15. Algorithm stability

- cancellation

- numerical stability
Example

two expressions for the same function

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]
\[g(x) = \frac{(\sin x)^2}{x^2} \]

• results of \(\cos x \) and \(\sin x \) were rounded to 10 significant digits
• other calculations are exact
Evaluation of f

evaluate $f(x)$ at $x = 5 \cdot 10^{-5}$

- calculate $\cos x$ and round result to 10 digits

$$\cos x = 0.99999999875000\ldots$$

$$\sim 0.9999999988$$

- evaluate $f(x) = (1 - \cos(x)^2)/x^2$ using rounded value of $\cos x$

$$\frac{1 - (0.9999999988)^2}{(5 \cdot 10^{-5})^2} = 0.9599\ldots$$

has only one correct significant digit (correct value is 0.9999\ldots)
Evaluation of g

evaluate $g(x)$ at $x = 5 \cdot 10^{-5}$

- calculate $\sin x$ and round result to 10 digits

\[
\sin x \;=\; 0.499999999791667\ldots \cdot 10^{-5}
\]
\[
\approx 0.4999999998 \cdot 10^{-5}
\]

- evaluate $f(x) = \sin(x)^2/x^2$ using rounded value of $\cos x$

\[
\frac{(\sin x)^2}{x^2} \approx \frac{(0.4999999998 \cdot 10^{-5})^2}{(5 \cdot 10^{-5})^2} = 0.9999\ldots
\]

has about ten correct significant digits

Conclusion: f and g are equivalent mathematically, but not numerically
Cancellation

\[\hat{a} = a(1 + \Delta a), \quad \hat{b} = b(1 + \Delta b) \]

- \(a, b \): exact data; \(\hat{a}, \hat{b} \): approximations; \(\Delta a, \Delta b \): unknown relative errors

- relative error in \(\hat{x} = \hat{a} - \hat{b} = (a - b) + (a\Delta a - b\Delta b) \) is

\[
\frac{|\hat{x} - x|}{|x|} = \frac{|a\Delta a - b\Delta b|}{|a - b|}
\]

if \(a \simeq b \), small \(\Delta a \) and \(\Delta b \) can lead to very large relative errors in \(x \)

this is called **cancellation**; cancellation occurs when:

- we subtract two numbers that are almost equal
- one or both numbers are subject to error
Example

cancellation occurs in the example when we evaluate the numerator of

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]

- \(1 \simeq (\cos x)^2\) when \(x\) is small
- there is a rounding error in \(\cos x\)
Numerical stability

refers to the accuracy of an algorithm in the presence of rounding errors

• an algorithm is *unstable* if rounding errors cause large errors in the result
• rigorous definition depends on what ‘accurate’ and ‘large error’ mean
• instability is often, but not always, caused by cancellation

Examples from earlier lectures

• solving linear equations by LU factorization without pivoting
• Cholesky factorization method for least-squares
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 1: use the formulas

\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

unstable if \(b^2 \gg |4ac| \)

- if \(b^2 \gg |4ac| \) and \(b \leq 0 \), cancellation occurs in \(x_2 \) (\(-b \simeq \sqrt{b^2 - 4ac} \))
- if \(b^2 \gg |4ac| \) and \(b \geq 0 \), cancellation occurs in \(x_1 \) (\(b \simeq \sqrt{b^2 - 4ac} \))
- in both cases \(b \) may be exact, but the squareroot introduces small errors
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 2: use fact that roots \(x_1, x_2 \) satisfy \(x_1 x_2 = c/a \)

- if \(b \leq 0 \), calculate

\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{c}{ax_1}
\]

- if \(b > 0 \), calculate

\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_1 = \frac{c}{ax_2}
\]

no cancellation when \(b^2 \gg |4ac| \)
Exercises

• chop(x,n) rounds x to n significant decimal digits
• for example chop(pi,4) returns 3.14200000000000

Exercise 1: cancellation occurs in \((1 - \cos x)/\sin x\) when \(x \approx 0\)

```matlab
>> x = 1e-2;
>> (1 - chop(cos(x), 4)) / chop(sin(x), 4)
```

```
ans =

0
```

(exact value is about 0.005)

give a stable alternative method
Exercise 2: evaluate

\[
\sum_{k=1}^{3000} k^{-2} = 1.6446
\]

rounding all intermediate results to 4 digits

\[
\text{sum} = 0;
\]

\[
\text{for } k = 1:3000
\]

\[
\text{sum} = \text{chop}(\text{sum} + 1/k^2, 4);
\]

\[
\text{end}
\]

\[
\text{sum} =
\]

1.6240

- result has only two correct digits
- not caused by cancellation (there are no subtractions)

explain and propose a better method
Exercise 3: the number $e = 2.7182818\ldots$ can be defined as

$$e = \lim_{n \to \infty} (1 + 1/n)^n$$

this suggests an algorithm for calculating e: take a large n and evaluate

$$\hat{e} = (1 + 1/n)^n$$

results:

<table>
<thead>
<tr>
<th>n</th>
<th>\hat{e}</th>
<th># correct digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>2.718145926</td>
<td>4</td>
</tr>
<tr>
<td>10^8</td>
<td>2.718281798</td>
<td>7</td>
</tr>
<tr>
<td>10^{12}</td>
<td>2.718523496</td>
<td>4</td>
</tr>
<tr>
<td>10^{16}</td>
<td>1.000000000000</td>
<td>0</td>
</tr>
</tbody>
</table>

explain
Exercise 4: on page 2-10 we showed that for an n-vector x,

$$\text{std}(x)^2 = \frac{1}{n} \| x - \text{avg}(x) \mathbf{1} \|^2 = \frac{1}{n} \left(\| x \|^2 - \frac{(\mathbf{1}^T x)^2}{n} \right)$$

we evaluate the second expression for $n = 10$ and

$$x = (1002, 1000, 1003, 1001, 1002, 1002, 1001, 1004, 1002, 1001)$$

```matlab
>> sum1 = 0.0;  sum2 = 0.0;
>> for i = 1:n
    sum1 = chop( sum1 + x(i), 6 );
    sum2 = chop( sum2 + x(i)^2, 6 );
>> end
>> s = chop( ( sum2 - sum1^2 / n ) / n, 6 )
```

s =

$$-3.2400$$

a negative number! explain and suggest a better method