16. Algorithm stability

- cancellation
- numerical stability
Example

two expressions for the same function

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]

\[g(x) = \frac{(\sin x)^2}{x^2} \]

- results of \(\cos x \) and \(\sin x \) were rounded to 10 significant digits
- other calculations are exact
Evaluation of f

evaluate $f(x)$ at $x = 5 \cdot 10^{-5}$

- calculate $\cos x$ and round result to 10 digits

$$\cos x = 0.99999999875000\ldots$$

$$\sim 0.9999999988$$

- evaluate $f(x) = (1 - \cos(x)^2)/x^2$ using rounded value of $\cos x$

$$\frac{1 - (0.9999999988)^2}{(5 \cdot 10^{-5})^2} = 0.9599\ldots$$

has only one correct significant digit (correct value is 0.9999\ldots)
Evaluation of g

evaluate $g(x)$ at $x = 5 \cdot 10^{-5}$

- calculate $\sin x$ and round result to 10 digits
 \[
 \sin x = 0.499999999791667 \ldots \cdot 10^{-5}
 \approx 0.4999999998 \cdot 10^{-5}
 \]

- evaluate $f(x) = \frac{\sin(x)^2}{x^2}$ using rounded value of $\cos x$
 \[
 \frac{(\sin x)^2}{x^2} \approx \frac{(0.4999999998 \cdot 10^{-5})^2}{(5 \cdot 10^{-5})^2} = 0.9999 \ldots
 \]

has about ten correct significant digits

Conclusion: f and g are equivalent mathematically, but not numerically
Cancellation

\[\hat{a} = a(1 + \Delta a), \quad \hat{b} = b(1 + \Delta b) \]

- \(a, b \): exact data; \(\hat{a}, \hat{b} \): approximations; \(\Delta a, \Delta b \): unknown relative errors

- Relative error in \(\hat{x} = \hat{a} - \hat{b} = (a - b) + (a\Delta a - b\Delta b) \) is

\[
\frac{|\hat{x} - x|}{|x|} = \frac{|a\Delta a - b\Delta b|}{|a - b|}
\]

if \(a \simeq b \), small \(\Delta a \) and \(\Delta b \) can lead to very large relative errors in \(x \)

this is called cancellation; cancellation occurs when:

- we subtract two numbers that are almost equal
- one or both numbers are subject to error
Example

cancellation occurs in the example when we evaluate the numerator of

\[f(x) = \frac{1 - (\cos x)^2}{x^2} \]

• \(1 \simeq (\cos x)^2 \) when \(x \) is small
• there is a rounding error in \(\cos x \)
Numerical stability

refers to the accuracy of an algorithm in the presence of rounding errors

• an algorithm is *unstable* if rounding errors cause large errors in the result
• rigorous definition depends on what ‘accurate’ and ‘large error’ mean
• instability is often, but not always, caused by cancellation

Examples from earlier lectures

• solving linear equations by LU factorization without pivoting
• Cholesky factorization method for least-squares
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 1: use the formulas

\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]

unstable if \(b^2 \gg |4ac| \)

- if \(b^2 \gg |4ac| \) and \(b \leq 0 \), cancellation occurs in \(x_2 \) \((-b \simeq \sqrt{b^2 - 4ac}\))
- if \(b^2 \gg |4ac| \) and \(b \geq 0 \), cancellation occurs in \(x_1 \) \((b \simeq \sqrt{b^2 - 4ac}\))
- in both cases \(b \) may be exact, but the squareroot introduces small errors
Roots of a quadratic equation

\[ax^2 + bx + c = 0 \quad (a \neq 0) \]

Algorithm 2: use fact that roots \(x_1, x_2 \) satisfy \(x_1 x_2 = c/a \)

- if \(b \leq 0 \), calculate

\[
x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad x_2 = \frac{c}{ax_1}
\]

- if \(b > 0 \), calculate

\[
x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad x_1 = \frac{c}{ax_2}
\]

no cancellation when \(b^2 \gg |4ac| \)
Exercises

• suppose \(\text{chop}(x,n) \) rounds \(x \) to \(n \) decimal digits

• for example \(\text{chop}(\pi,4) \) returns 3.14200000000000

Exercise 1: cancellation occurs in \(\frac{1 - \cos x}{\sin x} \) when \(x \approx 0 \)

\[
\begin{align*}
\text{>> } x &= 1e-2; \\
\text{>> } (1 - \text{chop}(\cos(x), 4)) / \text{chop}(\sin(x), 4)
\end{align*}
\]

\[
\text{ans } =
\]

\[
0
\]

(exact value is about 0.005)

give a stable alternative method
Exercise 2: evaluate

\[\sum_{k=1}^{3000} k^{-2} = 1.6446 \]

rounding all intermediate results to 4 digits

```matlab
>> sum = 0;
>> for k = 1:3000
    sum = chop(sum + 1/k^2, 4);
end
>> sum

sum =

1.6240
```

- result has only two correct digits
- not caused by cancellation (there are no subtractions)

explain and propose a better method
Exercise 3: the number $e = 2.7182818\ldots$ can be defined as

$$e = \lim_{n \to \infty} (1 + 1/n)^n$$

This suggests an algorithm for calculating e: take a large n and evaluate

$$\hat{e} = (1 + 1/n)^n$$

results:

<table>
<thead>
<tr>
<th>n</th>
<th>\hat{e}</th>
<th># correct digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>2.718145926</td>
<td>4</td>
</tr>
<tr>
<td>10^8</td>
<td>2.718281798</td>
<td>7</td>
</tr>
<tr>
<td>10^{12}</td>
<td>2.718523496</td>
<td>4</td>
</tr>
<tr>
<td>10^{16}</td>
<td>1.0000000000</td>
<td>0</td>
</tr>
</tbody>
</table>

explain

Algorithm stability
Exercise 4: on page 2-10 we showed that for an n-vector x,

$$\text{std}(x)^2 = \frac{1}{n} \| x - \text{avg}(x) \mathbf{1} \|^2 = \frac{1}{n} \left(\| x \|^2 - \left(\frac{1^T x}{n} \right)^2 \right)$$

we evaluate the second expression for $n = 10$ and

$$x = (1002, 1000, 1003, 1001, 1002, 1002, 1001, 1004, 1002, 1001)$$

$$\begin{align*}
\text{>> sum1} & \text{=} 0.0; \text{ sum2} = 0.0; \\
\text{>> for} \ i = 1:n \\
\text{\qquad sum1} & \text{=} \text{chop(sum1 + x(i), 6);} \\
\text{\qquad sum2} & \text{=} \text{chop(sum2 + x(i)^2, 6);} \\
\text{>> end} \\
\text{>> s} & \text{=} \text{chop((sum2 - sum1^2 / n) / n, 6) }
\end{align*}$$

$$s = -3.2400$$

a negative number! explain and suggest a better method