6. QR factorization

- triangular matrices
- QR factorization
- Gram–Schmidt algorithm
- modified Gram–Schmidt algorithm
- Householder algorithm

Triangular matrix

a square matrix A is **lower triangular** if $A_{ij} = 0$ for j > i

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 & 0 \\ A_{21} & A_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ A_{n-1,1} & A_{n-1,2} & \cdots & A_{n-1,n-1} & 0 \\ A_{n1} & A_{n2} & \cdots & A_{n,n-1} & A_{nn} \end{bmatrix}$$

A is **upper triangular** if $A_{ij} = 0$ for j < i (the transpose A^T is lower triangular)

a triangular matrix is **unit** upper/lower triangular if $A_{ii} = 1$ for all *i*

Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

Algorithm

$$x_{1} = b_{1}/A_{11}$$

$$x_{2} = (b_{2} - A_{21}x_{1})/A_{22}$$

$$x_{3} = (b_{3} - A_{31}x_{1} - A_{32}x_{2})/A_{33}$$

$$\vdots$$

$$x_{n} = (b_{n} - A_{n1}x_{1} - A_{n2}x_{2} - \dots - A_{n,n-1}x_{n-1})/A_{nn}$$

Complexity: $1 + 3 + 5 + \dots + (2n - 1) = n^2$ flops

Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements

Algorithm

$$x_{n} = b_{n}/A_{nn}$$

$$x_{n-1} = (b_{n-1} - A_{n-1,n}x_{n})/A_{n-1,n-1}$$

$$x_{n-2} = (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_{n})/A_{n-2,n-2}$$

$$\vdots$$

$$x_{1} = (b_{1} - A_{12}x_{2} - A_{13}x_{3} - \dots - A_{1n}x_{n})/A_{11}$$

Complexity: n^2 flops

Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:

$$Ax = 0 \implies x = 0$$

this follows from forward or back substitution applied to the equation Ax = 0

• inverse of A can be computed by solving AX = I column by column

$$A \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \quad (x_i \text{ is column } i \text{ of } X)$$

- inverse of lower triangular matrix is lower triangular
- inverse of upper triangular matrix is upper triangular
- complexity of computing inverse of $n \times n$ triangular matrix is

$$n^{2} + (n-1)^{2} + \dots + 1 \approx \frac{1}{3}n^{3}$$
 flops

Outline

- triangular matrices
- QR factorization
- Gram–Schmidt algorithm
- modified Gram–Schmidt algorithm
- Householder algorithm

QR factorization

if $A \in \mathbf{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

• vectors q_1, \ldots, q_n are orthonormal *m*-vectors:

$$||q_i|| = 1, \qquad q_i^T q_j = 0 \quad \text{if } i \neq j$$

- diagonal elements R_{ii} are nonzero
- if $R_{ii} < 0$, we can switch the signs of R_{ii}, \ldots, R_{in} , and the vector q_i
- most definitions require $R_{ii} > 0$; this makes Q and R unique

QR factorization in matrix notation

if $A \in \mathbf{R}^{m \times n}$ has linearly independent columns then it can be factored as

A = QR

Q-factor

- Q is $m \times n$ with orthonormal columns ($Q^T Q = I$)
- if A is square (m = n), then Q is orthogonal $(Q^T Q = Q Q^T = I)$

R-factor

- *R* is $n \times n$, upper triangular, with nonzero diagonal elements
- *R* is nonsingular (diagonal elements are nonzero)

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$
$$= QR$$

Full QR factorization

the QR factorization is often defined as a factorization

$$A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}$$

- A = QR is the QR factorization as defined earlier (page 6.7)
- \tilde{Q} has size $m \times (m n)$, the zero block has size $(m n) \times n$
- the matrix $\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}$ is $m \times m$ and orthogonal
- MATLAB's function qr returns this factorization
- this is also known as the full QR factorization or QR decomposition

in this course we use the definition of page 6.7

Applications

in the following lectures, we will use the QR factorization to solve

- linear equations
- least squares problems
- constrained least squares problems

here, we show that it gives useful simple formulas for

- the pseudo-inverse of a matrix with linearly independent columns
- the inverse of a nonsingular matrix
- projection on the range of a matrix with linearly independent columns

QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix A with linearly independent columns (page 4.22)

 $A^{\dagger} = (A^T A)^{-1} A^T$

• pseudo-inverse in terms of QR factors of A:

$$A^{\dagger} = ((QR)^{T}(QR))^{-1}(QR)^{T}$$

$$= (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}$$

$$= (R^{T}R)^{-1}R^{T}Q^{T} \qquad (Q^{T}Q = I)$$

$$= R^{-1}R^{-T}R^{T}Q^{T} \qquad (R \text{ is nonsingular})$$

$$= R^{-1}Q^{T}$$

• for square nonsingular A this is the inverse:

$$A^{-1} = (QR)^{-1} = R^{-1}Q^T$$

Range

recall definition of range of a matrix $A \in \mathbf{R}^{m \times n}$ (page 5.16):

```
\operatorname{range}(A) = \{Ax \mid x \in \mathbf{R}^n\}
```

suppose A has linearly independent columns with QR factors Q, R

• *Q* has the same range as *A*:

$$y \in \operatorname{range}(A) \iff y = Ax \text{ for some } x$$

 $\iff y = QRx \text{ for some } x$
 $\iff y = Qz \text{ for some } z$
 $\iff y \in \operatorname{range}(Q)$

• columns of Q are an orthonormal basis for range(A)

Projection on range

• combining A = QR and $A^{\dagger} = R^{-1}Q^{T}$ (from page 6.11) gives

$$AA^{\dagger} = QRR^{-1}Q^T = QQ^T$$

note the order of the product in AA^{\dagger} and the difference with $A^{\dagger}A = I$

• recall (from page 5.17) that $QQ^T x$ is the projection of x on the range of Q

QR factorization of complex matrices

if $A \in \mathbb{C}^{m \times n}$ has linearly independent columns then it can be factored as

A = QR

- $Q \in \mathbb{C}^{m \times n}$ has orthonormal columns ($Q^H Q = I$)
- $R \in \mathbb{C}^{n \times n}$ is upper triangular with real nonzero diagonal elements
- most definitions choose diagonal elements R_{ii} to be positive
- in the rest of the lecture we assume *A* is real

Algorithms for QR factorization

Gram-Schmidt algorithm (section 5.4 in textbook and page 6.16)

- complexity is $2mn^2$ flops
- not recommended in practice (sensitive to rounding errors)

Modified Gram–Schmidt algorithm (page 6.27)

- complexity is $2mn^2$ flops
- better numerical properties

Householder algorithm (page 6.34)

- complexity is $2mn^2 (2/3)n^3$ flops
- represents Q as a product of elementary orthogonal matrices
- the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take $2mn^2$ for the complexity of QR factorization

Outline

- triangular matrices
- QR factorization
- Gram–Schmidt algorithm
- modified Gram–Schmidt algorithm
- Householder algorithm

Gram–Schmidt algorithm

Gram–Schmidt QR algorithm computes Q and R column by column

• after *k* steps we have a partial QR factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1k} \\ 0 & R_{22} & \cdots & R_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{kk} \end{bmatrix}$$

this is the QR factorization for the first k columns of A

- columns q_1, \ldots, q_k are orthonormal
- diagonal elements $R_{11}, R_{22}, \ldots, R_{kk}$ are positive
- columns q_1, \ldots, q_k have the same span as a_1, \ldots, a_k (see page 6.12)
- in step k of the algorithm we compute q_k , R_{1k} , ..., R_{kk}

Computing the kth columns of Q and R

suppose we have the partial factorization for the first k - 1 columns of Q and R

• column k of the equation A = QR reads

$$a_k = R_{1k}q_1 + R_{2k}q_2 + \dots + R_{k-1,k}q_{k-1} + R_{kk}q_k$$

• regardless of how we choose $R_{1k}, \ldots, R_{k-1,k}$, the vector

$$\tilde{q}_k = a_k - R_{1k}q_1 - R_{2k}q_2 - \dots - R_{k-1,k}q_{k-1}$$

will be nonzero: a_1, a_2, \ldots, a_k are linearly independent and therefore

$$a_k \notin \operatorname{span}(a_1, \ldots, a_{k-1}) = \operatorname{span}(q_1, \ldots, q_{k-1})$$

- q_k is \tilde{q}_k normalized: choose $R_{kk} = \|\tilde{q}_k\|$ and $q_k = (1/R_{kk})\tilde{q}_k$
- \tilde{q}_k and q_k are orthogonal to q_1, \ldots, q_{k-1} if we choose $R_{1k}, \ldots, R_{k-1,k}$ as

$$R_{1k} = q_1^T a_k, \qquad R_{2k} = q_2^T a_k, \qquad \dots, \qquad R_{k-1,k} = q_{k-1}^T a_k$$

Interpretation

on the previous page, $\tilde{q}_k = R_{kk}q_k$ was computed as

$$\begin{split} \tilde{q}_k &= a_k - R_{1k}q_1 - R_{2k}q_2 - \dots - R_{k-1,k}q_{k-1} \\ &= a_k - q_1(q_1^T a_k) - q_2(q_2^T a_k) - \dots - q_{k-1}q_{k-1}^T a_k \\ &= \left(I - q_1q_1^T - q_2q_2^T - \dots - q_{k-1}q_{k-1}^T\right) a_k \end{split}$$

this is the residual of a_k after subtracting its orthogonal projection on

$$span(q_1, q_2, \dots, q_{k-1}) = span(a_1, a_2, \dots, a_{k-1})$$

Gram–Schmidt algorithm

Given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n

Algorithm

for k = 1 to n

$$R_{1k} = q_1^T a_k$$

$$R_{2k} = q_2^T a_k$$

$$\vdots$$

$$R_{k-1,k} = q_{k-1}^T a_k$$

$$\tilde{q}_k = a_k - (R_{1k}q_1 + R_{2k}q_2 + \dots + R_{k-1,k}q_{k-1})$$

$$R_{kk} = \|\tilde{q}_k\|$$

$$q_k = \frac{1}{R_{kk}}\tilde{q}_k$$

example on page 6.8:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

First column of Q and R

$$\tilde{q}_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \qquad R_{11} = \|\tilde{q}_1\| = 2, \qquad q_1 = \frac{1}{R_{11}}\tilde{q}_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

QR factorization

Second column of Q and R

• compute
$$R_{12} = q_1^T a_2 = 4$$

• compute

$$\tilde{q}_2 = a_2 - R_{12}q_1 = \begin{bmatrix} -1\\ 3\\ -1\\ 3 \end{bmatrix} - 4 \begin{bmatrix} -1/2\\ 1/2\\ -1/2\\ 1/2 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$$

• normalize to get

$$R_{22} = \|\tilde{q}_2\| = 2, \qquad q_2 = \frac{1}{R_{22}}\tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

Third column of Q and R

• compute
$$R_{13} = q_1^T a_3 = 2$$
 and $R_{23} = q_2^T a_3 = 8$

• compute

$$\tilde{q}_3 = a_3 - R_{13}q_1 - R_{23}q_2 = \begin{bmatrix} 1\\3\\5\\7 \end{bmatrix} - 2\begin{bmatrix} -1/2\\1/2\\-1/2\\1/2 \end{bmatrix} - 8\begin{bmatrix} 1/2\\1/2\\1/2\\1/2 \end{bmatrix} = \begin{bmatrix} -2\\-2\\2\\2 \end{bmatrix}$$

• normalize to get

$$R_{33} = \|\tilde{q}_3\| = 4,$$
 $q_3 = \frac{1}{R_{33}}\tilde{q}_3 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$

Final result

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

Complexity

Complexity of cycle *k* (of algorithm on page 6.19)

- k-1 inner products with a_k : (k-1)(2m-1) flops
- computation of \tilde{q}_k : 2(k-1)m flops
- computing R_{kk} and q_k : 3m flops

total for cycle k: (4m - 1)(k - 1) + 3m flops

Complexity for $m \times n$ factorization:

$$\sum_{k=1}^{n} ((4m-1)(k-1) + 3m) = (4m-1)\frac{n(n-1)}{2} + 3mn$$

$$\approx 2mn^2 \text{ flops}$$

Numerical experiment

• we use the following MATLAB implementation of the algorithm on page 6.19:

```
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
        R(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
        qtilde = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
        R(k,k) = norm(qtilde);
        Q(:,k) = qtilde / R(k,k);
end;
```

- we apply this to a square matrix A of size m = n = 50
- A is constructed as A = USV with U, V orthogonal, S diagonal with

$$S_{ii} = 10^{-10(i-1)/(n-1)}, \quad i = 1, \dots, n$$

Numerical experiment

plot shows deviation from orthogonality between q_k and previous columns

$$e_k = \max_{1 \le i < k} |q_i^T q_k|, \quad k = 2, ..., n$$

loss of orthogonality is due to rounding error

QR factorization

Outline

- triangular matrices
- QR factorization
- Gram–Schmidt algorithm
- modified Gram–Schmidt algorithm
- Householder algorithm

Modified Gram–Schmidt algorithm

a variation of the Gram–Schmidt algorithm for the QR factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

- has better numerical properties than the Gram–Schmidt algorithm
- computes *Q* column by column, *R* row by row
- computes vectors \tilde{q}_k as

$$\tilde{q}_k = (I - q_{k-1}q_{k-1}^T) \cdots (I - q_2 q_2^T)(I - q_1 q_1^T)a_k$$

(see exercise on 5.20)

Modified Gram–Schmidt algorithm

after k - 1 steps, the algorithm has computed a partial factorization

$$A = \begin{bmatrix} a_{1} \cdots a_{k-1} & a_{k} \cdots & a_{n} \end{bmatrix}$$

=
$$\begin{bmatrix} q_{1} \cdots q_{k-1} & \tilde{Q}_{k} \end{bmatrix} \begin{bmatrix} R_{11} \cdots & R_{1,k-1} & R_{1k} & \cdots & R_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & R_{k-1,k-1} & R_{k-1,k} \cdots & R_{k-1,n} \\ \hline 0 & I \end{bmatrix}$$

- columns of \tilde{Q}_k are residuals of a_k, \ldots, a_n after projection on span (q_1, \ldots, q_{k-1})
- \tilde{q}_k is the first column of \tilde{Q}_k
- we start with k = 0 and $\tilde{Q}_1 = A$
- the factorization is complete when k = n
- in step *k*, we compute

$$q_k, \qquad R_{kk}, \qquad R_{k,k+1}, \qquad \ldots, R_{kn}, \qquad Q_{k+1}$$

Modified Gram–Schmidt update

careful inspection of the update at step k shows that

$$\tilde{Q}_{k} = \begin{bmatrix} q_{k} & \tilde{Q}_{k+1} \end{bmatrix} \begin{bmatrix} R_{kk} & R_{k,(k+1):n} \\ 0 & I \end{bmatrix}$$

partition \tilde{Q}_k as $\tilde{Q}_k = \begin{bmatrix} \tilde{q}_k & B \end{bmatrix}$ with \tilde{q}_k the first column and *B* of size $m \times (n - k)$:

$$\tilde{q}_k = q_k R_{kk}, \qquad B = q_k R_{k,(k+1):n} + \tilde{Q}_{k+1}$$

• from the first equation, and the required properties $||q_k|| = 1$ and $R_{kk} > 0$:

$$R_{kk} = \|\tilde{q}_k\|, \qquad q_k = \frac{1}{R_{kk}}\tilde{q}_k$$

• from the second equation, and the requirement that $q_k^T \tilde{Q}_{k+1} = 0$:

$$R_{k,(k+1):n} = q_k^T B, \qquad \tilde{Q}_{k+1} = (I - q_k q_k^T) B = B - q_k R_{k,(k+1):n}$$

Summary: modified Gram–Schmidt algorithm

Algorithm (*A* is $m \times n$ with linearly independent columns)

define $\tilde{Q}_1 = A$; for k = 1 to n,

- compute $R_{kk} = \|\tilde{q}_k\|$ and $q_k = (1/R_{kk})\tilde{q}_k$ where \tilde{q}_k is the first column of \tilde{Q}_k
- compute

$$\left[R_{k,k+1}\cdots R_{kn}\right] = q_k^T B, \qquad \tilde{Q}_{k+1} = B - q_k \left[R_{k,k+1}\cdots R_{kn}\right]$$

where *B* is \tilde{Q}_k with first column removed

```
MATLAB code (Q(:,k:n) is used to store Q̃<sub>k</sub>)
Q = A; R = zeros(n,n);
for k = 1:n
        R(k,k) = norm(Q(:,k));
        Q(:,k) = Q(:,k) / R(k,k);
        R(k,k+1:n) = Q(:,k)' * Q(:,k+1:n);
        Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);
    end;
```

example on page 6.8

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$

Step 1: first column of *Q*, first row of *R*

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & | 1 & 2 \\ 1/2 & | 1 & 2 \\ -1/2 & | 1 & 6 \\ 1/2 & | 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & | 4 & 2 \\ 0 & | 1 & 0 \\ 0 & | 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & | \tilde{Q}_2 \end{bmatrix} \begin{bmatrix} \frac{R_{11}}{1} & \frac{R_{1,2:3}}{1} \end{bmatrix}$$

Step 2: second column of *Q*, second row of *R*

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & | & -2 \\ 1/2 & 1/2 & | & -2 \\ -1/2 & 1/2 & | & 2 \\ 1/2 & 1/2 & | & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & | & 2 \\ 0 & 2 & | & 8 \\ \hline 0 & 0 & | & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & | & \tilde{Q}_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ \hline 0 & 0 & | & 1 \end{bmatrix}$$

Step 3: third column of *Q*, third row of *R*

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

Complexity

Complexity of cycle *k* (of algorithm on page 6.30)

- computing R_{kk} and q_k : 3m flops
- computing $R_{k,k+1}, \ldots, R_{kn}$: (n-k)(2m-1) flops
- computing \tilde{Q}_{k+1} : 2(n-k)m flops

total for cycle k: (4m - 1)(n - k) + 3m flops

Complexity for $m \times n$ factorization:

$$\sum_{k=1}^{n} ((4m-1)(n-k) + 3m) = (4m-1)\frac{n(n-1)}{2} + 3mn$$

$$\approx 2mn^2 \text{ flops}$$

Outline

- triangular matrices
- QR factorization
- Gram–Schmidt algorithm
- modified Gram–Schmidt algorithm
- Householder algorithm

Householder algorithm

- the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
- less sensitive to rounding error than Gram–Schmidt algorithm
- computes a "full" QR factorization (QR decomposition)

$$A = \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} Q & \tilde{Q} \end{bmatrix} \text{ orthogonal}$$

• the full Q-factor is constructed as a product of orthogonal matrices

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} = H_1 H_2 \cdots H_n$$

each H_i is an $m \times m$ symmetric, orthogonal "reflector" (page 5.10)

Reflector

$$H = I - 2vv^T \qquad \text{with } \|v\| = 1$$

- *Hx* is reflection of *x* through hyperplane $\{z \mid v^T z = 0\}$ (see page 5.10)
- *H* is symmetric
- *H* is orthogonal
- matrix-vector product Hx can be computed efficiently as

$$Hx = x - 2(v^T x)v$$

complexity is 4p flops if v and x have length p

Reflection to multiple of unit vector

given nonzero *p*-vector $y = (y_1, y_2, \dots, y_p)$, define

$$w = \begin{bmatrix} y_1 + \text{sign}(y_1) ||y|| \\ y_2 \\ \vdots \\ y_p \end{bmatrix}, \qquad v = \frac{1}{||w||} w$$

- we define sign(0) = 1
- vector w satisfies

$$||w||^2 = 2(w^T y) = 2||y||(||y|| + |y_1|)$$

• reflector $H = I - 2vv^T$ maps y to multiple of $e_1 = (1, 0, \dots, 0)$:

$$Hy = y - \frac{2(w^T y)}{\|w\|^2} w = y - w = -\operatorname{sign}(y_1) \|y\| e_1$$

the reflection through the hyperplane $\{x \mid w^T x = 0\}$ with normal vector

 $w = y + \operatorname{sign}(y_1) \|y\| e_1$

maps y to the vector $-sign(y_1) ||y|| e_1$

Householder triangularization

• computes reflectors H_1, \ldots, H_n that reduce A to triangular form:

$$H_n H_{n-1} \cdots H_1 A = \begin{bmatrix} R \\ 0 \end{bmatrix}$$

• after step k, the matrix $H_k H_{k-1} \cdots H_1 A$ has the following structure:

(elements in positions i, j for i > j and $j \le k$ are zero)

Householder algorithm

the following algorithm overwrites A with $\begin{bmatrix} R \\ 0 \end{bmatrix}$

Algorithm: for k = 1 to n,

1. define $y = A_{k:m,k}$ and compute (m - k + 1)-vector v_k :

$$w = y + \operatorname{sign}(y_1) ||y|| e_1, \qquad v_k = \frac{1}{||w||} w$$

2. multiply $A_{k:m,k:n}$ with reflector $I - 2v_k v_k^T$:

$$A_{k:m,k:n} := A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})$$

Comments

• in step 2 we multiply $A_{k:m,k:n}$ with the reflector $I - 2v_k v_k^T$:

$$(I - 2v_k v_k^T) A_{k:m,k:n} = A_{k:m,k:n} - 2v_k (v_k^T A_{k:m,k:n})$$

• this is equivalent to multiplying A with $m \times m$ reflector

$$H_{k} = \begin{bmatrix} I & 0 \\ 0 & I - 2v_{k}v_{k}^{T} \end{bmatrix} = I - 2\begin{bmatrix} 0 \\ v_{k} \end{bmatrix} \begin{bmatrix} 0 \\ v_{k} \end{bmatrix}^{T}$$

• algorithm overwrites A with

$$\left[\begin{array}{c} R\\ 0 \end{array}\right]$$

and returns the vectors v_1, \ldots, v_n , with v_k of length m - k + 1

example on page 6.8:

$$A = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = H_1 H_2 H_3 \begin{bmatrix} R \\ 0 \end{bmatrix}$$

we compute reflectors H_1 , H_2 , H_3 that triangularize A:

$$H_3 H_2 H_1 A = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \end{bmatrix}$$

First column of *R*

• compute reflector that maps first column of A to multiple of e_1 :

$$y = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad w = y - \|y\|e_1 = \begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_1 = \frac{1}{\|w\|}w = \frac{1}{2\sqrt{3}}\begin{bmatrix} -3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$$

• overwrite A with product of $I - 2v_1v_1^T$ and A

$$A := (I - 2v_1v_1^T)A = \begin{bmatrix} 2 & 4 & 2\\ 0 & 4/3 & 8/3\\ 0 & 2/3 & 16/3\\ 0 & 4/3 & 20/3 \end{bmatrix}$$

Second column of R

• compute reflector that maps $A_{2:4,2}$ to multiple of e_1 :

$$y = \begin{bmatrix} 4/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad w = y + \|y\|e_1 = \begin{bmatrix} 10/3 \\ 2/3 \\ 4/3 \end{bmatrix}, \quad v_2 = \frac{1}{\|w\|}w = \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$$

• overwrite $A_{2:4,2:3}$ with product of $I - 2v_2v_2^T$ and $A_{2:4,2:3}$:

$$A := \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_2v_2^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$

Third column of *R*

• compute reflector that maps $A_{3:4,3}$ to multiple of e_1 :

$$y = \begin{bmatrix} 16/5 \\ 12/5 \end{bmatrix}, \quad w = y + \|y\|e_1 = \begin{bmatrix} 36/5 \\ 12/5 \end{bmatrix}, \quad v_3 = \frac{1}{\|w\|}w = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

• overwrite $A_{3:4,3}$ with product of $I - 2v_3v_3^T$ and $A_{3:4,3}$:

$$A := \begin{bmatrix} I & 0 \\ 0 & I - 2v_3v_3^T \end{bmatrix} A = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

Final result

$$H_{3}H_{2}H_{1}A = \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} (I - 2v_{1}v_{1}^{T})A$$

$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & I - 2v_{2}v_{2}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4/3 & 8/3 \\ 0 & 2/3 & 16/3 \\ 0 & 4/3 & 20/3 \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ 0 & I - 2v_{3}v_{3}^{T} \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & 16/5 \\ 0 & 0 & 12/5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 4 & 2 \\ 0 & -2 & -8 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

Complexity

Complexity in cycle k (of algorithm on page 6.39): the dominant terms are

- (2(m-k+1)-1)(n-k+1) flops for product $v_k^T(A_{k:m,k:n})$
- (m k + 1)(n k + 1) flops for outer product with v_k
- (m k + 1)(n k + 1) flops for subtraction from $A_{k:m,k:n}$

sum is roughly 4(m - k + 1)(n - k + 1) flops

Total for computing *R* and vectors v_1, \ldots, v_n :

$$\sum_{k=1}^{n} 4(m-k+1)(n-k+1) \approx \int_{0}^{n} 4(m-t)(n-t)dt$$
$$= 2mn^{2} - \frac{2}{3}n^{3} \text{ flops}$$

Q-factor

the Householder algorithm returns the vectors v_1, \ldots, v_n that define

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} = H_1 H_2 \cdots H_n$$

- usually there is no need to compute the matrix $[\begin{array}{cc} Q & \tilde{Q} \end{array}]$ explicitly
- the vectors v_1, \ldots, v_n are an economical representation of $\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}$
- products with [Q \tilde{Q}] or its transpose can be computed as

$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix} x = H_1 H_2 \cdots H_n x$$
$$\begin{bmatrix} Q & \tilde{Q} \end{bmatrix}^T y = H_n H_{n-1} \cdots H_1 y$$

Multiplication with Q-factor

• the matrix–vector product $H_k x$ is defined as

$$H_k x = \begin{bmatrix} I & 0 \\ 0 & I - 2v_k v_k^T \end{bmatrix} \begin{bmatrix} x_{1:k-1} \\ x_{k:m} \end{bmatrix} = \begin{bmatrix} x_{1:k-1} \\ x_{k:m} - 2(v_k^T x_{k:m})v_k \end{bmatrix}$$

- complexity of multiplication $H_k x$ is 4(m k + 1) flops:
- complexity of multiplication with $H_1H_2 \cdots H_n$ or its transpose is

$$\sum_{k=1}^{n} 4(m-k+1) \approx 4mn - 2n^2 \text{ flops}$$

• roughly equal to matrix–vector product with $m \times n$ matrix (2mn flops)