6. Geometric applications

- localization from multiple camera views
- orthogonal Procrustes problem and polar decomposition
- fitting affine sets to points
- linear discriminant analysis
Introduction

applications in this lecture use matrix methods to solve problems in geometry

- $m \times n$ matrix is interpreted as collection of m points in \mathbb{R}^n or n points in \mathbb{R}^m
- $m \times n$ matrices parametrize affine functions $f(x) = Ax + b$ from \mathbb{R}^n to \mathbb{R}^m
- $m \times n$ matrices parametrize affine sets $\{x \mid Ax = b\}$ in \mathbb{R}^n
Multiple view geometry

- n objects at positions $x_j \in \mathbb{R}^3$, $j = 1, \ldots, n$, are viewed by l cameras
- $y_{ij} \in \mathbb{R}^2$ is the location of object j in the image acquired by camera i
- each camera is modeled as an affine mapping:

$$y_{ij} = P_i x_j + q_i, \quad i = 1, \ldots, l, \quad j = 1, \ldots, n$$

define a $2l \times n$ matrix with the observations y_{ij}:

$$Y = \begin{bmatrix}
y_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{l1} & y_{l2} & \cdots & y_{ln}
\end{bmatrix} = \begin{bmatrix}
P_1 & q_1 \\
P_2 & q_2 \\
\vdots & \vdots \\
P_l & q_l
\end{bmatrix} \begin{bmatrix}
x_1 & x_2 & \cdots & x_n
\end{bmatrix}$$

- 2nd equality assumes noise-free observations and perfectly affine cameras
- the goal is to estimate the positions x_j and the camera models P_i, q_i
Factorization algorithm

minimize Frobenius norm of error between model predictions and observations Y

$$\minimize \| PX + q1^T - Y \|^2_F$$

- P is $2l \times 3$ matrix and q is $2l$-vector with the l camera models:

$$P = \begin{bmatrix} P_1 \\ \vdots \\ P_l \end{bmatrix}, \quad q = \begin{bmatrix} q_1 \\ \vdots \\ q_l \end{bmatrix}$$

- variables are the $3 \times n$ position matrix $X = [x_1 \cdots x_n]$ and camera models P, q

- variable q can be eliminated: least squares estimate is $q = (1/n)(Y - PX)1$

- substituting expression for optimal q gives

$$\minimize \| PX_c - Y_c \|^2_F$$
subject to $X_c 1 = 0$

here $Y_c = Y(I - (1/n)11^T)$ and the variable is $X_c = X(I - (1/n)11^T)$
Factorization algorithm

\[\begin{align*}
\text{minimize} & \quad \|PX_c - Y_c\|_F^2 \\
\text{subject to} & \quad X_c1 = 0
\end{align*} \]

with variables \(P \) (a \(2l \times 3 \) matrix) and \(X_c \) (a \(3 \times 2n \) matrix)

- the solution follows from an SVD of \(Y_c \):

\[Y_c = \sum_{i=1}^{\min\{2l,n\}} \sigma_i u_i v_i^T \]

- (assuming \(\text{rank}(Y_c) \geq 3 \)) truncate SVD after 3 terms and define:

\[P = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \sigma_3 u_3 \end{bmatrix}, \quad X_c = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T \]

- vectors \(v_1, v_2, v_3 \) are in the row space of \(Y_c \), hence orthogonal to \(1 \), so \(X_c1 = 0 \)
- solution is not unique, since \(PX_c = (PT)(T^{-1}X_c) \) for any nonsingular \(T \)
- this ambiguity corresponds to the choice of coordinate system in \(\mathbb{R}^3 \)
References

 the original paper on the factorization method

 a more recent survey of the factorization method and extensions
Outline

• localization from multiple camera views

• **orthogonal Procrustes problem and polar decomposition**

• fitting affine sets to points

• linear discriminant analysis
Orthogonal Procrustes problem

given $m \times n$ matrices A, B, solve the optimization problem

$$\begin{align*}
\text{minimize} & \quad \|AX - B\|_F^2 \\
\text{subject to} & \quad X^T X = I
\end{align*}$$

(1)

the variable is an $n \times n$ matrix X

- a matrix least squares problem with constraint that X is orthogonal
- rows of B are approximated by orthogonal linear function applied to rows of A

Solution: $X = UV^T$ with U, V from an SVD of the $n \times n$ matrix $A^T B = U \Sigma V^T$
Solution of orthogonal Procrustes problem

- the problem is equivalent to maximizing \(\text{trace}(B^T AX) \) over orthogonal \(X \):

\[
\|AX - B\|_F^2 = \text{trace}((AX - B)(AX - B)^T) \\
= \text{trace}(AXX^TA^T) + \text{trace}(BB^T) - 2\text{trace}(AXB^T) \\
= \|A\|_F^2 + \|B\|_F^2 - 2\text{trace}(B^T AX)
\]

- compute \(n \times n \) SVD \(A^TB = U\Sigma V^T \) and make change of variables \(Y = U^T XV \):

\[
\text{maximize} \quad \text{trace}(\Sigma Y) = \sum_{i=1}^n \sigma_i Y_{ii} \\
\text{subject to} \quad Y^TY = I
\quad (2)
\]

- if \(Y \) is orthogonal, then \(|Y_{ii}| \leq 1 \) and \(\text{trace}(\Sigma Y) \leq \sum_{i=1}^n \sigma_i \):

\[
1 = (Y^TY)_{ii} = Y_{ii}^2 + \sum_{j\neq i} Y_{ji}^2 \geq Y_{ii}^2
\]

- hence \(Y = I \) is optimal for (2) and \(X = UYV^T = UV^T \) is optimal for (1)
Application

given two sets of points \(x_1, \ldots, x_m \) and \(y_1, \ldots, y_m \) in \(\mathbb{R}^n \), solve the problem

\[
\text{minimize} \quad \sum_{i=1}^{m} \|Qx_i + c - y_i\|^2
\]

subject to \(Q^T Q = I \)

- the variables are an \(n \times n \) matrix \(Q \) and \(n \)-vector \(c \)
- \(Q \) and \(c \) define a shape-preserving affine mapping \(f(x) = Qx + c \)
the problem is equivalent to an orthogonal Procrustes problem

- for given Q, optimal c is
 \[
 c = \frac{1}{m} \sum_{i=1}^{m} (y_i - Qx_i)
 \]

- substitute expression for optimal c in the cost function:
 \[
 \sum_{i=1}^{m} \|Qx_i + c - y_i\|^2 = \sum_{i=1}^{m} \|Q\tilde{x}_i - \tilde{y}_i\|^2 = \|Q\tilde{X} - \tilde{Y}\|^2_F
 \]

 where $\tilde{X} = [\tilde{x}_1 \cdots \tilde{x}_m]$, $\tilde{Y} = [\tilde{y}_1 \cdots \tilde{y}_m]$, and \tilde{x}_i, \tilde{y}_i are the centered points
 \[
 \tilde{x}_i = x_i - \frac{1}{m} \sum_{j=1}^{m} x_j, \quad \tilde{y}_i = y_i - \frac{1}{m} \sum_{j=1}^{m} y_j,
 \]

- optimal Q minimizes $\|Q\tilde{X} - \tilde{Y}\|^2_F = \|\tilde{X}^TQ^T - \tilde{Y}^T\|^2_F$ over orthogonal matrices

Geometric applications 6.10
Polar decomposition

every $m \times n$ matrix A with $m \geq n$ can be factorized as

$$A = QH$$

- Q is $m \times n$ with orthonormal columns ($Q^TQ = I$)
- H is $n \times n$, symmetric, and positive semidefinite
- called polar decomposition (after the polar representation of complex numbers)

Proof: from (reduced) SVD $A = U\Sigma V^T$

- U is $m \times n$ with orthonormal columns, Σ is $n \times n$, V is $n \times n$ and orthogonal
- write SVD in the form of the polar decomposition:

$$A = U\Sigma V^T = (UV^T)(V\Sigma V^T) = QH$$

where $Q = UV^T$ and $H = V\Sigma V^T$

- Q has orthonormal columns because $Q^TQ = VU^TUV^T = VV^T = I$
- H is symmetric, positive semidefinite, with eigenvalues $\sigma_1, \ldots, \sigma_n$
Orthogonal Procrustes problem

\[
\begin{align*}
\text{minimize} & \quad \|AX - B\|_F^2 \\
\text{subject to} & \quad X^TX = I
\end{align*}
\]

- \(A, B\) are matrices of the same dimensions
- \(X\) is square and constrained to be orthogonal
- from page 6.7, solution \(X\) is the Q-factor in polar decomposition \(A^TB = QH\)

Nearest matrix with orthonormal columns

\[
\begin{align*}
\text{minimize} & \quad \|X - B\|_F^2 \\
\text{subject to} & \quad X^TX = I
\end{align*}
\]

- \(B\) is an \(m \times n\) matrix with \(m \geq n\)
- \(X\) is \(m \times n\) and constrained to have orthonormal columns
- optimal \(X\) is Q-factor in polar decomposition of \(B\) (proof on next page)
Proof

- the problem is equivalent to maximizing \(\text{trace}(B^TX) \) subject to \(X^TX = I \):

\[
\|X - B\|_F^2 = \text{trace}(X^TX) + \text{trace}(B^TB) - 2 \text{trace}(B^TX)
\]
\[
= n + \|B\|_F^2 - 2 \text{trace}(B^TX)
\]

- consider full and reduced SVDs of \(B \)

\[
B = U \Sigma V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} V^T = U_1 \Sigma_1 V^T
\]

(where \(U \) is \(m \times m \) and \(U_1 \) is \(m \times n \))

- make change of variables \(Y = U^TXV \), where \(Y \) is \(m \times n \):

maximize \(\text{trace}(\Sigma^TY) = \sum_{i=1}^{n} \sigma_i Y_{ii} \)
subject to \(Y^TY = I \)

- optimal \(Y \) and \(X \) are

\[
Y = \begin{bmatrix} I \\ 0 \end{bmatrix}, \quad X = UYV^T = U_1 V^T
\]
Exercise

suppose A, B are $m \times n$ matrices that satisfy

$$AA^T = BB^T$$

we show that $B = AX$ for some orthogonal matrix X

• show that A and B have SVDs of the form

$$A = U\Sigma V_1^T, \quad B = U\Sigma V_2^T$$

(these are full SVDs, i.e., with U, V_1, V_2 square and orthogonal)

• show that $A^T B$ has a polar decomposition

$$A^T B = QH \quad \text{where} \quad Q = V_1 V_2^T \quad \text{and} \quad H = V_2 \Sigma^T \Sigma V_2^T$$

• show that $B = AX$ for $X = Q$
Outline

- localization from multiple camera views
- orthogonal Procrustes problem and polar decomposition
- fitting affine sets to points
- linear discriminant analysis
Affine set

a subset S of \mathbb{R}^n is affine if

$$\alpha x + \beta y \in S$$

for all vectors $x, y \in S$ and all scalars α, β with $\alpha + \beta = 1$

- affine combinations of elements of S are in S
- if $x \neq y$ are two points in S, then the entire line through x, y is in S

Examples

- a subspace \mathcal{V} is an affine set: if $x, y \in \mathcal{V}$ then $\alpha x + \beta y \in \mathcal{V}$ for all α, β
- subspace plus vector: $\{x + a \mid x \in \mathcal{V}\}$ where \mathcal{V} is a subspace and a a vector
- solution set of linear equation $\{x \mid Ax = b\}$
- the empty set is affine (but not a subspace)
Parallel subspace

suppose S is a nonempty affine set, x_0 is a point in S, and define

$$\mathcal{V} = \{x - x_0 \mid x \in S\}$$

- \mathcal{V} is a subspace: if $x \in \mathcal{V}$, $y \in \mathcal{V}$, then $x + x_0 \in S$, $y + x_0 \in S$, and

$$\alpha x + \beta y + x_0 = \alpha(x + x_0) + \beta(y + x_0) + (1 - \alpha - \beta)x_0 \in S \quad \text{for all } \alpha, \beta$$

(right-hand side is affine combination of 3 points $x + x_0$, $y + x_0$, and x_0 in S)

- \mathcal{V} does not depend on the choice of $x_0 \in S$: if $x + x_0 \in S$ and $y_0 \in S$, then

$$x + y_0 = (x + x_0) - x_0 + y_0 \in S$$

(right-hand side is affine combination of 3 points $x + x_0$, x_0, y_0 in S)

- the dimension of S is defined as the dimension of the parallel subspace \mathcal{V}
Range representation

every nonempty affine set \(S \subseteq \mathbb{R}^m \) can be represented as

\[
S = \{ Ax + b \mid x \in \mathbb{R}^n \}
\]

- \(b \) is any vector in \(S \)
- \(A \) is any matrix with range equal to the parallel subspace: \(S = \text{range}(A) + b \)
- \(\text{dim}(S) = \text{rank}(A) \)
Nullspace representation

every affine set $S \subseteq \mathbb{R}^n$ (including the empty set) can be represented as

$$S = \{ x \in \mathbb{R}^n \mid Ax = b \}$$

for a nonempty affine set S:

- $b = Ax_0$ where x_0 is any vector in S
- A is any matrix with nullspace equal to the parallel subspace: $S = \text{null}(A) + x_0$
- $\dim(S) = \text{rank}(A) - n$

the empty set is the solution set of an inconsistent equation (e.g., $A = 0, b \neq 0$)
Distance to affine set

suppose S is the affine set $S = \{y \mid Ay = b\}$

Projection: projection of x on S is the solution y of the “least-distance” problem

\[
\begin{align*}
\text{minimize} & \quad \|y - x\| \\
\text{subject to} & \quad Ay = b
\end{align*}
\]

- if A has linearly independent rows, $y = x + A^\dagger(b - Ax)$
- if A has orthonormal rows, $y = x + A^T(b - Ax)$

Distance: we denote the distance of x to S by $d(x, S)$

- if A has linearly independent rows, $d(x, S) = \|A^\dagger(Ax - b)\|$
- if A has orthonormal rows, $d(x, S) = \|Ax - b\|$
Least squares fit of affine set to points

fit an affine set S of specified dimension k to N points x_1, \ldots, x_N in \mathbb{R}^n:

$$\text{minimize } \sum_{i=1}^{N} d(x_i, S)^2$$

Example: $k = 1$, $N = 50$, $n = 2$
Least squares fit of affine set to points

use nullspace representation \(S = \{ x \mid Ax = b \} \), where \(A \) has orthonormal rows:

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{N} \|Ax_i - b\|^2 \\
\text{subject to} & \quad AA^T = I
\end{align*}
\]

the variables are the \(m \times n \) matrix \(A \) and \(m \)-vector \(b \), where \(m = n - k \)

Algorithm (assuming \(m \leq n \leq N \)):

- compute center \(\bar{x} = (1/N)(x_1 + \cdots + x_N) \)
- rows of optimal \(A \) are the last \(m \) left singular vectors of matrix of centered points \(X = [x_1 - \bar{x} \quad x_2 - \bar{x} \quad \cdots \quad x_N - \bar{x}] \)
- optimal \(b \) is \(b = A\bar{x} \)

we derive this solution on the next page
Least squares fit of affine set to points

- for given \(A \), the optimal \(b \) is the average \((1/N)A(x_1 + \cdots + x_N) = A\bar{x} \)
- eliminating \(b \) reduces the problem to an optimization over \(m \times n \) variable \(A \)

\[
\begin{align*}
\text{minimize} & \quad \|AX\|_F^2 \\
\text{subject to} & \quad AA^T = I
\end{align*}
\]

- denote singular values and left singular vectors of \(n \times N \) matrix \(X \) by

\[
\sigma_1 \geq \cdots \geq \sigma_n, \quad u_1, \ldots, u_n
\]

- from page 4.28, singular values \(\tau_1 \geq \cdots \geq \tau_m \) of the \(m \times N \) matrix \(AX \) satisfy

\[
\tau_1 \geq \sigma_{n-m+1}, \quad \tau_2 \geq \sigma_{n-m+2}, \quad \ldots, \quad \tau_{m-1} \geq \sigma_{n-1}, \quad \tau_m \geq \sigma_n
\]

all inequalities are equalities if \(A = \left[u_{n-m+1} \cdots u_n\right]^T \)

- this choice of \(A \) also minimizes

\[
\|AX\|_F^2 = \tau_1^2 + \cdots + \tau_m^2
\]

Geometric applications 6.22
k-means clustering with affine sets

Partition \(N \) points \(x_1, \ldots, x_N \) in \(k \) classes

- in the \(k \)-means algorithm, clusters are represented by representative vectors \(s_j \)
- the \(k \)-means algorithm is a heuristic for minimizing the clustering objective

\[
J_{\text{clust}} = \frac{1}{N} \sum_{i=1}^{N} \|x_i - s_{j_i}\|^2 \quad (j_i \text{ is the index of the cluster that point } i \text{ is assigned to})
\]

by alternating minimization over assignment and over representatives

As an extension, we can use affine sets as representatives

Geometric applications 6.23
k-means clustering with affine sets

- represent the k clusters by affine sets S_1, \ldots, S_k of specified dimension

- use the k-means alternating minimization heuristic to minimize the objective

\[
J_{\text{clust}} = \frac{1}{N} \sum_{i=1}^{N} d(x_i, S_{j_i})^2 \quad (j_i \text{ is the index of the cluster that point } i \text{ is assigned to})
\]

- to update partition we assign each point x_i to nearest representative

- to update each group representative S_j we fit affine set to points in group j

- standard k-means is a special case with affine sets of dimension zero
Example: iteration 1

we start with a random initial assignment

fit representatives to groups

update assignment

Geometric applications
Example: iteration 2

fit representatives to groups

update assignment
Example: iteration 3

fit representatives to groups
update assignment
Example: iteration 8

fit representatives to groups

update assignment

Geometric applications 6.28
Example: iteration 9

fit representatives to groups

update assignment
Example: iteration 10

fit representatives to groups

update assignment
Outline

- localization from multiple camera views
- orthogonal Procrustes problem and polar decomposition
- fitting affine sets to points
- linear discriminant analysis
Motivation

principal components are not necessarily good features for classification

- the two sets of points (large dots) are linearly separable
- their projections on the 1st principal component direction (small circles) are not
Classification problem

we are given a training set with examples of \(K \) classes

- \(C_k \): set of examples for class \(k \)
- \(N_k \): number of examples for class \(k \)
- \(C \): set of all training examples \(C = C_1 \cup \cdots \cup C_K \)
- \(N \): total number of training examples \(N = N_1 + \cdots + N_K \)

- \(\bar{x}_k \) denotes the mean for class \(k \), \(\bar{x} \) denotes the mean for the entire set:

\[
\bar{x}_k = \frac{1}{N_k} \sum_{x \in C_k} x, \quad \bar{x} = \frac{1}{N} \sum_{x \in C} x = \frac{1}{N} (N_1 \bar{x}_1 + \cdots + N_K \bar{x}_K)
\]

- \(S_k \) is the covariance matrix for class \(k \):

\[
S_k = \frac{1}{N_k} \sum_{x \in C_k} (x - \bar{x}_k)(x - \bar{x}_k)^T = \frac{1}{N_k} \sum_{x \in C_k} xx^T - \bar{x}_k\bar{x}_k^T
\]

- \(S \) is the covariance matrix for the entire set:

\[
S = \frac{1}{N} \sum_{x \in C} (x - \bar{x})(x - \bar{x})^T = \frac{1}{N} \sum_{x \in C} xx^T - \bar{x}\bar{x}^T
\]
Principal components

the principal component directions are the eigenvectors of the covariance matrix

\[S = \sum_{i=1}^{n} \lambda_i v_i v_i^T \]

- principal component directions can be defined recursively: \(v_k \) solves

\[
\begin{align*}
\text{maximize} & \quad x^T S x \\
\text{subject to} & \quad ||x|| = 1 \quad v_i^T x = 0 \quad \text{for } i = 1, \ldots, k - 1
\end{align*}
\]

- max–min characterization: the matrix of first \(k \) eigenvectors \([v_1 \cdots v_k]\) solves

\[
\begin{align*}
\text{maximize} & \quad \lambda_{\text{min}}(X^T S X) \\
\text{subject to} & \quad X^T X = I_k
\end{align*}
\]

PCA does not distinguish between variance within and between classes
Within-class and between-class covariance

the covariance of the entire set can be written as a sum of two terms

\[S = S_w + S_b \]

Within-class covariance

\[
S_w = \frac{1}{N} \sum_{k=1}^{K} \frac{N_k}{N} S_k = \frac{1}{N} \left(\sum_{x \in C} xx^T - \sum_{k=1}^{K} N_k \bar{x}_k \bar{x}_k^T \right)
\]

- \(S_w \) is the weighted average of the class covariance matrices \(S_k \)
- describes the variability of points within the same class

Between-class covariance

\[
S_b = \frac{1}{N} \sum_{k=1}^{K} N_k (\bar{x}_k - \bar{x})(\bar{x}_k - \bar{x})^T = \frac{1}{N} \sum_{k=1}^{K} N_k \bar{x}_k \bar{x}_k^T - \bar{x} \bar{x}^T
\]

- \(S_b \) is the covariance matrix of the class means (weighted by class size)
- describes the variability between classes

Geometric applications
Linear discriminant analysis (LDA)

- good directions for classification make $v^T S_b v$ large while keeping $v^T S_w v$ small
- instead of maximizing $(v^T S_v)/(v^T v)$ as in PCA, it is better to maximize

$$\frac{v^T S_b v}{v^T S_w v}$$

LDA directions: a sequence of vectors v_1, v_2, \ldots

- first direction v_1 maximizes $(x^T S_b x)/(x^T S_w x)$ or, equivalently, solves

$$\begin{align*}
\text{maximize} & \quad x^T S_b x \\
\text{subject to} & \quad x^T S_w x = 1
\end{align*}$$

- other directions are defined recursively: v_k is the solution x of

$$\begin{align*}
\text{maximize} & \quad x^T S_b x \\
\text{subject to} & \quad x^T S_w x = 1 \\
& \quad v_i^T S_w x = 0 \quad \text{for } i = 1, \ldots, k - 1
\end{align*}$$
Computation via eigendecomposition

the kth LDA direction v_k is the solution x of

$$\begin{align*}
\text{maximize} & \quad x^T S_b x \\
\text{subject to} & \quad x^T S_w x = 1 \\
& \quad v_i^T S_w x = 0 \quad \text{for } i = 1, \ldots, k - 1
\end{align*}$$

we assume S_w has full rank (is positive definite)

- compute Cholesky factorization $S_w = R^T R$
- make a change of variables $y = Rx$:

$$\begin{align*}
\text{maximize} & \quad y^T (R^{-T} S_b R^{-1}) y \\
\text{subject to} & \quad y^T y = 1 \\
& \quad v_i^T R^T y = 0 \quad \text{for } i = 1, \ldots, k - 1
\end{align*}$$

the vectors $w_k = R v_k$ are the eigenvectors of $R^{-T} S_b R^{-1}$
Generalized eigenvectors

Suppose A and B are symmetric, and B is positive definite.

- Nonzero x is a generalized eigenvector of A, B, with generalized eigenvalue λ, if
 \[Ax = \lambda Bx \]

- Via the Cholesky factorization $B = R^T R$ this can be written as
 \[(R^{-T} A R^{-1})(Rx) = \lambda (Rx) \]

- Generalized eigenvalues of A, B are eigenvalues of $R^{-T} A R^{-1}$
- x is a generalized eigenvector if and only if Rx is eigenvector of $R^{-T} A R^{-1}$

LDA directions are generalized eigenvectors of S_b, S_w
Number of LDA directions

the between-class covariance matrix has rank at most \(K - 1 \)

\[
S_b = \frac{1}{N} \sum_{k=1}^{K} N_k (\bar{x}_k - \bar{x})(\bar{x}_k - \bar{x})^T = \frac{1}{N} YY^T
\]

where \(Y \) is the \(n \times K \) matrix

\[
Y = \begin{bmatrix}
\sqrt{N_1} (\bar{x}_1 - \bar{x})^T \\
\vdots \\
\sqrt{N_K} (\bar{x}_K - \bar{x})^T
\end{bmatrix}
\]

the rank of \(Y \) is at most \(K - 1 \) because the rows of \(Y \) are linearly dependent:

\[
Y^T \begin{bmatrix}
\sqrt{N_1} \\
\vdots \\
\sqrt{N_K}
\end{bmatrix} = N_1\bar{x}_1 + N_2\bar{x}_2 + \cdots + N_K\bar{x}_K - (N_1 + \cdots + N_K)\bar{x} = 0
\]

• therefore \(R^{-T}S_bR^{-1} \) has at most \(K - 1 \) nonzero eigenvalues
• there are at most \(K - 1 \) LDA directions (other directions are in \(\text{null}(S_b) \))

Geometric applications
LDA for Boolean classification ($K = 2$)

in the Boolean case, $\bar{x} = (N_1\bar{x}_1 + N_2\bar{x}_2)/N$ and

$$S_b = \frac{N_1}{N} (\bar{x}_1 - \bar{x}) (\bar{x}_1 - \bar{x})^T + \frac{N_2}{N} (\bar{x}_2 - \bar{x}) (\bar{x}_2 - \bar{x})^T$$

$$= \frac{2N_1N_2}{N^2} (\bar{x}_1 - \bar{x}_2) (\bar{x}_1 - \bar{x}_2)^T$$

• the LDA direction v is defined as the solution x of

$$\text{maximize} \quad x^T S_b x$$

$$\text{subject to} \quad x^T S_w x = 1$$

• via the change of variable $y = Rx$, where $S_w = R^T R$, we find the solution

$$y = \frac{R^{-T}(\bar{x}_1 - \bar{x}_2)}{\|R^{-T}(\bar{x}_1 - \bar{x}_2)\|}, \quad v = R^{-1} y = \frac{S_w^{-1}(\bar{x}_1 - \bar{x}_2)}{((\bar{x}_1 - \bar{x}_2)^T S_w^{-1}(\bar{x}_1 - \bar{x}_2))^{1/2}}$$

the LDA direction is the direction of $S_w^{-1}(\bar{x}_1 - \bar{x}_2)$
the example of page 6.31

projections on LDA direction (small circles) are separable
Fisher’s Iris flower data set

- 50 examples of each of the three classes, 4 features
- first LDA direction separates the classes better than first PCA direction
- second LDA direction does not add much information
- eigenvalues of $R^{-T}S_bR^{-1}$ are (32.19, 0.29, 0, 0) (see page 6.36)
Reference

 discusses PCA and LDA for face recognition