L. Vandenberghe ECE133B (Spring 2023)

5. Applications to data fitting

e principal components

e canonical correlations

e dimension reduction

e rank-deficient least squares
e regularized least squares

e total least squares
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Introduction

applications in this lecture use matrices to represent data sets:

e a set of examples (or samples, data points, observations, measurements)

e for each example, a list of attributes or features

an m X n data matrix A is used to represent the data

e rows are feature vectors for m examples
e columns correspond to n features
e rows are denoted by a{, ..., al with g; € R”

e in some applications, rows are interpreted as samples of a random n-vector

Applications to data fitting
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total least squares
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Principal components
recall the results from page 3.29

e Wwe assume x is a random n-vector with mean u and covariance matrix

C=E((x-p)(x-u"

here we use notation C to avoid confusion with the matrix X in an SVD

e ( is positive semidefinite with eigendecomposition

n
C=0A0" = > Nigig}, AU >2>->2,20
i=1

the principal components (p.c.’s) of x are the components of y = Q7 x:

T
Y1 =4q1%, y2:qu’ I )’n:qu

coefficients of vector g; are called the loadings for principal component y;

Applications to data fitting
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Properties of principal components

the random vector y has mean ¥ = Q' 1 and covariance matrix A:

E(y-9)-») = Q"E(x-pwE-who

= 0'co
'/11 0O --- 0 |
~ 0O A -+ 0
_ O 0o --.. ,1n_

e principal components y; are uncorrelated and have variances A;:
- _ e . —\2
E((i—-3)(y;-3,))=0 ifi#j,  E(yi-3%)" =4

e principal components are ordered in order of decreasing variance
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Example

multivariate normal (Gaussian) probability density function

—5(x—p)TC (x—p)

pix) = (Zﬂ)”/z\/detCe

contour lines of density function for

eigenvalues of X are 4; =2, 4, =1,

| v3)2 | 1/2
g1 = 1/2 » 42 = _\/§/2

Applications to data fitting
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Multivariate normal distribution

the principal components y; = ¢l x, ..., y, = g}x have distribution

n . 5)\2
5O = | exp(— 23

i=1 V2714, 22
X2
VT second p.c. first p.c.
— V1
— )2 e ——_
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First principal component
from page 3.24, the first eigenvector g solves the optimization problem (in )

maximize a!Ca
subjectto ola =1

T

e cost function is the variance of scalar random variable 7z = o x:

Ez=co'y, EGiz-o'p)?=E@ (x-pkx-ula)=ad Ca

e with ||a|| = 1, scalar z gives projection of x on the line in direction «

X

> line {ta | t € R}
0 (a'x)a

e in (1) we seek the direction a that maximizes the variance of z

e a solution of (1) is @ = g, the direction of the first principal component y; = q{x

Applications to data fitting 5.7



Second principal component

the second eigenvector g, solves the optimization problem

maximize a!Ca
subjectto ala =1 (2)
q{a =0

e cost function is again the variance of the scalar random variable z = o x

e second constraint forces z to be uncorrelated with first principal component y;:
E((yi—-qim)(z-a'p) = E(gj(x-px-w'a)
= q{ch
= /116]{0

= 0

e 7 gives projection of x on line in a direction orthogonal to direction g,

e a solution of (2) is @ = ¢g», direction of 2nd p.c. y, (see next page)
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e the 2nd constraint restricts a to the subspace orthogonal to span{g}

e the columns of V = [q2 KX qn] are an orthonormal basis for this subspace

Second principal component

maximize «o!Ca

subjectto «

T

a=1

q{cx:O

e hence a must be of the form a = Va, with ||@|| = 1, and problem is equivalent to

subjectto ala =1
where i
Ay O
viev=| 0 0
o o
e @ =(1,0,...,0) is optimal, corresponding to a = g and al Ca = A

Applications to data fitting

maximize alVvICVva

0 ]

/‘ln i
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Plane defined by the first two principal components

o letV = |a; | be an n x 2 matrix with orthonormal columns a, >

e the projection of x on the plane spanned by a1, a3 is Vz where
z=Vlx
z = (z1, 22) is a random vector with mean (zZ1,22) = (alT,u, ag,u) and covariance

E(z1 - 71)? E((z1 —21)(z2 — 22))

_yT
E((z1 —z1)(z2 = 22)) E(zy — 75)? =V'CV

e from Courant—Fischer theorem (page 3.35) eigenvalues 1, uy of VI CV satisfy

ur < A4y, Uy < Ao with equality if a1 = g1, a2 = g2

e plane of first two p.c. directions maximizes several useful quantities at once:

Anax(VICV),  Amin(VICV), trace(VICV), |[VICV|E, det(VICV),
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Higher principal components

the interpretation of the second p.c. is easily extended to the other p.c.’s: consider

maximize a!Ca

subjectto ala =1 (3)

T.,_ .. _ T
Q¥ ="""=4q 1@

e cost function is again the variance of the scalar random variable z = o’ x

e second set of constraints forces z to be uncorrelated with y, ..., yr_1
e a solution of (2) is @ = gy, the direction of the kth principal component y;

e Courant-Fischer theorem implies other optimality properties of first k p.c.’s

Applications to data fitting 5.11



Sample principal components

if the covariance matrix is not known, we use the sample covariance matrix

~ ] 1 1
C=—Xx'x=—x"a1-—11"x
m m m

e X is m X n data matrix, containing m samples of the random n-vector x

e X, is the centered data matrix

1 1
X.=(I--11Hx=x-14", p=—-x"1
m m

—~

e we distinguish sample (from C) and population (from C) principal components

e directions of sample principal components are the right singular vectors of X,

Applications to data fitting 512



Example

scatter plot shows m = 500 points from the normal distribution on page 5.5

S P

o . firstp.c.
second p.c. . -

sample estimate of covariance is

~ 1
C=—Xx!'X.
m

[ 167 048 :
~ 1 048 1.35

| X 1
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Correlation of two random variables

let w, z be two scalar random variables with means and covariance
- — _17 )

E — N E — — — 2

Z Z Z—2 72—z O O

recall the following definitions from lecture 2:

2 2
® 0,0y

are the variances of w, z
e 0, 0; are the standard deviations of w, z
® 0y, = 0y, IS the covariance between w, z

e correlation between w, z is defined as

Owz

Pwz =
OO

Exercise: show that -1 < p,,, <1

Applications to data fitting
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Correlation of two vectors

in 133A we defined the correlation between non-constant m-vectors a, b as

_ bla
P=T""
alll| ]l
where d, b are the de-meaned vectors
~ 17 > 17
ad=(I—-—11")a = a —avg(a)l, b=(-—11")b=b —avg(b)l
m m

e /) is the cosine of the angle between the de-meaned vectors a, b

e serves as an estimate of p,, ., if a, b contain m samples of random scalars w, z

Applications to data fitting 5.15



First canonical correlation

e assume x € R? and y € R? are random vectors with

_ _ T
Ex=x. Ey=5. E[x—yf][x—{] :lcxx Cxy
y=y |[y-y Cyx Cyy
e consider two scalar linear combinations w = a’x and z = 8''y:
HRETRERREE
z By | Tow O B'Cya B'CyyB

(using the notation of p. 5.14)

e we are interested in determine a, b that maximize the correlation

Owz a'Tny:B

OwO07 ) (a'TCxxa’)l/z(:BTny:B)l/z

Pwz =

e maximum p,,, is called the first canonical correlation

T

e optimal w = a’x and z = 8’y are the 1st canonical variates

Applications to data fitting

|

|
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First canonical correlation via SVD
the directions «a, 8 that maximize p,,, are solutions of the optimization problem

maximize a!Cy,p
subjectto o/ Cya =pICyB=1

o take Cholesky factorization of Cyy, Cy, (assuming they are positive definite)
Cix=R{Rx, Cyy=R[R,
e apply a change of variables @ = R,a and 8 = Ryp:

maximize &' R;'CyyR}'B
subjectto ala=8'8=1

e from page 4.21, solution follows from SVD of R;TnyRy‘l:

~

~ -1 -1
a=1Uui, :8:V1a a/:Rx ui, IBZRy V1, Pwz = 0]

uy, vy are first left and right singular vectors, o is first singular value

Applications to data fitting
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Higher canonical correlations

e assume p > g (where x € R” and y € R9) and consider the reduced SVD

q

R CoR; =UzV! = > o]

i=1

e the canonical correlations between x and y are the singular values o, ..., oy

e the kth canonical variates are the scalar variables wy, z;, where

e interpretation: wy, z; are linear combinations w = «

Applications to data fitting

_Wl_

| Wq |

- T _T - - -
uy Ry x 71
T p-T
i uqu X | | Zq

T

maximize py,,
subjectto w is uncorrelated with wy, ..., wi_1

z is uncorrelated with z1, . ..

.
ViRyTY

T p-T
] quy y |

x, z = BTy that solve

» $k—1
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Sample canonical correlations

if the covariance matrices are not known, we use the sample covariances

Cox Cry |1 [ xI'x. xTy. ]
Cox Cyy | m| Y/Xe YIY

e X. € R™P and Y, € R™*4 are centered data matrices for m samples of x, y

e first (sample) canonical variates w = o’ x and z = 8’y maximize
o adXlyp
p =
| Xcall || Y]

i.e., we find linear combinations of colums of X. and Y. with largest correlation

Applications to data fitting 5.19
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Dimension reduction

low-rank approximation of data matrix can improve efficiency or performance

A~AQ" whereAismxkandQisnxk

e we assume (without loss of generality) that O has orthonormal columns

e columns of Q are a basis for a k-dimensional subspace in feature space R”

T

e A is reduced data matrix; rows a; are reduced feature vectors:

ai%Qdi, i:I,...,m

we discuss three choices for A and Q

e truncated singular value decomposition
e truncated QR factorization

e k-means clustering

Applications to data fitting 5.21



Truncated singular value decomposition

truncate SVD A = ULV! = 3, oyu;v] after k terms: A ~ AQ” with

A = [0‘1u1 oouy - a'kuk]

QO = [vi vo -+ v ]

e AQ! is the best rank-k approximation of the data matrix A (see page 4.31)
3 k
AQ" = > g} ~ A
i=1

T

® rOWS dl.T of A are (coordinates of) projections of the rows a; onrange of Q

~ min{m,n}
A= Z O'iu,-vl-T Q=A0
i=1

when A is centered (17 A = 0), columns in Q are the principal components

Applications to data fitting 5.22



Interpretation

max—min properties of SVD give the columns of Q important optimality properties

First component: ¢, is the direction g that maximizes

1AglI® = (¢"an)* +- -+ (¢" am)”

a; direction ¢
\ Q{ai)QI

ANANRNN
NN
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Interpretation

Second component: g, = v; is the first right singular vector of
A — 4 O'll/tl\/{ =A(l - qlq{)

e rows of A1) are the rows of A projected on the orthogonal complement of ¢

e ¢, is the direction g that maximizes [|A(1¢||?

g

7

g
e

Applications to data fitting 5.24

direction ¢, direction g




Interpretation
Component i

q; = v; is the first singular vector of

i—1
AVY = A=Y gupt = AT - qiq] -+ - qin1g)_)
=1

e rows of AU~ are the rows of A projected on span{q1,...,qi—1}-

e g, is the direction g that maximizes

”A(i—l)q”2 _ (qTaY—l))2 s (qTaéi—D)z s (qTa,Si_l))z

Applications to data fitting 5.25



Truncated QR factorization

truncate the pivoted QR factorization of A” after k steps

e partial QR factorization after k steps (see page 1.26)

e[

0
BT], B'0=0

o' +

P a permutation, R is k X k and upper triangular, Q has orthonormal columns

e to define a rank-k reduced data matrix we drop B and use the first term

R or
garat

this does not have the optimality properties of the SVD but is cheaper to compute

Applications to data fitting 5.26



Reduced data matrix
A [ R
ra=| |~ R o
e A; =R Q": asubset of k examples from the original data matrix A

e the k-dimensional reduced feature subspace is

range(Q) = range(QR;) = range(A{)
reduced subspace is spanned by the feature vectors in A

e the rows of Rg O are the rows of A, projected on range(Q):

A,00" = (RS0 + BH 00" = R1Q!

Applications to data fitting 5.27



Interpretation

we use the pivoting rule of page 1.26

First component: ¢, is direction of largest row in A

AN . .
\ direction
. \ q1
\ \
X \ \
. \ \
\\ \ A\
o U\ \
VAR N\
I NV \\
7\\\ \& \\ \\ °
L} \ N\ \\\ \ ) .
\ NN
\. « AN\ A
\ o\ \ e \\ > \ N\
N\ WO NN
\ \ O\« \ P NN \
\ AR\ N\ RN
| \ L\ AR N\ - \N I
\ N\ \ N\ \ ) \
A\ \\ DN \\\ \\\\ \ xb
\\ \\ \\\ \\h \h\ \\
\\ \ N\ o\ \
e \ \ T \ \
\. \ S \\ \ e \
\\ \ \. . . \\
\\ \ e \\ \l
\ \ \
e |
a; with max. norm
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Interpretation

Second component: g, is direction of largest row of A1) = A(I - ¢147)

| e
- direction
/// q 1
/} s
////
e
o d
=
e
- - ///.
- . o o e -
S - / /
o -
/ s ;/ - /// -
< _ _ /
- X T 2 _ »
[ 4 X - /////
s
P A P
/ }5/ ° //
// - 4/ - =
e pd e = y ]
e / = =
// /// /// P // g
| / | ot - ‘;' | yL)
P s /// P A ) e
'S ~ s AN ~ ’)
S - -~ AN e
~ -~ e . o
p X
7 o N\
P o Z X~
o // T N
' Z -
(/Z P // S /.
/// //// - e
s [ 4 /// 7
- / S
P (/ g
' L

Component i: g; is direction of largest

row of

AUD = AT - qigh) - (I - gim1gi-)”

Applications to data fitting
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k-means clustering

run k-means on the rows of A to cluster them in k& groups with representatives

bl, b2, cee bkERn

e this can be interpreted as a rank-k approximation of A:

A~ CB!,

C.. = I row i of Ais assigned to group j
‘71 0 otherwise

in other words, in CB! each row al.T is replaced by its group representative
e QR factorization B = QR gives an orthonormal basis for range(B)
e A = CR! is a possible choice of reduced data matrix

e alternatively, to improve approximation one computes A by minimizing
inT 12
1A -AQ"|IF
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Example: document analysis

a collection of documents is represented by a term—document matrix D

e ecach row corresponds to a word in a dictionary

e each column corresponds to a document

entries give frequencies of word in documents, usually weighted, for example, as
Dj; = fijlog(m/m;)

e fi;is frequency of term i in document j
e m is number of documents

e m; iS number of documents that contain term i
for consistency with the earlier notation, we define
A=D"

A is m X n (number of documents X number of words)
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Comparing documents and queries

Comparing documents: as measure of document similarity, we can use

T .
a; dj

laillllall

e a! and aJT. are the rows of A = D' corresponding to documents i and j

e this is called the cosine similarity: cosine of the angle beween a; and a;

Query matching: find the most relevant documents based on keywords in a query

e we treat the query as a simple document, represented by an n-vector x:
x; =1 ifterm j appears in the query, x; =0 otherwise

e we rank documents according to their cosine similiarity with x:

CZITX

i i=1,...,m
laillllx|l’ Y
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Dimension reduction

it is common to make a low-rank approximation of the term—document matrix

e if the truncated SVD is used, this is called /latent semantic indexing (LSI)

e LSl is early technique for search engines (anno 1990)

e cosine similarity of query vector x with ith row Qd; of reduced data matrix is
diTQTx diTQTx

1Qallllxll lla:lflx]]

e an alternative is to compute the angle between d; and Q' x:

diTQTx

la: e x|

Applications to data fitting 5.33
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Minimum-norm least squares solution

least squares problem with m x n matrix A and rank(A) = r (possibly r < n)
minimize ||Ax — b||?
e on page 1.42 we showed that the minimum-norm least squares solution is
£=A"D

e other (not minimum-norm) LS solutions are X + v for nonzero v € null(A)

if A has rank r and SVD A = Z;.’zl (f,-u,-vf, the formulas for AT and £ are

r r ulp

AT:Z—viuiT, )?zz "y,

i=1 9! i=1 i

(see page 4.14 for expresson of the pseudo-inverse)

Applications to data fitting

5.35



Estimating rank

a perturbation of a rank-deficient matrix will make all singular values nonzero

102 —
Example (10 x 10 matrix) ’ IR
100 | T 1
singular values suggest matrix is a , |
perturbation of a matrix with rank 6 102! |
1074 | 1
1076 | —t——

0 2 4 6 8 10
l
e the numerical rank is the number of singular values above a certain threshold

e good value of threshold is application-dependent

e truncating after numerical rank 7 removes influence of small singular values

Applications to data fitting 5.36
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Tikhonov regularization

least squares problem with quadratic regularization
minimize ||Ax — b||* + A||x]|?

e known as Tikhonov regularization or ridge regression
e weight A controls trade-off between two objectives ||Ax — b||* and ||x]|?
e regularization term can help avoid over-fitting

e equivalent to standard least squares problem with a stacked matrix:

2

minimize A b
var |F 7o
e for positive A, the regularized problem always has a unique solution
= ATA+ADTATD

Applications to data fitting 5.37



Exercise

regularized least squares problem with a column of ones in the coefficient matrix:

2

minimize H |1 A] [ ; ] —b|| +Alx|

e data matrix includes a constant feature 1 (parameter v is the offset or intercept)

e associated variable v is excluded from regularization term

show that the problem is equivalent to
minimize  ||Acx — bl|* + A|x||?

where A. is the centered data matrix

1 1
Ac= (I -=111A=A-—1(1"4)
m m
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Regularization path

suppose A has full SVD

min{m,n}
A=Uzv! = Z O'iu,-vl-T
i=1

substituting the SVD in the formula for x; shows the effect of A:

velsvl + an~lvsTuTh
= vl +an~WWlvsTuTy
= vEI's+aD'=TuTp
min{m,n} O'i(ulTb)

=y v,

2
i=1 g; + A

1= (ATA+AD'ATh

this expression is valid for any matrix shape and rank

Applications to data fitting
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Interpretation

min{m,n}

X1 =
l;: al.2+/l

i

vi(uin)

e positive A reduces (shrinks) all terms in the sum
e terms for small o; are suppressed more

e all terms with o; = 0 are removed

1/0',‘ 7
plot shows the weight function
o B 1/0-1 05/0’, B a
ocr+1 1+1/c?
versus A, for a term with o7 > 0 .
107 1072 10Y 10? 10*

A/ o?
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Truncated SVD as regularization

e suppose we determine numerical rank of A by comparing o; with threshold

T
[

e truncating SVD of A gives approximation A = 3.~ oju;v

e minimum-norm least squares solution for truncated matrix is (page 5.36)

. 1
Xtrunc = Z _Vi(ulrb)
o>t Ji
plot shows two weight functions /o ]
e Tikhonov regularization:
1/o;
5 , |
I+4/0; 0.5/c: |

e truncated SVD solution with 7 = V2

1/0‘,‘ O','>\//_l
0 O','S\//_l

O |
1074 1072 109 102 10%

Aot =1%oy
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Limitfor4 =0

Regularized least squares solution

min{m,n} o . r o .
Xy = ——vi(u; b) = vi(u; b
; 0'1.2+/ll(l ) ;o-f+/ll(’ )
e thelimitfor4 — 0 is 1
lim £, = > —v;(u! b)
A1—0 -1 Ji

e this is the minimum-norm solution of the unregularized problem (page 5.35)

Pseudo-inverse: this gives a new interpretation of the pseudo-inverse

ro1 min{m,n}

. 0]
AT = Z —v,-ul-T = lim Z l viuiT
1 Oi 1—0 i=1 O'l.2 + A

= lim (ATA +aD)~1AT

Applications to data fitting 5.42



Example

10 x 6 matrix with singular values

0'1210.66, 0'229.86, 0'327.11, 0'420.94, 0'520.27, 0'620.18

k=6
solid line is trade-off curve
o: solution £ with A = o7 2|
“%kzs
. truncate SVD after k terms = 2+
= |

|Ax —bl|

Applications to data fitting 5.43
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Total least squares

Least squares problem

minimize ||Ax — b]|?
e can be written as constrained least squares problem with variables x and e

minimize  ||e]|?
subjectto Ax=b+e

e ¢ is the smallest adjustment to b that makes the equation Ax = b + e solvable

Total least squares (TLS) problem

minimize  ||E||% + [le]|?
subjectto (A+E)x=b+e

e variables are n-vector x, m-vector e, and m x n matrix E (where A is m X n)
e F and e are the smallest adjustments to A, b that make the equation solvable

e climinating e gives a nonlinear LS problem: minimize || E||% + ||(A + E)x — b||?

Applications to data fitting 5.44



TLS solution via singular value decomposition

minimize  ||E||% + [le]|?
subjectto (A+E)x=b+e

we assume m > n+ 1 and oyin(A) > oin(C) > 0 where C = A —b]

e compute an SVD of the m x (n + 1) matrix C:

n+l

C = [A —b] :ZO'iu,-viT
i=1

e partition the right singular vector v,,,| of C as

vn+1:[2}] withw e R"and z e R

e the solution of the TLS problem is

T
E = -0ppe1w’, € = On+1lUn+1%3, x=w/z

Applications to data fitting
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Proof:
minimize  ||E||% + [le]|?

subjectto [A+E —(b+e)] h] =0

e the matrix of rank n closest to C and its difference with C are
- T T
i=1

e v,.1 = (w, z) spans the nullspace of this matrix

e if z # 0 we can normalize v,,,; to get a solution x = w/z that satisfies
|[A+E —(b+e)| h] =0

e the assumption oyin(A) > oin (C) implies that z is nonzero: z = 0 contradicts

Omin(A) = ”I}I]l”ifll |Ay]| > omin(C) = [|[Aw — bz]||

Applications to data fitting 5.46



Extension

minimize  ||E||% + |le||®
subjectto Ax;+(Ay+E)xo =b+e

e variables are E, e, x1, x»
e we make the smallest adjustment to A, and b that makes the equation solvable
e no adjustment is made to A;

e eliminating e gives a nonlinear least squares problem in E, x1, x»:

minimize || E||% + ||A1x] + (A2 + E)xy — b|)?

e we will assume that A has linearly independent columns

Applications to data fitting 5.47



Solution
e assume A; has QR factorization A; = Q1R and Q = |Q; Q»] is orthogonal

e multiply the constraint in (4) on the left with Q-
T _ AT T _ AT
Rx1 +(Q1 A2+ E)x2 =0 b + ey, (Q5A2+ Ex)x2 =Q5b+e;  (5)

where E| = Q{E, E> = QgE, e] = Q{e, ey = Qge

e cost functionin (4) is
2 2 2 2 2 2
|E||7 + llell” = [[E1ll + | E2llz + lled]]” + [lez]

e first equation in (5) is solvable for any E, e, so E; =0, e; = 0 are optimal

e for the 2nd equation we solve the TLS problem in E», e, x»:

minimize || Ez||% + ||
subjectto  (Q3 Az + Ex)xp = Q1 + e

e after computing x, we find x; by solving Rx; = 01b — O Asx;
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Example: orthogonal distance regression
fit an affine function f(¢) = x; + xot to m points (a;, b;)

minimize  ||6al|? + ||6b])?
subjectto x;1+xy(a+d6a) =b+ b

e the variables are m-vectors o0a, 6b and scalars x, x»

e we fit the line by minimizing the sum of squared distances to the line
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