16. Algorithm stability

- cancellation
- numerical stability
two expressions for the same function

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]

\[g(x) = \frac{(\sin x)^2}{x^2} \]

- results of \(\cos x \) and \(\sin x \) were rounded to 10 significant digits
- other calculations are exact
- plot shows function at 100 equally spaced points between \(-0.01\) and \(0.01\)
Evaluation of \(f \)

evaluate \(f(x) \) at \(x = 5 \cdot 10^{-5} \)

- calculate \(\cos x \) and round result to 10 digits

\[
\cos x = 0.99999999875000\ldots \\
\sim 0.9999999988
\]

- evaluate \(f(x) = (1 - \cos(x)^2)/x^2 \) using rounded value of \(\cos x \)

\[
\frac{1 - (0.9999999988)^2}{(5 \cdot 10^{-5})^2} = 0.9599\ldots
\]

has only one correct significant digit (correct value is \(0.9999\ldots \))
Evaluation of \(g \)

evaluate \(g(x) \) at \(x = 5 \cdot 10^{-5} \)

- calculate \(\sin x \) and round result to 10 digits

\[
\sin x = 0.499999999791667 \ldots \cdot 10^{-5}
\approx 0.4999999998 \cdot 10^{-5}
\]

- evaluate \(f(x) = \sin(x)^2 / x^2 \) using rounded value of \(\cos x \)

\[
\frac{(\sin x)^2}{x^2} \approx \frac{(0.4999999998 \cdot 10^{-5})^2}{(5 \cdot 10^{-5})^2} = 0.9999 \ldots
\]

has about ten correct significant digits

Conclusion: \(f \) and \(g \) are equivalent mathematically, but not numerically
Cancellation

\[\hat{a} = a(1 + \Delta a), \quad \hat{b} = b(1 + \Delta b) \]

- \(a, b \): exact values
- \(\hat{a}, \hat{b} \): approximations with unknown relative errors \(\Delta a, \Delta b \)
- relative error in \(\hat{x} = \hat{a} - \hat{b} = (a - b) + (a\Delta a - b\Delta b) \) is

\[
\frac{|\hat{x} - x|}{|x|} = \frac{|a\Delta a - b\Delta b|}{|a - b|}
\]

if \(a \approx b \), small \(\Delta a \) and \(\Delta b \) can lead to very large relative errors in \(x \)

this is called **cancellation**; cancellation occurs when:

- we subtract two numbers that are almost equal
- one or both numbers are subject to error
Example

cancellation occurs in the example when we evaluate the numerator of

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]

- \(1 \approx (\cos x)^2\) when \(x\) is small
- there is a rounding error in \(\cos x\)
Numerical stability

refers to the accuracy of an algorithm in the presence of rounding errors

- an algorithm is *unstable* if rounding errors cause large errors in the result
- rigorous definition depends on what ‘accurate’ and ‘large error’ mean
- instability is often, but not always, caused by cancellation

Examples from earlier lectures

- solving linear equations by LU factorization without pivoting
- Cholesky factorization method for least squares
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 1: use the formulas

\[x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

unstable if \(b^2 \gg |4ac| \)

- if \(b^2 \gg |4ac| \) and \(b \leq 0 \), cancellation occurs in \(x_2 \) (\(-b \approx \sqrt{b^2 - 4ac} \))

- if \(b^2 \gg |4ac| \) and \(b \geq 0 \), cancellation occurs in \(x_1 \) (\(b \approx \sqrt{b^2 - 4ac} \))

- in both cases \(b \) may be exact, but the squareroot introduces small errors
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 2: use fact that roots \(x_1, x_2 \) satisfy \(x_1x_2 = c/a \)

- if \(b \leq 0 \), calculate

\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{c}{ax_1}
\]

- if \(b > 0 \), calculate

\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_1 = \frac{c}{ax_2}
\]

no cancellation when \(b^2 \gg |4ac| \)
Exercises

• `chop(x,n)` rounds `x` to `n` significant decimal digits
• for example `chop(pi,4)` returns 3.14200000000000

Exercise 1: cancellation occurs in \((1 - \cos x)/\sin x\) when \(x \approx 0\)

```matlab
>> x = 1e-2;
>> (1 - chop(cos(x), 4)) / chop(sin(x), 4)
ans =

    0
```

(exact value is about 0.005)

give a stable alternative method
Exercise 2: Euler proved that \[\sum_{k=1}^{\infty} k^{-2} = \frac{\pi^2}{6} = 1.644934 \ldots \]

the sum of the first 3000 terms is

\[\sum_{k=1}^{3000} k^{-2} = 1.6446 \]

we compute this sum rounding all intermediate results to 4 digits:

```matlab
>> sum = 0;
>> for k = 1:3000
    sum = chop(sum + 1/k^2, 4);
end
>> sum
sum =
 1.6240
```

- result has only two correct digits
- not caused by cancellation (there are no subtractions)

explain and propose a better method
Exercise 3: the number \(e = 2.7182818 \cdots \) can be defined as

\[
e = \lim_{n \to \infty} (1 + 1/n)^n
\]

this suggests an algorithm for calculating \(e \): take a large \(n \) and evaluate

\[
\hat{e} = (1 + 1/n)^n
\]

results:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{e})</th>
<th>Number of correct digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^4)</td>
<td>2.718145926</td>
<td>4</td>
</tr>
<tr>
<td>(10^8)</td>
<td>2.718281798</td>
<td>7</td>
</tr>
<tr>
<td>(10^{12})</td>
<td>2.718523496</td>
<td>4</td>
</tr>
<tr>
<td>(10^{16})</td>
<td>1.0000000000</td>
<td>0</td>
</tr>
</tbody>
</table>

explain
Exercise 4: on page 2.11 we showed that for an n-vector x,

$$\text{std}(x)^2 = \frac{1}{n} \| x - \text{avg}(x)1 \|^2 = \frac{1}{n} \left(\| x \|^2 - \frac{(1^T x)^2}{n} \right)$$

we evaluate the second expression for $n = 10$ and

$$x = (1002, 1000, 1003, 1001, 1002, 1002, 1001, 1004, 1002, 1001)$$

```matlab
>> sum1 = 0.0; sum2 = 0.0;
>> for i = 1:n
        sum1 = chop( sum1 + x(i), 6 );
        sum2 = chop( sum2 + x(i)^2, 6 );
>> end
>> s = chop( ( sum2 - sum1^2 / n ) / n, 6 )
s =
-3.2400
```

a negative number! explain and suggest a better method