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5. Applications to data fitting

• principal components

• canonical correlations

• dimension reduction

• rank-deficient least squares

• regularized least squares

• total least squares

5.1



Introduction

applications in this lecture use matrices to represent data sets:

• a set of examples (or samples, data points, observations, measurements)

• for each example, a list of attributes or features

an 𝑚 × 𝑛 data matrix 𝐴 is used to represent the data

• rows are feature vectors for 𝑚 examples

• columns correspond to 𝑛 features

• rows are denoted by 𝑎𝑇1 , . . . , 𝑎𝑇𝑚 with 𝑎𝑖 ∈ R𝑛

• in some applications, rows are interpreted as samples of a random 𝑛-vector
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Principal components

recall the results from page 3.29

• we assume 𝑥 is a random 𝑛-vector with mean 𝜇 and covariance matrix

𝐶 = E((𝑥 − 𝜇) (𝑥 − 𝜇)𝑇)

here we use notation 𝐶 to avoid confusion with the matrix Σ in an SVD

• 𝐶 is positive semidefinite with eigendecomposition

𝐶 = 𝑄Λ𝑄𝑇 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 , 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ 0

the principal components (p.c.’s) of 𝑥 are the components of 𝑦 = 𝑄𝑇𝑥:

𝑦1 = 𝑞𝑇1𝑥, 𝑦2 = 𝑞𝑇2𝑥, . . . , 𝑦𝑛 = 𝑞𝑇𝑛𝑥

coefficients of vector 𝑞𝑖 are called the loadings for principal component 𝑦𝑖
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Properties of principal components

the random vector 𝑦 has mean 𝑦̄ = 𝑄𝑇𝜇 and covariance matrix Λ:

E((𝑦 − 𝑦̄) (𝑦 − 𝑦̄)𝑇) = 𝑄𝑇 E((𝑥 − 𝜇) (𝑥 − 𝜇)𝑇)𝑄
= 𝑄𝑇𝐶𝑄

=


𝜆1 0 · · · 0
0 𝜆2 · · · 0
... ... . . . ...
0 0 · · · 𝜆𝑛


• principal components 𝑦𝑖 are uncorrelated and have variances 𝜆𝑖:

E
((𝑦𝑖 − 𝑦̄𝑖) (𝑦 𝑗 − 𝑦̄ 𝑗)

)
= 0 if 𝑖 ≠ 𝑗 , E(𝑦𝑖 − 𝑦̄𝑖)2 = 𝜆𝑖

• principal components are ordered in order of decreasing variance

Applications to data fitting 5.4



Example

multivariate normal (Gaussian) probability density function

𝑝(𝑥) = 1
(2𝜋)𝑛/2

√
det𝐶

𝑒−
1
2 (𝑥−𝜇)𝑇𝐶−1(𝑥−𝜇)

contour lines of density function for

𝐶 =
1
4

[
7

√
3√

3 5

]
, 𝜇 =

[
5
4

]
eigenvalues of Σ are 𝜆1 = 2, 𝜆2 = 1,

𝑞1 =

[ √
3/2

1/2

]
, 𝑞2 =

[
1/2

−√3/2

]
𝑥1

𝑥2
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Multivariate normal distribution

the principal components 𝑦1 = 𝑞𝑇1𝑥, . . . , 𝑦𝑛 = 𝑞𝑇𝑛𝑥 have distribution

𝑝(𝑦) =
𝑛∏
𝑖=1

1√
2𝜋𝜆𝑖

exp(−(𝑦𝑖 − 𝑦̄𝑖)2

2𝜆𝑖
)

√
𝜆1

𝑦1

√
𝜆2

𝑦2

first p.c.second p.c.

𝑥1

𝑥2
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First principal component

from page 3.24, the first eigenvector 𝑞1 solves the optimization problem (in 𝛽)

maximize 𝛼𝑇𝐶𝛼
subject to 𝛼𝑇𝛼 = 1 (1)

• cost function is the variance of scalar random variable 𝑧 = 𝛼𝑇𝑥:

E 𝑧 = 𝛼𝑇𝜇, E(𝑧 − 𝛼𝑇𝜇)2 = E(𝛼𝑇 (𝑥 − 𝜇) (𝑥 − 𝜇)𝑇𝛼) = 𝛼𝑇𝐶𝛼

• with ∥𝛼∥ = 1, scalar 𝑧 gives projection of 𝑥 on the line in direction 𝛼

0
line {𝑡𝛼 | 𝑡 ∈ R}

𝑥

(𝛼𝑇𝑥)𝛼

• in (1) we seek the direction 𝛼 that maximizes the variance of 𝑧

• a solution of (1) is 𝛼 = 𝑞1, the direction of the first principal component 𝑦1 = 𝑞𝑇1𝑥
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Second principal component

the second eigenvector 𝑞2 solves the optimization problem

maximize 𝛼𝑇𝐶𝛼
subject to 𝛼𝑇𝛼 = 1

𝑞𝑇1𝛼 = 0
(2)

• cost function is again the variance of the scalar random variable 𝑧 = 𝛼𝑇𝑥

• second constraint forces 𝑧 to be uncorrelated with first principal component 𝑦1:

E((𝑦1 − 𝑞𝑇1 𝜇) (𝑧 − 𝛼𝑇𝜇)) = E(𝑞𝑇1 (𝑥 − 𝜇) (𝑥 − 𝜇)𝑇𝛼)
= 𝑞𝑇1𝐶𝛼

= 𝜆1𝑞
𝑇
1𝛼

= 0

• 𝑧 gives projection of 𝑥 on line in a direction orthogonal to direction 𝑞1

• a solution of (2) is 𝛼 = 𝑞2, direction of 2nd p.c. 𝑦2 (see next page)
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Second principal component

maximize 𝛼𝑇𝐶𝛼
subject to 𝛼𝑇𝛼 = 1

𝑞𝑇1𝛼 = 0

• the 2nd constraint restricts 𝛼 to the subspace orthogonal to span{𝑞1}
• the columns of 𝑉 =

[
𝑞2 · · · 𝑞𝑛

]
are an orthonormal basis for this subspace

• hence 𝛼 must be of the form 𝛼 = 𝑉𝛼̃, with ∥𝛼̃∥ = 1, and problem is equivalent to

maximize 𝛼̃𝑇𝑉𝑇𝐶𝑉𝛼̃
subject to 𝛼̃𝑇 𝛼̃ = 1

where

𝑉𝑇𝐶𝑉 =


𝜆2 0 · · · 0
0 𝜆3 · · · 0
... ... . . . ...
0 0 · · · 𝜆𝑛


• 𝛼̃ = (1, 0, . . . , 0) is optimal, corresponding to 𝛼 = 𝑞2 and 𝛼𝑇𝐶𝛼 = 𝜆2
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Plane defined by the first two principal components

• let 𝑉 =
[
𝛼1 𝛼2

]
be an 𝑛 × 2 matrix with orthonormal columns 𝛼1, 𝛼2

• the projection of 𝑥 on the plane spanned by 𝛼1, 𝛼2 is 𝑉𝑧 where

𝑧 = 𝑉𝑇𝑥

𝑧 = (𝑧1, 𝑧2) is a random vector with mean (𝑧1, 𝑧2) = (𝛼𝑇1 𝜇, 𝛼𝑇2 𝜇) and covariance[
E(𝑧1 − 𝑧1)2 E((𝑧1 − 𝑧1) (𝑧2 − 𝑧2))

E((𝑧1 − 𝑧1) (𝑧2 − 𝑧2)) E(𝑧2 − 𝑧2)2

]
= 𝑉𝑇𝐶𝑉

• from Courant–Fischer theorem (page 3.35) eigenvalues 𝜇1, 𝜇2 of 𝑉𝑇𝐶𝑉 satisfy

𝜇1 ≤ 𝜆1, 𝜇2 ≤ 𝜆2 with equality if 𝛼1 = 𝑞1, 𝛼2 = 𝑞2

• plane of first two p.c. directions maximizes several useful quantities at once:

𝜆max(𝑉𝑇𝐶𝑉), 𝜆min(𝑉𝑇𝐶𝑉), trace(𝑉𝑇𝐶𝑉), ∥𝑉𝑇𝐶𝑉 ∥𝐹, det(𝑉𝑇𝐶𝑉), . . .

Applications to data fitting 5.10



Higher principal components

the interpretation of the second p.c. is easily extended to the other p.c.’s: consider

maximize 𝛼𝑇𝐶𝛼
subject to 𝛼𝑇𝛼 = 1

𝑞𝑇1𝛼 = · · · = 𝑞𝑇𝑘−1𝛼
(3)

• cost function is again the variance of the scalar random variable 𝑧 = 𝛼𝑇𝑥

• second set of constraints forces 𝑧 to be uncorrelated with 𝑦1, . . . , 𝑦𝑘−1

• a solution of (2) is 𝛼 = 𝑞𝑘 , the direction of the 𝑘 th principal component 𝑦𝑘

• Courant–Fischer theorem implies other optimality properties of first 𝑘 p.c.’s
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Sample principal components

if the covariance matrix is not known, we use the sample covariance matrix

𝐶 =
1
𝑚
𝑋𝑇

c 𝑋c =
1
𝑚
𝑋𝑇 (𝐼 − 1

𝑚
11𝑇)𝑋

• 𝑋 is 𝑚 × 𝑛 data matrix, containing 𝑚 samples of the random 𝑛-vector 𝑥

• 𝑋c is the centered data matrix

𝑋c = (𝐼 − 1
𝑚

11𝑇)𝑋 = 𝑋 − 1𝜇̂𝑇 , 𝜇̂ =
1
𝑚
𝑋𝑇1

• we distinguish sample (from 𝐶) and population (from 𝐶) principal components

• directions of sample principal components are the right singular vectors of 𝑋c
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Example

scatter plot shows 𝑚 = 500 points from the normal distribution on page 5.5

𝜇 =

[
5
4

]
, 𝐶 =

1
4

[
7

√
3√

3 5

]

sample estimate of mean is

𝜇̂ =
1
𝑚
𝑋𝑇1 =

[
5.01
3.93

]
sample estimate of covariance is

𝐶 =
1
𝑚
𝑋𝑇

c 𝑋c =

[
1.67 0.48
0.48 1.35

]

first p.c.
second p.c.

𝑥1

𝑥2
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Correlation of two random variables

let 𝑤, 𝑧 be two scalar random variables with means and covariance

E
[
𝑤
𝑧

]
=

[
𝑤̄
𝑧

]
, E

[
𝑤 − 𝑤̄
𝑧 − 𝑧

] [
𝑤 − 𝑤̄
𝑧 − 𝑧

]𝑇
=

[
𝜎2
𝑤 𝜎𝑤𝑧

𝜎𝑧𝑤 𝜎2
𝑧

]
recall the following definitions from lecture 2:

• 𝜎2
𝑤, 𝜎2

𝑧 are the variances of 𝑤, 𝑧

• 𝜎𝑤, 𝜎𝑧 are the standard deviations of 𝑤, 𝑧

• 𝜎𝑤𝑧 = 𝜎𝑧𝑤 is the covariance between 𝑤, 𝑧

• correlation between 𝑤, 𝑧 is defined as

𝜌𝑤𝑧 =
𝜎𝑤𝑧

𝜎𝑤𝜎𝑧

Exercise: show that −1 ≤ 𝜌𝑤𝑧 ≤ 1
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Correlation of two vectors

in 133A we defined the correlation between non-constant 𝑚-vectors 𝑎, 𝑏 as

𝜌̂ =
𝑏̃𝑇 𝑎̃

∥𝑎̃∥∥𝑏̃∥

where 𝑎̃, 𝑏̃ are the de-meaned vectors

𝑎̃ = (𝐼 − 1
𝑚

11𝑇)𝑎 = 𝑎 − avg(𝑎)1, 𝑏̃ = (𝐼 − 1
𝑚

11𝑇)𝑏 = 𝑏 − avg(𝑏)1

• 𝜌̂ is the cosine of the angle between the de-meaned vectors 𝑎̃, 𝑏̃

• serves as an estimate of 𝜌𝑤𝑧 if 𝑎, 𝑏 contain 𝑚 samples of random scalars 𝑤, 𝑧
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First canonical correlation

• assume 𝑥 ∈ R𝑝 and 𝑦 ∈ R𝑞 are random vectors with

E 𝑥 = 𝑥, E 𝑦 = 𝑦̄, E
[
𝑥 − 𝑥
𝑦 − 𝑦̄

] [
𝑥 − 𝑥
𝑦 − 𝑦̄

]𝑇
=

[
𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦

]
• consider two scalar linear combinations 𝑤 = 𝛼𝑇𝑥 and 𝑧 = 𝛽𝑇 𝑦:[

𝑤̄
𝑧

]
=

[
𝛼𝑇𝑥
𝛽𝑇 𝑦̄

]
,

[
𝜎2
𝑤 𝜎𝑤𝑧

𝜎𝑧𝑤 𝜎2
𝑧

]
=

[
𝛼𝑇𝐶𝑥𝑥𝛼 𝛼𝑇𝐶𝑥𝑦𝛽
𝛽𝑇𝐶𝑦𝑥𝛼 𝛽𝑇𝐶𝑦𝑦𝛽

]
(using the notation of p. 5.14)

• we are interested in determine 𝑎, 𝑏 that maximize the correlation

𝜌𝑤𝑧 =
𝜎𝑤𝑧

𝜎𝑤𝜎𝑧
=

𝛼𝑇𝐶𝑥𝑦𝛽

(𝛼𝑇𝐶𝑥𝑥𝛼)1/2(𝛽𝑇𝐶𝑦𝑦𝛽)1/2

• maximum 𝜌𝑤𝑧 is called the first canonical correlation

• optimal 𝑤 = 𝛼𝑇𝑥 and 𝑧 = 𝛽𝑇 𝑦 are the 1st canonical variates
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First canonical correlation via SVD

the directions 𝛼, 𝛽 that maximize 𝜌𝑤𝑧 are solutions of the optimization problem

maximize 𝛼𝑇𝐶𝑥𝑦𝛽
subject to 𝛼𝑇𝐶𝑥𝑥𝛼 = 𝛽𝑇𝐶𝑦𝑦𝛽 = 1

• take Cholesky factorization of 𝐶𝑥𝑥, 𝐶𝑦𝑦 (assuming they are positive definite)

𝐶𝑥𝑥 = 𝑅𝑇
𝑥 𝑅𝑥, 𝐶𝑦𝑦 = 𝑅𝑇

𝑦 𝑅𝑦

• apply a change of variables 𝛼̃ = 𝑅𝑥𝛼 and 𝛽 = 𝑅𝑦𝛽:

maximize 𝛼̃𝑇𝑅−𝑇
𝑥 𝐶𝑥𝑦𝑅

−1
𝑦 𝛽

subject to 𝛼̃𝑇 𝛼̃ = 𝛽𝑇 𝛽 = 1

• from page 4.21, solution follows from SVD of 𝑅−𝑇
𝑥 𝐶𝑥𝑦𝑅

−1
𝑦 :

𝛼̃ = 𝑢1, 𝛽 = 𝑣1, 𝛼 = 𝑅−1
𝑥 𝑢1, 𝛽 = 𝑅−1

𝑦 𝑣1, 𝜌𝑤𝑧 = 𝜎1

𝑢1, 𝑣1 are first left and right singular vectors, 𝜎1 is first singular value
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Higher canonical correlations

• assume 𝑝 ≥ 𝑞 (where 𝑥 ∈ R𝑝 and 𝑦 ∈ R𝑞) and consider the reduced SVD

𝑅−𝑇
𝑥 𝐶𝑥𝑦𝑅

−1
𝑦 = 𝑈Σ𝑉𝑇 =

𝑞∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• the canonical correlations between 𝑥 and 𝑦 are the singular values 𝜎1, . . . , 𝜎𝑞

• the 𝑘 th canonical variates are the scalar variables 𝑤𝑘 , 𝑧𝑘 where
𝑤1
...
𝑤𝑞

 =


𝑢𝑇1𝑅

−𝑇
𝑥 𝑥
...

𝑢𝑇𝑞𝑅
−𝑇
𝑥 𝑥

 ,

𝑧1
...
𝑧𝑞

 =


𝑣𝑇1𝑅

−𝑇
𝑦 𝑦
...

𝑣𝑇𝑞𝑅
−𝑇
𝑦 𝑦


• interpretation: 𝑤𝑘 , 𝑧𝑘 are linear combinations 𝑤 = 𝛼𝑇𝑥, 𝑧 = 𝛽𝑇 𝑦 that solve

maximize 𝜌𝑤𝑧
subject to 𝑤 is uncorrelated with 𝑤1, . . . , 𝑤𝑘−1

𝑧 is uncorrelated with 𝑧1, . . . , 𝑧𝑘−1
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Sample canonical correlations

if the covariance matrices are not known, we use the sample covariances[
𝐶𝑥𝑥 𝐶𝑥𝑦

𝐶𝑦𝑥 𝐶𝑦𝑦

]
=

1
𝑚

[
𝑋𝑇

c 𝑋c 𝑋𝑇
c 𝑌c

𝑌𝑇
c 𝑋c 𝑌𝑇

c 𝑌c

]
• 𝑋c ∈ R𝑚×𝑝 and 𝑌c ∈ R𝑚×𝑞 are centered data matrices for 𝑚 samples of 𝑥, 𝑦

• first (sample) canonical variates 𝑤 = 𝛼𝑇𝑥 and 𝑧 = 𝛽𝑇 𝑦 maximize

𝜌̂ =
𝛼𝑇𝑋𝑇

c 𝑌c𝛽

∥𝑋c𝛼∥ ∥𝑌c𝛽∥

i.e., we find linear combinations of colums of 𝑋c and 𝑌c with largest correlation
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Dimension reduction

low-rank approximation of data matrix can improve efficiency or performance

𝐴 ≈ 𝐴̃𝑄𝑇 where 𝐴̃ is 𝑚 × 𝑘 and 𝑄 is 𝑛 × 𝑘

• we assume (without loss of generality) that 𝑄 has orthonormal columns

• columns of 𝑄 are a basis for a 𝑘-dimensional subspace in feature space R𝑛

• 𝐴̃ is reduced data matrix; rows 𝑎̃𝑇𝑖 are reduced feature vectors:

𝑎𝑖 ≈ 𝑄𝑎̃𝑖, 𝑖 = 1, . . . , 𝑚

we discuss three choices for 𝐴̃ and 𝑄

• truncated singular value decomposition

• truncated QR factorization

• 𝑘-means clustering
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Truncated singular value decomposition

truncate SVD 𝐴 = 𝑈Σ𝑉𝑇 =
∑

𝑖 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 after 𝑘 terms: 𝐴 ≈ 𝐴̃𝑄𝑇 with

𝐴̃ =
[
𝜎1𝑢1 𝜎2𝑢2 · · · 𝜎𝑘𝑢𝑘

]
𝑄 =

[
𝑣1 𝑣2 · · · 𝑣𝑘

]
• 𝐴̃𝑄𝑇 is the best rank-𝑘 approximation of the data matrix 𝐴 (see page 4.31)

𝐴̃𝑄𝑇 =
𝑘∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 ≈ 𝐴

• rows 𝑎̃𝑇𝑖 of 𝐴̃ are (coordinates of) projections of the rows 𝑎𝑇𝑖 on range of 𝑄

𝐴̃ =

(
min{𝑚,𝑛}∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖

)
𝑄 = 𝐴𝑄

when 𝐴 is centered (1𝑇𝐴 = 0), columns in 𝑄 are the principal components
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Interpretation

max–min properties of SVD give the columns of 𝑄 important optimality properties

First component: 𝑞1 is the direction 𝑞 that maximizes

∥𝐴𝑞∥2 = (𝑞𝑇𝑎1)2 + · · · + (𝑞𝑇𝑎𝑚)2

direction 𝑞1𝑎𝑖

(𝑞𝑇1𝑎𝑖)𝑞1
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Interpretation

Second component: 𝑞2 = 𝑣2 is the first right singular vector of

𝐴(1) = 𝐴 − 𝜎1𝑢1𝑣
𝑇
1 = 𝐴(𝐼 − 𝑞1𝑞

𝑇
1 )

• rows of 𝐴(1) are the rows of 𝐴 projected on the orthogonal complement of 𝑞1

• 𝑞2 is the direction 𝑞 that maximizes ∥𝐴(1)𝑞∥2

direction 𝑞1

𝑎𝑖

𝑎 (1)𝑖

direction 𝑞2
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Interpretation

Component 𝑖

𝑞𝑖 = 𝑣𝑖 is the first singular vector of

𝐴(𝑖−1) = 𝐴 −
𝑖−1∑︁
𝑗=1

𝜎𝑗𝑢 𝑗𝑣
𝑇
𝑗 = 𝐴(𝐼 − 𝑞1𝑞

𝑇
1 − · · · − 𝑞𝑖−1𝑞

𝑇
𝑖−1)

• rows of 𝐴(𝑖−1) are the rows of 𝐴 projected on span{𝑞1, . . . , 𝑞𝑖−1}⊥

• 𝑞𝑖 is the direction 𝑞 that maximizes

∥𝐴(𝑖−1)𝑞∥2 =
(
𝑞𝑇𝑎

(𝑖−1)
1

)2
+

(
𝑞𝑇𝑎

(𝑖−1)
2

)2
+ · · · +

(
𝑞𝑇𝑎

(𝑖−1)
𝑚

)2
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Truncated QR factorization

truncate the pivoted QR factorization of 𝐴𝑇 after 𝑘 steps

• partial QR factorization after 𝑘 steps (see page 1.26)

𝑃𝐴 =

[
𝐴1
𝐴2

]
=

[
𝑅𝑇

1
𝑅𝑇

2

]
𝑄𝑇 +

[
0
𝐵𝑇

]
, 𝐵𝑇𝑄 = 0

𝑃 a permutation, 𝑅1 is 𝑘 × 𝑘 and upper triangular, 𝑄 has orthonormal columns

• to define a rank-𝑘 reduced data matrix we drop 𝐵 and use the first term

𝑃𝐴 ≈
[
𝑅𝑇

1
𝑅𝑇

2

]
𝑄𝑇

this does not have the optimality properties of the SVD but is cheaper to compute
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Reduced data matrix

𝑃𝐴 =

[
𝐴1
𝐴2

]
≈

[
𝑅𝑇

1
𝑅𝑇

2

]
𝑄𝑇

• 𝐴1 = 𝑅𝑇
1𝑄

𝑇 : a subset of 𝑘 examples from the original data matrix 𝐴

• the 𝑘-dimensional reduced feature subspace is

range(𝑄) = range(𝑄𝑅1) = range(𝐴𝑇1 )

reduced subspace is spanned by the feature vectors in 𝐴1

• the rows of 𝑅𝑇
2𝑄

𝑇 are the rows of 𝐴2 projected on range(𝑄):

𝐴2𝑄𝑄𝑇 = (𝑅𝑇
2𝑄

𝑇 + 𝐵𝑇)𝑄𝑄𝑇 = 𝑅𝑇
2𝑄

𝑇
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Interpretation

we use the pivoting rule of page 1.26

First component: 𝑞1 is direction of largest row in 𝐴

direction 𝑞1

𝑎𝑖 with max. norm
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Interpretation

Second component: 𝑞2 is direction of largest row of 𝐴(1) = 𝐴(𝐼 − 𝑞1𝑞
𝑇
1 )

direction 𝑞2

direction 𝑞1

Component 𝑖: 𝑞𝑖 is direction of largest row of

𝐴(𝑖−1) = 𝐴(𝐼 − 𝑞1𝑞
𝑇
1 ) · · · (𝐼 − 𝑞𝑖−1𝑞𝑖−1)𝑇
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𝑘-means clustering

run 𝑘-means on the rows of 𝐴 to cluster them in 𝑘 groups with representatives

𝑏1, 𝑏2, . . . , 𝑏𝑘 ∈ R𝑛

• this can be interpreted as a rank-𝑘 approximation of 𝐴:

𝐴 ≈ 𝐶𝐵𝑇 , 𝐶𝑖 𝑗 =

{
1 row 𝑖 of 𝐴 is assigned to group 𝑗
0 otherwise

in other words, in 𝐶𝐵𝑇 each row 𝑎𝑇𝑖 is replaced by its group representative

• QR factorization 𝐵 = 𝑄𝑅 gives an orthonormal basis for range(𝐵)
• 𝐴̃ = 𝐶𝑅𝑇 is a possible choice of reduced data matrix

• alternatively, to improve approximation one computes 𝐴̃ by minimizing

∥𝐴 − 𝐴̃𝑄𝑇 ∥2
𝐹
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Example: document analysis

a collection of documents is represented by a term–document matrix 𝐷

• each row corresponds to a word in a dictionary

• each column corresponds to a document

entries give frequencies of word in documents, usually weighted, for example, as

𝐷𝑖 𝑗 = 𝑓𝑖 𝑗 log(𝑚/𝑚𝑖)

• 𝑓𝑖 𝑗 is frequency of term 𝑖 in document 𝑗

• 𝑚 is number of documents

• 𝑚𝑖 is number of documents that contain term 𝑖

for consistency with the earlier notation, we define

𝐴 = 𝐷𝑇

𝐴 is 𝑚 × 𝑛 (number of documents × number of words)
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Comparing documents and queries

Comparing documents: as measure of document similarity, we can use

𝑎𝑇𝑖 𝑎 𝑗

∥𝑎𝑖∥∥𝑎 𝑗 ∥

• 𝑎𝑇𝑖 and 𝑎𝑇𝑗 are the rows of 𝐴 = 𝐷𝑇 corresponding to documents 𝑖 and 𝑗

• this is called the cosine similarity: cosine of the angle beween 𝑎𝑖 and 𝑎 𝑗

Query matching: find the most relevant documents based on keywords in a query

• we treat the query as a simple document, represented by an 𝑛-vector 𝑥:

𝑥 𝑗 = 1 if term 𝑗 appears in the query, 𝑥 𝑗 = 0 otherwise

• we rank documents according to their cosine similiarity with 𝑥:

𝑎𝑇𝑖 𝑥

∥𝑎𝑖∥∥𝑥∥ , 𝑗 = 1, . . . , 𝑚
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Dimension reduction

it is common to make a low-rank approximation of the term–document matrix

𝐷𝑇 = 𝐴 ≈ 𝐴̃𝑄𝑇

• if the truncated SVD is used, this is called latent semantic indexing (LSI)

• LSI is early technique for search engines (anno 1990)

• cosine similarity of query vector 𝑥 with 𝑖th row 𝑄𝑎̃𝑖 of reduced data matrix is

𝑎̃𝑇𝑖 𝑄
𝑇𝑥

∥𝑄𝑎̃𝑖∥∥𝑥∥ =
𝑎̃𝑇𝑖 𝑄

𝑇𝑥

∥𝑎̃𝑖∥∥𝑥∥

• an alternative is to compute the angle between 𝑎̃𝑖 and 𝑄𝑇𝑥:

𝑎̃𝑇𝑖 𝑄
𝑇𝑥

∥𝑎̃𝑖∥∥𝑄𝑇𝑥∥
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Minimum-norm least squares solution

least squares problem with 𝑚 × 𝑛 matrix 𝐴 and rank(𝐴) = 𝑟 (possibly 𝑟 < 𝑛)

minimize ∥𝐴𝑥 − 𝑏∥2

• on page 1.42 we showed that the minimum-norm least squares solution is

𝑥 = 𝐴†𝑏

• other (not minimum-norm) LS solutions are 𝑥 + 𝑣 for nonzero 𝑣 ∈ null(𝐴)

if 𝐴 has rank 𝑟 and SVD 𝐴 =
∑𝑟

𝑖=1 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 , the formulas for 𝐴† and 𝑥 are

𝐴† =
𝑟∑︁
𝑖=1

1
𝜎 𝑖

𝑣𝑖𝑢
𝑇
𝑖 , 𝑥 =

𝑟∑︁
𝑖=1

𝑢𝑇𝑖 𝑏

𝜎𝑖
𝑣𝑖

(see page 4.14 for expresson of the pseudo-inverse)
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Estimating rank

a perturbation of a rank-deficient matrix will make all singular values nonzero

Example (10 × 10 matrix)

singular values suggest matrix is a
perturbation of a matrix with rank 6

0 2 4 6 8 10

10−6

10−4

10−2

100

102

𝑖
𝜎
𝑖

• the numerical rank is the number of singular values above a certain threshold

• good value of threshold is application-dependent

• truncating after numerical rank 𝑟 removes influence of small singular values

𝑥 =
𝑟∑︁
𝑖=1

𝑢𝑇𝑖 𝑏

𝜎𝑖
𝑣𝑖
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Tikhonov regularization

least squares problem with quadratic regularization

minimize ∥𝐴𝑥 − 𝑏∥2 + 𝜆∥𝑥∥2

• known as Tikhonov regularization or ridge regression

• weight 𝜆 controls trade-off between two objectives ∥𝐴𝑥 − 𝑏∥2 and ∥𝑥∥2

• regularization term can help avoid over-fitting

• equivalent to standard least squares problem with a stacked matrix:

minimize




[ 𝐴√

𝜆𝐼

]
𝑥 −

[
𝑏
0

]



2

• for positive 𝜆, the regularized problem always has a unique solution

𝑥𝜆 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑏

Applications to data fitting 5.37



Exercise

regularized least squares problem with a column of ones in the coefficient matrix:

minimize




 [

1 𝐴
] [

𝑣
𝑥

]
− 𝑏





2
+ 𝜆∥𝑥∥2

• data matrix includes a constant feature 1 (parameter 𝑣 is the offset or intercept)

• associated variable 𝑣 is excluded from regularization term

show that the problem is equivalent to

minimize ∥𝐴c𝑥 − 𝑏∥2 + 𝜆∥𝑥∥2

where 𝐴c is the centered data matrix

𝐴c = (𝐼 − 1
𝑚

11𝑇)𝐴 = 𝐴 − 1
𝑚

1(1𝑇𝐴)
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Regularization path

suppose 𝐴 has full SVD

𝐴 = 𝑈Σ𝑉𝑇 =
min{𝑚,𝑛}∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖

substituting the SVD in the formula for 𝑥𝜆 shows the effect of 𝜆:

𝑥𝜆 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑏 = (𝑉Σ𝑇Σ𝑉𝑇 + 𝜆𝐼)−1𝑉Σ𝑇𝑈𝑇𝑏

= 𝑉 (Σ𝑇Σ + 𝜆𝐼)−1𝑉𝑇𝑉Σ𝑇𝑈𝑇𝑏

= 𝑉 (Σ𝑇Σ + 𝜆𝐼)−1Σ𝑇𝑈𝑇𝑏

=
min{𝑚,𝑛}∑︁

𝑖=1

𝜎𝑖 (𝑢𝑇𝑖 𝑏)
𝜎2
𝑖 + 𝜆

𝑣𝑖

this expression is valid for any matrix shape and rank
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Interpretation

𝑥𝜆 =
min{𝑚,𝑛}∑︁

𝑖=1

𝜎𝑖

𝜎2
𝑖 + 𝜆

𝑣𝑖 (𝑢𝑇𝑖 𝑏)

• positive 𝜆 reduces (shrinks) all terms in the sum

• terms for small 𝜎𝑖 are suppressed more

• all terms with 𝜎𝑖 = 0 are removed

plot shows the weight function

𝜎𝑖

𝜎2
𝑖 + 𝜆

=
1/𝜎𝑖

1 + 𝜆/𝜎2
𝑖

versus 𝜆, for a term with 𝜎𝑖 > 0
10−4 10−2 100 102 104
0

0.5/𝜎𝑖

1/𝜎𝑖

𝜆/𝜎2
𝑖

Applications to data fitting 5.40



Truncated SVD as regularization

• suppose we determine numerical rank of 𝐴 by comparing 𝜎𝑖 with threshold 𝜏

• truncating SVD of 𝐴 gives approximation 𝐴̃ =
∑

𝜎𝑖>𝜏 𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• minimum-norm least squares solution for truncated matrix is (page 5.36)

𝑥trunc =
∑︁
𝜎𝑖>𝜏

1
𝜎𝑖
𝑣𝑖 (𝑢𝑇𝑖 𝑏)

plot shows two weight functions

• Tikhonov regularization:
1/𝜎𝑖

1 + 𝜆/𝜎2
𝑖

• truncated SVD solution with 𝜏 =
√
𝜆:{

1/𝜎𝑖 𝜎𝑖 >
√
𝜆

0 𝜎𝑖 ≤
√
𝜆

10−4 10−2 100 102 104
0

0.5/𝜎𝑖

1/𝜎𝑖

𝜆/𝜎2
𝑖 = 𝜏2/𝜎𝑖Applications to data fitting 5.41



Limit for 𝜆 = 0

Regularized least squares solution

𝑥𝜆 =
min{𝑚,𝑛}∑︁

𝑖=1

𝜎𝑖

𝜎2
𝑖 + 𝜆

𝑣𝑖 (𝑢𝑇𝑖 𝑏) =
𝑟∑︁
𝑖=1

𝜎𝑖

𝜎2
𝑖 + 𝜆

𝑣𝑖 (𝑢𝑇𝑖 𝑏)

• the limit for 𝜆 → 0 is
lim
𝜆→0

𝑥𝜆 =
𝑟∑︁
𝑖=1

1
𝜎𝑖
𝑣𝑖 (𝑢𝑇𝑖 𝑏)

• this is the minimum-norm solution of the unregularized problem (page 5.35)

Pseudo-inverse: this gives a new interpretation of the pseudo-inverse

𝐴† =
𝑟∑︁
𝑖=1

1
𝜎𝑖
𝑣𝑖𝑢

𝑇
𝑖 = lim

𝜆→0

min{𝑚,𝑛}∑︁
𝑖=1

𝜎𝑖

𝜎2
𝑖 + 𝜆

𝑣𝑖𝑢
𝑇
𝑖

= lim
𝜆→0

(𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇
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Example

10 × 6 matrix with singular values

𝜎1 = 10.66, 𝜎2 = 9.86, 𝜎3 = 7.11, 𝜎4 = 0.94, 𝜎5 = 0.27, 𝜎6 = 0.18

solid line is trade-off curve

: solution 𝑥𝜆 with 𝜆 = 𝜎2
𝑖

: truncate SVD after 𝑘 terms

1 2 3 4 5 6 70

1

2

3

𝑘 = 0

𝑘 = 1𝑘 = 2
𝑘 = 3

𝑘 = 4

𝑘 = 5

𝑘 = 6

𝜎2
1𝜎2

2
𝜎2

3

𝜎2
4

𝜎2
5

𝜎2
6

∥𝐴𝑥 − 𝑏∥

∥𝑥
∥
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Total least squares

Least squares problem
minimize ∥𝐴𝑥 − 𝑏∥2

• can be written as constrained least squares problem with variables 𝑥 and 𝑒

minimize ∥𝑒∥2

subject to 𝐴𝑥 = 𝑏 + 𝑒

• 𝑒 is the smallest adjustment to 𝑏 that makes the equation 𝐴𝑥 = 𝑏 + 𝑒 solvable

Total least squares (TLS) problem

minimize ∥𝐸 ∥2
𝐹 + ∥𝑒∥2

subject to (𝐴 + 𝐸)𝑥 = 𝑏 + 𝑒

• variables are 𝑛-vector 𝑥, 𝑚-vector 𝑒, and 𝑚 × 𝑛 matrix 𝐸 (where 𝐴 is 𝑚 × 𝑛)

• 𝐸 and 𝑒 are the smallest adjustments to 𝐴, 𝑏 that make the equation solvable

• eliminating 𝑒 gives a nonlinear LS problem: minimize ∥𝐸 ∥2
𝐹 + ∥(𝐴 + 𝐸)𝑥 − 𝑏∥2
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TLS solution via singular value decomposition

minimize ∥𝐸 ∥2
𝐹 + ∥𝑒∥2

subject to (𝐴 + 𝐸)𝑥 = 𝑏 + 𝑒

we assume 𝑚 ≥ 𝑛 + 1 and 𝜎min(𝐴) > 𝜎min(𝐶) > 0 where 𝐶 =
[
𝐴 −𝑏]

• compute an SVD of the 𝑚 × (𝑛 + 1) matrix 𝐶:

𝐶 =
[
𝐴 −𝑏 ]

=
𝑛+1∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• partition the right singular vector 𝑣𝑛+1 of 𝐶 as

𝑣𝑛+1 =

[
𝑤
𝑧

]
with 𝑤 ∈ R𝑛 and 𝑧 ∈ R

• the solution of the TLS problem is

𝐸 = −𝜎𝑛+1𝑢𝑛+1𝑤
𝑇 , 𝑒 = 𝜎𝑛+1𝑢𝑛+1𝑧, 𝑥 = 𝑤/𝑧
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Proof:
minimize ∥𝐸 ∥2

𝐹 + ∥𝑒∥2

subject to
[
𝐴 + 𝐸 −(𝑏 + 𝑒)] [

𝑥
1

]
= 0

• the matrix of rank 𝑛 closest to 𝐶 and its difference with 𝐶 are[
𝐴 + 𝐸 −(𝑏 + 𝑒)] = 𝑛∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 ,

[
𝐸 −𝑒] = −𝜎𝑛+1𝑢𝑛+1𝑣

𝑇
𝑛+1

• 𝑣𝑛+1 = (𝑤, 𝑧) spans the nullspace of this matrix

• if 𝑧 ≠ 0 we can normalize 𝑣𝑛+1 to get a solution 𝑥 = 𝑤/𝑧 that satisfies

[
𝐴 + 𝐸 −(𝑏 + 𝑒)] [

𝑥
1

]
= 0

• the assumption 𝜎min(𝐴) > 𝜎min(𝐶) implies that 𝑧 is nonzero: 𝑧 = 0 contradicts

𝜎min(𝐴) = min
∥𝑦∥=1

∥𝐴𝑦∥ > 𝜎min(𝐶) = ∥𝐴𝑤 − 𝑏𝑧∥
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Extension

minimize ∥𝐸 ∥2
𝐹 + ∥𝑒∥2

subject to 𝐴1𝑥1 + (𝐴2 + 𝐸)𝑥2 = 𝑏 + 𝑒
(4)

• variables are 𝐸 , 𝑒, 𝑥1, 𝑥2

• we make the smallest adjustment to 𝐴2 and 𝑏 that makes the equation solvable

• no adjustment is made to 𝐴1

• eliminating 𝑒 gives a nonlinear least squares problem in 𝐸 , 𝑥1, 𝑥2:

minimize ∥𝐸 ∥2
𝐹 + ∥𝐴1𝑥1 + (𝐴2 + 𝐸)𝑥2 − 𝑏∥2

• we will assume that 𝐴1 has linearly independent columns
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Solution
• assume 𝐴1 has QR factorization 𝐴1 = 𝑄1𝑅 and 𝑄 =

[
𝑄1 𝑄2

]
is orthogonal

• multiply the constraint in (4) on the left with 𝑄𝑇 :

𝑅𝑥1 + (𝑄𝑇
1 𝐴2 + 𝐸1)𝑥2 = 𝑄𝑇

1𝑏 + 𝑒1, (𝑄𝑇
2 𝐴2 + 𝐸2)𝑥2 = 𝑄𝑇

2𝑏 + 𝑒2 (5)

where 𝐸1 = 𝑄𝑇
1𝐸 , 𝐸2 = 𝑄𝑇

2𝐸 , 𝑒1 = 𝑄𝑇
1𝑒, 𝑒2 = 𝑄𝑇

2𝑒

• cost function in (4) is

∥𝐸 ∥2
𝐹 + ∥𝑒∥2 = ∥𝐸1∥2

𝐹 + ∥𝐸2∥2
𝐹 + ∥𝑒1∥2 + ∥𝑒2∥2

• first equation in (5) is solvable for any 𝐸1, 𝑒1, so 𝐸1 = 0, 𝑒1 = 0 are optimal

• for the 2nd equation we solve the TLS problem in 𝐸2, 𝑒2, 𝑥2:

minimize ∥𝐸2∥2
𝐹 + ∥𝑒2∥2

subject to (𝑄𝑇
2 𝐴2 + 𝐸2)𝑥2 = 𝑄𝑇

2𝑏 + 𝑒2

• after computing 𝑥2, we find 𝑥1 by solving 𝑅𝑥1 = 𝑄𝑇
1𝑏 −𝑄𝑇

1 𝐴2𝑥2
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Example: orthogonal distance regression

fit an affine function 𝑓 (𝑡) = 𝑥1 + 𝑥2𝑡 to 𝑚 points (𝑎𝑖, 𝑏𝑖)

minimize ∥𝛿𝑎∥2 + ∥𝛿𝑏∥2

subject to 𝑥11 + 𝑥2(𝑎 + 𝛿𝑎) = 𝑏 + 𝛿𝑏

• the variables are 𝑚-vectors 𝛿𝑎, 𝛿𝑏 and scalars 𝑥1, 𝑥2

• we fit the line by minimizing the sum of squared distances to the line

𝑡
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