 3 3
−1 −1 5

1 3 7

 =
[
𝑞1 𝑞2 𝑞3

] 
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33


=


−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2




2 4 2
0 2 8
0 0 4
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Complexity

Complexity of cycle 𝑘 (of algorithm on page 6.19)

• 𝑘 − 1 inner products with 𝑎𝑘 : (𝑘 − 1) (2𝑚 − 1) flops

• computation of 𝑞𝑘 : 2(𝑘 − 1)𝑚 flops

• computing 𝑅𝑘𝑘 and 𝑞𝑘 : 3𝑚 flops

total for cycle 𝑘 : (4𝑚 − 1) (𝑘 − 1) + 3𝑚 flops

Complexity for 𝑚 × 𝑛 factorization:

𝑛∑︁
𝑘=1

((4𝑚 − 1) (𝑘 − 1) + 3𝑚) = (4𝑚 − 1)𝑛(𝑛 − 1)
2

+ 3𝑚𝑛

≈ 2𝑚𝑛2 flops
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Numerical experiment

• we use the following MATLAB implementation of the algorithm on page 6.19:

[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n

R(1:k-1,k) = Q(:,1:k-1)’ * A(:,k);
qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
R(k,k) = norm(qtilde);
Q(:,k) = qtilde / R(k,k);

end;

• we apply this to a square matrix 𝐴 of size 𝑚 = 𝑛 = 50

• 𝐴 is constructed as 𝐴 = 𝑈𝑆𝑉 with 𝑈, 𝑉 orthogonal, 𝑆 diagonal with

𝑆𝑖𝑖 = 10−10(𝑖−1)/(𝑛−1), 𝑖 = 1, . . . , 𝑛
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Numerical experiment

plot shows deviation from orthogonality between 𝑞𝑘 and previous columns

𝑒𝑘 = max
1≤𝑖<𝑘

|𝑞𝑇𝑖 𝑞𝑘 |, 𝑘 = 2, . . . , 𝑛

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

k

e k

loss of orthogonality is due to rounding error
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Modified Gram–Schmidt algorithm

a variation of the Gram–Schmidt algorithm for the QR factorization

[
𝑎1 𝑎2 · · · 𝑎𝑛

]
=
[
𝑞1 𝑞2 · · · 𝑞𝑛

] 
𝑅11 𝑅12 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑛
... ... . . . ...

0 0 · · · 𝑅𝑛𝑛


• has better numerical properties than the Gram–Schmidt algorithm

• computes 𝑄 column by column, 𝑅 row by row

• computes vectors 𝑞𝑘 as

𝑞𝑘 = (𝐼 − 𝑞𝑘−1𝑞
𝑇
𝑘−1) · · · (𝐼 − 𝑞2𝑞

𝑇
2 ) (𝐼 − 𝑞1𝑞

𝑇
1 )𝑎𝑘

(see exercise on 5.20)
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Modified Gram–Schmidt algorithm

after 𝑘 − 1 steps, the algorithm has computed a partial factorization

𝐴 =
[
𝑎1 · · · 𝑎𝑘−1 𝑎𝑘 · · · 𝑎𝑛

]
=

[
𝑞1 · · · 𝑞𝑘−1 �̃�𝑘

] 
𝑅11 · · · 𝑅1,𝑘−1
... . . . ...

0 · · · 𝑅𝑘−1,𝑘−1

𝑅1𝑘 · · · 𝑅1𝑛
... ...

𝑅𝑘−1,𝑘 · · · 𝑅𝑘−1,𝑛

0 𝐼


• columns of �̃�𝑘 are residuals of 𝑎𝑘 , . . . , 𝑎𝑛 after projection on span(𝑞1, . . . , 𝑞𝑘−1)
• 𝑞𝑘 is the first column of �̃�𝑘

• we start with 𝑘 = 0 and �̃�1 = 𝐴

• the factorization is complete when 𝑘 = 𝑛

• in step 𝑘 , we compute

𝑞𝑘 , 𝑅𝑘𝑘 , 𝑅𝑘,𝑘+1, . . . , 𝑅𝑘𝑛, �̃�𝑘+1
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Modified Gram–Schmidt update

careful inspection of the update at step 𝑘 shows that

�̃�𝑘 =
[
𝑞𝑘 �̃�𝑘+1

] [ 𝑅𝑘𝑘 𝑅𝑘,(𝑘+1):𝑛
0 𝐼

]
partition �̃�𝑘 as �̃�𝑘 =

[
𝑞𝑘 𝐵

]
with 𝑞𝑘 the first column and 𝐵 of size 𝑚 × (𝑛 − 𝑘):

𝑞𝑘 = 𝑞𝑘𝑅𝑘𝑘 , 𝐵 = 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛 + �̃�𝑘+1

• from the first equation, and the required properties ∥𝑞𝑘 ∥ = 1 and 𝑅𝑘𝑘 > 0:

𝑅𝑘𝑘 = ∥𝑞𝑘 ∥, 𝑞𝑘 =
1
𝑅𝑘𝑘

𝑞𝑘

• from the second equation, and the requirement that 𝑞𝑇
𝑘
�̃�𝑘+1 = 0:

𝑅𝑘,(𝑘+1):𝑛 = 𝑞𝑇𝑘𝐵, �̃�𝑘+1 = (𝐼 − 𝑞𝑘𝑞
𝑇
𝑘 )𝐵 = 𝐵 − 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛
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Summary: modified Gram–Schmidt algorithm

Algorithm (𝐴 is 𝑚 × 𝑛 with linearly independent columns)

define �̃�1 = 𝐴; for 𝑘 = 1 to 𝑛,

• compute 𝑅𝑘𝑘 = ∥𝑞𝑘 ∥ and 𝑞𝑘 = (1/𝑅𝑘𝑘)𝑞𝑘 where 𝑞𝑘 is the first column of �̃�𝑘

• compute [
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
= 𝑞𝑇𝑘𝐵, �̃�𝑘+1 = 𝐵 − 𝑞𝑘

[
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
where 𝐵 is �̃�𝑘 with first column removed

MATLAB code (Q(:,k:n) is used to store �̃�𝑘)
Q = A; R = zeros(n,n);
for k = 1:n

R(k,k) = norm(Q(:,k));
Q(:,k) = Q(:,k) / R(k,k);
R(k,k+1:n) = Q(:,k)’ * Q(:,k+1:n);
Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);

end;
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Example

example on page 6.8

[
𝑎1 𝑎2 𝑎3

]
=


−1 −1 1

1 3 3
−1 −1 5

1 3 7


Step 1: first column of 𝑄, first row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=


−1/2 1 2

1/2 1 2
−1/2 1 6

1/2 1 6




2 4 2
0 1 0
0 0 1


=

[
𝑞1 �̃�2

] [ 𝑅11 𝑅1,2:3
0 𝐼

]
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Example

Step 2: second column of 𝑄, second row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=


−1/2 1/2 −2

1/2 1/2 −2
−1/2 1/2 2

1/2 1/2 2




2 4 2
0 2 8
0 0 1


=

[
𝑞1 𝑞2 �̃�3

] 
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 1


Step 3: third column of 𝑄, third row of 𝑅

[
𝑎1 𝑎2 𝑎3

]
=


−1/2 1/2 −1/2

1/2 1/2 −1/2
−1/2 1/2 1/2

1/2 1/2 1/2




2 4 2
0 2 8
0 0 4


=

[
𝑞1 𝑞2 𝑞3

] 
𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33
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Complexity

Complexity of cycle 𝑘 (of algorithm on page 6.30)

• computing 𝑅𝑘𝑘 and 𝑞𝑘 : 3𝑚 flops

• computing 𝑅𝑘,𝑘+1, . . . , 𝑅𝑘𝑛: (𝑛 − 𝑘) (2𝑚 − 1) flops

• computing �̃�𝑘+1: 2(𝑛 − 𝑘)𝑚 flops

total for cycle 𝑘 : (4𝑚 − 1) (𝑛 − 𝑘) + 3𝑚 flops

Complexity for 𝑚 × 𝑛 factorization:

𝑛∑︁
𝑘=1

((4𝑚 − 1) (𝑛 − 𝑘) + 3𝑚) = (4𝑚 − 1)𝑛(𝑛 − 1)
2

+ 3𝑚𝑛

≈ 2𝑚𝑛2 flops
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Outline

• triangular matrices

• QR factorization

• Gram–Schmidt algorithm

• modified Gram–Schmidt algorithm

• Householder algorithm



Householder algorithm

• the most widely used algorithm for QR factorization (qr in MATLAB and Julia)

• less sensitive to rounding error than Gram–Schmidt algorithm

• computes a “full” QR factorization (QR decomposition)

𝐴 =
[
𝑄 �̃�

] [ 𝑅

0

]
,

[
𝑄 �̃�

]
orthogonal

• the full Q-factor is constructed as a product of orthogonal matrices[
𝑄 �̃�

]
= 𝐻1𝐻2 · · ·𝐻𝑛

each 𝐻𝑖 is an 𝑚 × 𝑚 symmetric, orthogonal “reflector” (page 5.10)
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Reflector

𝐻 = 𝐼 − 2𝑣𝑣𝑇 with ∥𝑣∥ = 1

• 𝐻𝑥 is reflection of 𝑥 through hyperplane {𝑧 | 𝑣𝑇 𝑧 = 0} (see page 5.10)

• 𝐻 is symmetric

• 𝐻 is orthogonal

• matrix–vector product 𝐻𝑥 can be computed efficiently as

𝐻𝑥 = 𝑥 − 2(𝑣𝑇𝑥)𝑣

complexity is 4𝑝 flops if 𝑣 and 𝑥 have length 𝑝
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Reflection to multiple of unit vector

given nonzero 𝑝-vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑝), define

𝑤 =


𝑦1 + sign(𝑦1)∥𝑦∥

𝑦2
...

𝑦𝑝

 , 𝑣 =
1

∥𝑤∥𝑤

• we define sign(0) = 1

• vector 𝑤 satisfies
∥𝑤∥2 = 2 (𝑤𝑇 𝑦) = 2∥𝑦∥ (∥𝑦∥ + |𝑦1 |)

• reflector 𝐻 = 𝐼 − 2𝑣𝑣𝑇 maps 𝑦 to multiple of 𝑒1 = (1, 0, . . . , 0):

𝐻𝑦 = 𝑦 − 2(𝑤𝑇 𝑦)
∥𝑤∥2 𝑤 = 𝑦 − 𝑤 = −sign(𝑦1)∥𝑦∥𝑒1
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Geometry

first coordinate axis

y

−sign(y1)‖y‖e1

w

hyperplane {x | wT x = 0}

the reflection through the hyperplane {𝑥 | 𝑤𝑇𝑥 = 0} with normal vector

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1

maps 𝑦 to the vector −sign(𝑦1)∥𝑦∥𝑒1
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Householder triangularization

• computes reflectors 𝐻1, . . . , 𝐻𝑛 that reduce 𝐴 to triangular form:

𝐻𝑛𝐻𝑛−1 · · ·𝐻1𝐴 =

[
𝑅

0

]
• after step 𝑘 , the matrix 𝐻𝑘𝐻𝑘−1 · · ·𝐻1𝐴 has the following structure:

k n − k

k

m − k

(elements in positions 𝑖, 𝑗 for 𝑖 > 𝑗 and 𝑗 ≤ 𝑘 are zero)
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Householder algorithm

the following algorithm overwrites 𝐴 with
[
𝑅

0

]

Algorithm: for 𝑘 = 1 to 𝑛,

1. define 𝑦 = 𝐴𝑘:𝑚,𝑘 and compute (𝑚 − 𝑘 + 1)-vector 𝑣𝑘 :

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1, 𝑣𝑘 =
1

∥𝑤∥𝑤

2. multiply 𝐴𝑘:𝑚,𝑘:𝑛 with reflector 𝐼 − 2𝑣𝑘𝑣𝑇𝑘 :

𝐴𝑘:𝑚,𝑘:𝑛 := 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣𝑇𝑘 𝐴𝑘:𝑚,𝑘:𝑛)
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Comments

• in step 2 we multiply 𝐴𝑘:𝑚,𝑘:𝑛 with the reflector 𝐼 − 2𝑣𝑘𝑣𝑇𝑘 :

(𝐼 − 2𝑣𝑘𝑣𝑇𝑘 )𝐴𝑘:𝑚,𝑘:𝑛 = 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣𝑇𝑘 𝐴𝑘:𝑚,𝑘:𝑛)

• this is equivalent to multiplying 𝐴 with 𝑚 × 𝑚 reflector

𝐻𝑘 =

[
𝐼 0
0 𝐼 − 2𝑣𝑘𝑣𝑇𝑘

]
= 𝐼 − 2

[
0
𝑣𝑘

] [
0
𝑣𝑘

]𝑇
• algorithm overwrites 𝐴 with [

𝑅

0

]
and returns the vectors 𝑣1, . . . , 𝑣𝑛, with 𝑣𝑘 of length 𝑚 − 𝑘 + 1
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Example

example on page 6.8:

𝐴 =


−1 −1 1

1 3 3
−1 −1 5

1 3 7

 = 𝐻1𝐻2𝐻3

[
𝑅

0

]

we compute reflectors 𝐻1, 𝐻2, 𝐻3 that triangularize 𝐴:

𝐻3𝐻2𝐻1𝐴 =


𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33
0 0 0
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Example

First column of 𝑅

• compute reflector that maps first column of 𝐴 to multiple of 𝑒1:

𝑦 =


−1

1
−1

1

 , 𝑤 = 𝑦 − ∥𝑦∥𝑒1 =


−3

1
−1

1

 , 𝑣1 =
1

∥𝑤∥𝑤 =
1

2
√

3


−3

1
−1

1


• overwrite 𝐴 with product of 𝐼 − 2𝑣1𝑣

𝑇
1 and 𝐴

𝐴 := (𝐼 − 2𝑣1𝑣
𝑇
1 )𝐴 =


2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3
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Second column of 𝑅

• compute reflector that maps 𝐴2:4,2 to multiple of 𝑒1:

𝑦 =


4/3
2/3
4/3

 , 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =


10/3

2/3
4/3

 , 𝑣2 =
1

∥𝑤∥𝑤 =
1√
30


5
1
2


• overwrite 𝐴2:4,2:3 with product of 𝐼 − 2𝑣2𝑣

𝑇
2 and 𝐴2:4,2:3:

𝐴 :=
[

1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

]
𝐴 =


2 4 2
0 −2 −8
0 0 16/5
0 0 12/5
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Third column of 𝑅

• compute reflector that maps 𝐴3:4,3 to multiple of 𝑒1:

𝑦 =

[
16/5
12/5

]
, 𝑤 = 𝑦 + ∥𝑦∥𝑒1 =

[
36/5
12/5

]
, 𝑣3 =

1
∥𝑤∥𝑤 =

1√
10

[
3
1

]
• overwrite 𝐴3:4,3 with product of 𝐼 − 2𝑣3𝑣

𝑇
3 and 𝐴3:4,3:

𝐴 :=
[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

]
𝐴 =


2 4 2
0 −2 −8
0 0 −4
0 0 0
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Final result

𝐻3𝐻2𝐻1𝐴 =

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

]
(𝐼 − 2𝑣1𝑣

𝑇
1 )𝐴

=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

] [
1 0
0 𝐼 − 2𝑣2𝑣

𝑇
2

] 
2 4 2
0 4/3 8/3
0 2/3 16/3
0 4/3 20/3


=

[
𝐼 0
0 𝐼 − 2𝑣3𝑣

𝑇
3

] 
2 4 2
0 −2 −8
0 0 16/5
0 0 12/5


=


2 4 2
0 −2 −8
0 0 −4
0 0 0
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Complexity

Complexity in cycle 𝑘 (of algorithm on page 6.39): the dominant terms are

• (2(𝑚 − 𝑘 + 1) − 1) (𝑛 − 𝑘 + 1) flops for product 𝑣𝑇
𝑘
(𝐴𝑘:𝑚,𝑘:𝑛)

• (𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops for outer product with 𝑣𝑘

• (𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops for subtraction from 𝐴𝑘:𝑚,𝑘:𝑛

sum is roughly 4(𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) flops

Total for computing 𝑅 and vectors 𝑣1, . . . , 𝑣𝑛:

𝑛∑︁
𝑘=1

4(𝑚 − 𝑘 + 1) (𝑛 − 𝑘 + 1) ≈
∫ 𝑛

0
4(𝑚 − 𝑡) (𝑛 − 𝑡)𝑑𝑡

= 2𝑚𝑛2 − 2
3
𝑛3 flops
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Q-factor

the Householder algorithm returns the vectors 𝑣1, . . . , 𝑣𝑛 that define[
𝑄 �̃�

]
= 𝐻1𝐻2 · · ·𝐻𝑛

• usually there is no need to compute the matrix [ 𝑄 �̃� ] explicitly

• the vectors 𝑣1, . . . , 𝑣𝑛 are an economical representation of [ 𝑄 �̃� ]
• products with [ 𝑄 �̃� ] or its transpose can be computed as[

𝑄 �̃�
]
𝑥 = 𝐻1𝐻2 · · ·𝐻𝑛𝑥[

𝑄 �̃�
]𝑇

𝑦 = 𝐻𝑛𝐻𝑛−1 · · ·𝐻1𝑦
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Multiplication with Q-factor

• the matrix–vector product 𝐻𝑘𝑥 is defined as

𝐻𝑘𝑥 =

[
𝐼 0
0 𝐼 − 2𝑣𝑘𝑣𝑇𝑘

] [
𝑥1:𝑘−1
𝑥𝑘:𝑚

]
=

[
𝑥1:𝑘−1

𝑥𝑘:𝑚 − 2(𝑣𝑇
𝑘
𝑥𝑘:𝑚)𝑣𝑘

]
• complexity of multiplication 𝐻𝑘𝑥 is 4(𝑚 − 𝑘 + 1) flops:

• complexity of multiplication with 𝐻1𝐻2 · · ·𝐻𝑛 or its transpose is

𝑛∑︁
𝑘=1

4(𝑚 − 𝑘 + 1) ≈ 4𝑚𝑛 − 2𝑛2 flops

• roughly equal to matrix–vector product with 𝑚 × 𝑛 matrix (2𝑚𝑛 flops)
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