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6. Geometric applications

• localization from multiple camera views

• orthogonal Procrustes problem and polar decomposition

• fitting affine sets to points

• linear discriminant analysis

6.1



Introduction

applications in this lecture use matrix methods to solve problems in geometry

• 𝑚 × 𝑛 matrix is interpreted as collection of 𝑚 points in R𝑛 or 𝑛 points in R𝑚

• 𝑚 × 𝑛 matrices parametrize affine functions 𝑓 (𝑥) = 𝐴𝑥 + 𝑏 from R𝑛 to R𝑚

• 𝑚 × 𝑛 matrices parametrize affine sets {𝑥 | 𝐴𝑥 = 𝑏} in R𝑛
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Multiple view geometry

• 𝑛 objects at positions 𝑥 𝑗 ∈ R3, 𝑗 = 1, . . . , 𝑛, are viewed by 𝑙 cameras

• 𝑦𝑖 𝑗 ∈ R2 is the location of object 𝑗 in the image acquired by camera 𝑖

• each camera is modeled as an affine mapping:

𝑦𝑖 𝑗 = 𝑃𝑖𝑥 𝑗 + 𝑞𝑖, 𝑖 = 1, . . . , 𝑙, 𝑗 = 1, . . . , 𝑛

define a 2𝑙 × 𝑛 matrix with the observations 𝑦𝑖 𝑗 :

𝑌 =


𝑦11 𝑦12 · · · 𝑦1𝑛
𝑦21 𝑦22 · · · 𝑦2𝑛
... ... ...
𝑦𝑙1 𝑦𝑙2 · · · 𝑦𝑙𝑛

 =

𝑃1 𝑞1
𝑃2 𝑞2
...
𝑃𝑙 𝑞𝑙


[
𝑥1 𝑥2 · · · 𝑥𝑛
1 1 · · · 1

]

• 2nd equality assumes noise-free observations and perfectly affine cameras

• the goal is to estimate the positions 𝑥 𝑗 and the camera models 𝑃𝑖, 𝑞𝑖
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Factorization algorithm

minimize Frobenius norm of error between model predictions and observations 𝑌

minimize ∥ 𝑃𝑋 + 𝑞1𝑇 − 𝑌 ∥2
𝐹

• 𝑃 is 2𝑙 × 3 matrix and 𝑞 is 2𝑙-vector with the 𝑙 camera models:

𝑃 =


𝑃1
...
𝑃𝑙

 , 𝑞 =


𝑞1
...
𝑞𝑙


• variables are the 3 × 𝑛 position matrix 𝑋 =

[
𝑥1 · · · 𝑥𝑛

]
and camera models 𝑃, 𝑞

• variable 𝑞 can be eliminated: least squares estimate is 𝑞 = (1/𝑛) (𝑌 − 𝑃𝑋)1
• substituting expression for optimal 𝑞 gives

minimize ∥𝑃𝑋c − 𝑌c∥2
𝐹

subject to 𝑋c1 = 0

here 𝑌𝑐 = 𝑌 (𝐼 − (1/𝑛)11𝑇) and the variable is 𝑋c = 𝑋 (𝐼 − (1/𝑛)11𝑇)
Geometric applications 6.4



Factorization algorithm

minimize ∥𝑃𝑋c − 𝑌c∥2
𝐹

subject to 𝑋c1 = 0

with variables 𝑃 (a 2𝑙 × 3 matrix) and 𝑋c (a 3 × 2𝑛 matrix)

• the solution follows from an SVD of 𝑌c:

𝑌c =
min{2𝑙,𝑛}∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖

• (assuming rank(𝑌c) ≥ 3) truncate SVD after 3 terms and define:

𝑃 =
[
𝜎1𝑢1 𝜎2𝑢2 𝜎3𝑢3

]
, 𝑋c =

[
𝑣1 𝑣2 𝑣3

]𝑇
• vectors 𝑣1, 𝑣2, 𝑣3 are in the row space of 𝑌c, hence orthogonal to 1, so 𝑋c1 = 0

• solution is not unique, since 𝑃𝑋c = (𝑃𝑇) (𝑇−1𝑋c) for any nonsingular 𝑇

• this ambiguity corresponds to the choice of coordinate system in R3
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Orthogonal Procrustes problem

given 𝑚 × 𝑛 matrices 𝐴, 𝐵, solve the optimization problem

minimize ∥𝐴𝑋 − 𝐵∥2
𝐹

subject to 𝑋𝑇𝑋 = 𝐼
(1)

the variable is an 𝑛 × 𝑛 matrix 𝑋

• a matrix least squares problem with constraint that 𝑋 is orthogonal

• rows of 𝐵 are approximated by orthogonal linear function applied to rows of 𝐴

Solution: 𝑋 = 𝑈𝑉𝑇 with 𝑈, 𝑉 from an SVD of the 𝑛 × 𝑛 matrix 𝐴𝑇𝐵 = 𝑈Σ𝑉𝑇
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Solution of orthogonal Procrustes problem

• the problem is equivalent to maximizing trace(𝐵𝑇𝐴𝑋) over orthogonal 𝑋 :

∥𝐴𝑋 − 𝐵∥2
𝐹 = trace((𝐴𝑋 − 𝐵) (𝐴𝑋 − 𝐵)𝑇)

= trace(𝐴𝑋𝑋𝑇𝐴𝑇) + trace(𝐵𝐵𝑇) − 2 trace(𝐴𝑋𝐵𝑇)
= ∥𝐴∥2

𝐹 + ∥𝐵∥2
𝐹 − 2 trace(𝐵𝑇𝐴𝑋)

• compute 𝑛 × 𝑛 SVD 𝐴𝑇𝐵 = 𝑈Σ𝑉𝑇 and make change of variables 𝑌 = 𝑈𝑇𝑋𝑉 :

maximize trace(Σ𝑌 ) = ∑𝑛
𝑖=1 𝜎𝑖𝑌𝑖𝑖

subject to 𝑌𝑇𝑌 = 𝐼
(2)

• if 𝑌 is orthogonal, then |𝑌𝑖𝑖 | ≤ 1 and trace(Σ𝑌 ) ≤ ∑𝑛
𝑖=1 𝜎𝑖:

1 = (𝑌𝑇𝑌 )𝑖𝑖 = 𝑌2
𝑖𝑖 +

∑︁
𝑗≠𝑖

𝑌2
𝑗𝑖 ≥ 𝑌2

𝑖𝑖

• hence 𝑌 = 𝐼 is optimal for (2) and 𝑋 = 𝑈𝑌𝑉𝑇 = 𝑈𝑉𝑇 is optimal for (1)
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Application

given two sets of points 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑚 in R𝑛, solve the problem

minimize
𝑚∑
𝑖=1

∥𝑄𝑥𝑖 + 𝑐 − 𝑦𝑖∥2

subject to 𝑄𝑇𝑄 = 𝐼

• the variables are an 𝑛 × 𝑛 matrix 𝑄 and 𝑛-vector 𝑐

• 𝑄 and 𝑐 define a shape-preserving affine mapping 𝑓 (𝑥) = 𝑄𝑥 + 𝑐
𝑥1

𝑥2 𝑥3

𝑥4 𝑥5

𝑄𝑥4 + 𝑐

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5
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Solution

the problem is equivalent to an orthogonal Procrustes problem

• for given 𝑄, optimal 𝑐 is

𝑐 =
1
𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 −𝑄𝑥𝑖)

• substitute expression for optimal 𝑐 in the cost function:

𝑚∑︁
𝑖=1

∥𝑄𝑥𝑖 + 𝑐 − 𝑦𝑖∥2 =
𝑚∑︁
𝑖=1

∥𝑄𝑥𝑖 − 𝑦̃𝑖∥2 = ∥𝑄𝑋̃ − 𝑌 ∥2
𝐹

where 𝑋̃ =
[
𝑥1 · · · 𝑥𝑚

]
, 𝑌 =

[
𝑦̃1 · · · 𝑦̃𝑚

]
, and 𝑥𝑖, 𝑦̃𝑖 are the centered points

𝑥𝑖 = 𝑥𝑖 − 1
𝑚

𝑚∑︁
𝑗=1

𝑥 𝑗 , 𝑦̃𝑖 = 𝑦𝑖 − 1
𝑚

𝑚∑︁
𝑗=1

𝑦 𝑗 ,

• optimal 𝑄 minimizes ∥𝑄𝑋̃ − 𝑌 ∥2
𝐹 = ∥ 𝑋̃𝑇𝑄𝑇 − 𝑌𝑇 ∥2

𝐹 over orthogonal matrices
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Polar decomposition

every 𝑚 × 𝑛 matrix 𝐴 with 𝑚 ≥ 𝑛 can be factorized as

𝐴 = 𝑄𝐻

• 𝑄 is 𝑚 × 𝑛 with orthonormal columns (𝑄𝑇𝑄 = 𝐼)

• 𝐻 is 𝑛 × 𝑛, symmetric, and positive semidefinite

• called polar decomposition (after the polar representation of complex numbers)

Proof: from (reduced) SVD 𝐴 = 𝑈Σ𝑉𝑇

• 𝑈 is 𝑚 × 𝑛 with orthonormal columns, Σ is 𝑛 × 𝑛, 𝑉 is 𝑛 × 𝑛 and orthogonal

• write SVD in the form of the polar decomposition:

𝐴 = 𝑈Σ𝑉𝑇 = (𝑈𝑉𝑇) (𝑉Σ𝑉𝑇) = 𝑄𝐻 where 𝑄 = 𝑈𝑉𝑇 and 𝐻 = 𝑉Σ𝑉𝑇

• 𝑄 has orthonormal columns because 𝑄𝑇𝑄 = 𝑉𝑈𝑇𝑈𝑉𝑇 = 𝑉𝑉𝑇 = 𝐼

• 𝐻 is symmetric, positive semidefinite, with eigenvalues 𝜎1, . . . , 𝜎𝑛

Geometric applications 6.11



Applications

Orthogonal Procrustes problem

minimize ∥𝐴𝑋 − 𝐵∥2
𝐹

subject to 𝑋𝑇𝑋 = 𝐼

• 𝐴, 𝐵 are matrices of the same dimensions

• 𝑋 is square and constrained to be orthogonal

• from page 6.7, solution 𝑋 is the Q-factor in polar decomposition 𝐴𝑇𝐵 = 𝑄𝐻

Nearest matrix with orthonormal columns

minimize ∥𝑋 − 𝐵∥2
𝐹

subject to 𝑋𝑇𝑋 = 𝐼

• 𝐵 is an 𝑚 × 𝑛 matrix with 𝑚 ≥ 𝑛
• 𝑋 is 𝑚 × 𝑛 and constrained to have orthonormal columns

• optimal 𝑋 is Q-factor in polar decomposition of 𝐵 (proof on next page)
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Proof
• the problem is equivalent to maximizing trace(𝐵𝑇𝑋) subject to 𝑋𝑇𝑋 = 𝐼:

∥𝑋 − 𝐵∥2
𝐹 = trace(𝑋𝑇𝑋) + trace(𝐵𝑇𝐵) − 2 trace(𝐵𝑇𝑋)

= 𝑛 + ∥𝐵∥2
𝐹 − 2 trace(𝐵𝑇𝑋)

• consider full and reduced SVDs of 𝐵

𝐵 = 𝑈Σ𝑉𝑇 =
[
𝑈1 𝑈2

] [ Σ1
0

]
𝑉𝑇 = 𝑈1Σ1𝑉

𝑇

(where 𝑈 is 𝑚 × 𝑚 and 𝑈1 is 𝑚 × 𝑛)

• make change of variables 𝑌 = 𝑈𝑇𝑋𝑉 , where 𝑌 is 𝑚 × 𝑛:

maximize trace(Σ𝑇𝑌 ) = ∑𝑛
𝑖=1 𝜎𝑖𝑌𝑖𝑖

subject to 𝑌𝑇𝑌 = 𝐼

• optimal 𝑌 and 𝑋 are

𝑌 =

[
𝐼
0

]
, 𝑋 = 𝑈𝑌𝑉𝑇 = 𝑈1𝑉

𝑇
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Exercise

suppose 𝐴, 𝐵 are 𝑚 × 𝑛 matrices that satisfy

𝐴𝐴𝑇 = 𝐵𝐵𝑇

we show that 𝐵 = 𝐴𝑋 for some orthogonal matrix 𝑋

• show that 𝐴 and 𝐵 have SVDs of the form

𝐴 = 𝑈Σ𝑉𝑇1 , 𝐵 = 𝑈Σ𝑉𝑇2

(these are full SVDs, i.e., with 𝑈, 𝑉1, 𝑉2 square and orthogonal)

• show that 𝐴𝑇𝐵 has a polar decomposition

𝐴𝑇𝐵 = 𝑄𝐻 where 𝑄 = 𝑉1𝑉
𝑇
2 and 𝐻 = 𝑉2Σ

𝑇Σ𝑉𝑇2

• show that 𝐵 = 𝐴𝑋 for 𝑋 = 𝑄
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Affine set

a subset S of R𝑛 is affine if
𝛼𝑥 + 𝛽𝑦 ∈ S

for all vectors 𝑥, 𝑦 ∈ S and all scalars 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

• affine combinations of elements of S are in S
• if 𝑥 ≠ 𝑦 are two points in S, then the entire line through 𝑥, 𝑦 is in S

Examples

• a subspace V is an affine set: if 𝑥, 𝑦 ∈ V then 𝛼𝑥 + 𝛽𝑦 ∈ V for all 𝛼, 𝛽

• subspace plus vector: {𝑥 + 𝑎 | 𝑥 ∈ V} where V is a subspace and 𝑎 a vector

• solution set of linear equation {𝑥 | 𝐴𝑥 = 𝑏}
• the empty set is affine (but not a subspace)
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Parallel subspace

suppose S is a nonempty affine set, 𝑥0 is a point in S, and define

V = {𝑥 − 𝑥0 | 𝑥 ∈ S}

• V is a subspace: if 𝑥 ∈ V, 𝑦 ∈ V, then 𝑥 + 𝑥0 ∈ S, 𝑦 + 𝑥0 ∈ S, and

𝛼𝑥 + 𝛽𝑦 + 𝑥0 = 𝛼(𝑥 + 𝑥0) + 𝛽(𝑦 + 𝑥0) + (1 − 𝛼 − 𝛽)𝑥0 ∈ S for all 𝛼, 𝛽

(right-hand side is affine combination of 3 points 𝑥 + 𝑥0, 𝑦 + 𝑥0, and 𝑥0 in S)

• V does not depend on the choice of 𝑥0 ∈ S: if 𝑥 + 𝑥0 ∈ S and 𝑦0 ∈ S, then

𝑥 + 𝑦0 = (𝑥 + 𝑥0) − 𝑥0 + 𝑦0 ∈ S

(right-hand side is affine combination of 3 points 𝑥 + 𝑥0, 𝑥0, 𝑦0 in S)

• the dimension of S is defined as the dimension of the parallel subspace V
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Range representation

every nonempty affine set S ⊆ R𝑚 can be represented as

S = {𝐴𝑥 + 𝑏 | 𝑥 ∈ R𝑛}

• 𝑏 is any vector in S
• 𝐴 is any matrix with range equal to the parallel subspace: S = range(𝐴) + 𝑏
• dim(S) = rank(𝐴)

Geometric applications 6.17



Nullspace representation

every affine set S ⊆ R𝑛 (including the empty set) can be represented as

S = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏}

for a nonempty affine set S:

• 𝑏 = 𝐴𝑥0 where 𝑥0 is any vector in S
• 𝐴 is any matrix with nullspace equal to the parallel subspace: S = null(𝐴) + 𝑥0

• dim(S) = rank(𝐴) − 𝑛

the empty set is the solution set of an inconsistent equation (e.g., 𝐴 = 0, 𝑏 ≠ 0)
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Distance to affine set

suppose S is the affine set S = {𝑦 | 𝐴𝑦 = 𝑏}

Projection: projection of 𝑥 on S is the solution 𝑦 of the “least-distance” problem

minimize ∥𝑦 − 𝑥∥
subject to 𝐴𝑦 = 𝑏

• if 𝐴 has linearly independent rows, 𝑦 = 𝑥 + 𝐴†(𝑏 − 𝐴𝑥)
• if 𝐴 has orthonormal rows, 𝑦 = 𝑥 + 𝐴𝑇 (𝑏 − 𝐴𝑥)

Distance: we denote the distance of 𝑥 to S by 𝑑 (𝑥,S)
• if 𝐴 has linearly independent rows, 𝑑 (𝑥,S) = ∥𝐴†(𝐴𝑥 − 𝑏)∥
• if 𝐴 has orthonormal rows, 𝑑 (𝑥,S) = ∥𝐴𝑥 − 𝑏∥
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Least squares fit of affine set to points

fit an affine set S of specified dimension 𝑘 to 𝑁 points 𝑥1, . . . , 𝑥𝑁 in R𝑛:

minimize
𝑁∑︁
𝑖=1

𝑑 (𝑥𝑖,S)2

Example: 𝑘 = 1, 𝑁 = 50, 𝑛 = 2

S

𝑥𝑖

𝑑 (𝑥𝑖,S)
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Least squares fit of affine set to points

use nullspace representation S = {𝑥 | 𝐴𝑥 = 𝑏}, where 𝐴 has orthonormal rows:

minimize
𝑁∑
𝑖=1

∥𝐴𝑥𝑖 − 𝑏∥2

subject to 𝐴𝐴𝑇 = 𝐼

the variables are the 𝑚 × 𝑛 matrix 𝐴 and 𝑚-vector 𝑏, where 𝑚 = 𝑛 − 𝑘

Algorithm (assuming 𝑚 ≤ 𝑛 ≤ 𝑁):

• compute center 𝑥 = (1/𝑁) (𝑥1 + · · · + 𝑥𝑁)
• rows of optimal 𝐴 are the last 𝑚 left singular vectors of matrix of centered points

𝑋 =
[
𝑥1 − 𝑥 𝑥2 − 𝑥 · · · 𝑥𝑁 − 𝑥]

• optimal 𝑏 is 𝑏 = 𝐴𝑥

we derive this solution on the next page
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Least squares fit of affine set to points

• for given 𝐴, the optimal 𝑏 is the average (1/𝑁)𝐴(𝑥1 + · · · + 𝑥𝑁) = 𝐴𝑥
• eliminating 𝑏 reduces the problem to an optimization over 𝑚 × 𝑛 variable 𝐴

minimize ∥𝐴𝑋 ∥2
𝐹

subject to 𝐴𝐴𝑇 = 𝐼

• denote singular values and left singular vectors of 𝑛 × 𝑁 matrix 𝑋 by

𝜎1 ≥ · · · ≥ 𝜎𝑛, 𝑢1, . . . , 𝑢𝑛

• from page 4.28, singular values 𝜏1 ≥ · · · ≥ 𝜏𝑚 of the 𝑚 × 𝑁 matrix 𝐴𝑋 satisfy

𝜏1 ≥ 𝜎𝑛−𝑚+1, 𝜏2 ≥ 𝜎𝑛−𝑚+2, . . . , 𝜏𝑚−1 ≥ 𝜎𝑛−1, 𝜏𝑚 ≥ 𝜎𝑛

all inequalities are equalities if 𝐴 =
[
𝑢𝑛−𝑚+1 · · · 𝑢𝑛

]𝑇
• this choice of 𝐴 also minimizes

∥𝐴𝑋 ∥2
𝐹 = 𝜏2

1 + · · · + 𝜏2
𝑚
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𝑘-means clustering with affine sets

partition 𝑁 points 𝑥1, . . . , 𝑥𝑁 in 𝑘 classes

• in the 𝑘-means algorithm, clusters are represented by representative vectors 𝑠 𝑗
• the 𝑘-means algorithm is a heuristic for minimizing the clustering objective

𝐽clust =
1
𝑁

𝑁∑︁
𝑖=1

∥𝑥𝑖−𝑠 𝑗𝑖∥2 ( 𝑗𝑖 is the index of the cluster that point 𝑖 is assigned to)

by alternating minimization over assignment and over representatives

as an extension, we can use affine sets as representatives
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𝑘-means clustering with affine sets

• represent the 𝑘 clusters by affine sets S1, . . . , S𝑘 of specified dimension

• use the 𝑘-means alternating minimization heuristic to minimize the objective

𝐽clust =
1
𝑁

𝑁∑︁
𝑖=1

𝑑 (𝑥𝑖,S 𝑗𝑖)2 ( 𝑗𝑖 is the index of the cluster that point 𝑖 is assigned to)

• to update partition we assign each point 𝑥𝑖 to nearest representative

• to update each group representative S 𝑗 we fit affine set to points in group 𝑗

• standard 𝑘-means is a special case with affine sets of dimension zero
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Example: iteration 1

we start with a random initial assignment

fit representatives to groups update assignment
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Example: iteration 2

fit representatives to groups update assignment
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Example: iteration 3

fit representatives to groups update assignment
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Example: iteration 8

fit representatives to groups update assignment
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Example: iteration 9

fit representatives to groups update assignment
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Example: iteration 10

fit representatives to groups update assignment
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Outline

• localization from multiple camera views

• orthogonal Procrustes problem and polar decomposition

• fitting affine sets to points

• linear discriminant analysis



Motivation

principal components are not necessarily good features for classification

1st principal
component

• the two sets of points (large dots) are linearly separable

• their projections on the 1st principal component direction (small circles) are not
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Classification problem

we are given a training set with examples of 𝐾 classes

C𝑘 : set of examples for class 𝑘
𝑁𝑘 : number of examples for class 𝑘
C: set of all training examples C = C1 ∪ · · · ∪ C𝐾
𝑁 : total number of training examples 𝑁 = 𝑁1 + · · · + 𝑁𝐾

• 𝑥𝑘 denotes the mean for class 𝑘 , 𝑥 denotes the mean for the entire set:

𝑥𝑘 =
1
𝑁𝑘

∑︁
𝑥∈C𝑘

𝑥, 𝑥 =
1
𝑁

∑︁
𝑥∈C

𝑥 =
1
𝑁
(𝑁1𝑥1 + · · · + 𝑁𝐾𝑥𝑘)

• 𝑆𝑘 is the covariance matrix for class 𝑘 :

𝑆𝑘 =
1
𝑁𝑘

∑︁
𝑥∈C𝑘

(𝑥 − 𝑥𝑘) (𝑥 − 𝑥𝑘)𝑇 =
1
𝑁𝑘

∑︁
𝑥∈C𝑘

𝑥𝑥𝑇 − 𝑥𝑘𝑥𝑇𝑘

• 𝑆 is the covariance matrix for the entire set:

𝑆 =
1
𝑁

∑︁
𝑥∈C

(𝑥 − 𝑥) (𝑥 − 𝑥)𝑇 =
1
𝑁

∑︁
𝑥∈C

𝑥𝑥𝑇 − 𝑥𝑥𝑇
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Principal components

the principal component directions are the eigenvectors of the covariance matrix

𝑆 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑣𝑖𝑣
𝑇
𝑖

• principal component directions can be defined recursively: 𝑣𝑘 solves

maximize 𝑥𝑇𝑆𝑥
subject to ∥𝑥∥ = 1

𝑣𝑇𝑖 𝑥 = 0 for 𝑖 = 1, . . . , 𝑘 − 1

• max–min characterization: the matrix of first 𝑘 eigenvectors
[
𝑣1 · · · 𝑣𝑘

]
solves

maximize 𝜆min(𝑋𝑇𝑆𝑋)
subject to 𝑋𝑇𝑋 = 𝐼𝑘

PCA does not distinguish between variance within and between classes
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Within-class and between-class covariance

the covariance of the entire set can be written as a sum of two terms

𝑆 = 𝑆w + 𝑆b

Within-class covariance

𝑆w =
𝐾∑︁
𝑘=1

𝑁𝑘
𝑁
𝑆𝑘 =

1
𝑁
(
∑︁
𝑥∈C

𝑥𝑥𝑇 −
𝐾∑︁
𝑘=1

𝑁𝑘𝑥𝑘𝑥
𝑇
𝑘 )

• 𝑆w is the weighted average of the class covariance matrices 𝑆𝑘
• describes the variability of points within the same class

Between-class covariance

𝑆b =
1
𝑁

𝐾∑︁
𝑘=1

𝑁𝑘 (𝑥𝑘 − 𝑥) (𝑥𝑘 − 𝑥)𝑇 =
1
𝑁

𝐾∑︁
𝑘=1

𝑁𝑘𝑥𝑘𝑥
𝑇
𝑘 − 𝑥𝑥𝑇

• 𝑆b is the covariance matrix of the class means (weighted by class size)

• describes the variability between classes
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Linear discriminant analysis (LDA)

• good directions for classification make 𝑣𝑇𝑆b𝑣 large while keeping 𝑣𝑇𝑆w𝑣 small

• instead of maximizing (𝑣𝑇𝑆𝑣)/(𝑣𝑇𝑣) as in PCA, it is better to maximize

𝑣𝑇𝑆b𝑣

𝑣𝑇𝑆w𝑣

LDA directions: a sequence of vectors 𝑣1, 𝑣2, . . .

• first direction 𝑣1 maximizes (𝑥𝑇𝑆b𝑥)/(𝑥𝑇𝑆w𝑥) or, equivalently, solves

maximize 𝑥𝑇𝑆b𝑥
subject to 𝑥𝑇𝑆w𝑥 = 1

• other directions are defined recursively: 𝑣𝑘 is the solution 𝑥 of

maximize 𝑥𝑇𝑆b𝑥
subject to 𝑥𝑇𝑆w𝑥 = 1

𝑣𝑇𝑖 𝑆w𝑥 = 0 for 𝑖 = 1, . . . , 𝑘 − 1
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Computation via eigendecomposition

the 𝑘 th LDA direction 𝑣𝑘 is the solution 𝑥 of

maximize 𝑥𝑇𝑆b𝑥
subject to 𝑥𝑇𝑆w𝑥 = 1

𝑣𝑇𝑖 𝑆w𝑥 = 0 for 𝑖 = 1, . . . , 𝑘 − 1

we assume 𝑆w has full rank (is positive definite)

• compute Cholesky factorization 𝑆w = 𝑅𝑇𝑅

• make a change of variables 𝑦 = 𝑅𝑥:

maximize 𝑦𝑇 (𝑅−𝑇𝑆b𝑅
−1)𝑦

subject to 𝑦𝑇 𝑦 = 1
𝑣𝑇𝑖 𝑅

𝑇 𝑦 = 0 for 𝑖 = 1, . . . , 𝑘 − 1

the vectors 𝑤𝑘 = 𝑅𝑣𝑘 are the eigenvectors of 𝑅−𝑇𝑆b𝑅
−1
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Generalized eigenvectors

suppose 𝐴 and 𝐵 are symmetric, and 𝐵 is positive definite

• nonzero 𝑥 is a generalized eigenvector of 𝐴, 𝐵, with generalized eigenvalue 𝜆, if

𝐴𝑥 = 𝜆𝐵𝑥

• via the Cholesky factorization 𝐵 = 𝑅𝑇𝑅 this can be written as

(𝑅−𝑇𝐴𝑅−1) (𝑅𝑥) = 𝜆(𝑅𝑥)

• generalized eigenvalues of 𝐴, 𝐵 are eigenvalues of 𝑅−𝑇𝐴𝑅−1

• 𝑥 is a generalized eigenvector if and only if 𝑅𝑥 is eigenvector of 𝑅−𝑇𝐴𝑅−1

LDA directions are generalized eigenvectors of 𝑆b, 𝑆w
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Number of LDA directions

the between-class covariance matrix has rank at most 𝐾 − 1

𝑆b =
1
𝑁

𝐾∑︁
𝑘=1

𝑁𝑘 (𝑥𝑘 − 𝑥) (𝑥𝑘 − 𝑥)𝑇 =
1
𝑁
𝑌𝑌𝑇

where 𝑌 is the 𝑛 × 𝐾 matrix

𝑌 =


√
𝑁1 (𝑥1 − 𝑥)𝑇

...√
𝑁𝐾 (𝑥𝐾 − 𝑥)𝑇


the rank of 𝑌 is at most 𝐾 − 1 because the rows of 𝑌 are linearly dependent:

𝑌𝑇

√
𝑁1
...√
𝑁𝐾

 = 𝑁1𝑥1 + 𝑁2𝑥2 + · · · + 𝑁𝐾𝑥𝐾 − (𝑁1 + · · · + 𝑁𝐾)𝑥 = 0

• therefore 𝑅−𝑇𝑆b𝑅
−1 has at most 𝐾 − 1 nonzero eigenvalues

• there are at most 𝐾 − 1 LDA directions (other directions are in null(𝑆b))
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LDA for Boolean classification (𝐾 = 2)

in the Boolean case, 𝑥 = (𝑁1𝑥1 + 𝑁2𝑥2)/𝑁 and

𝑆b =
𝑁1
𝑁

(𝑥1 − 𝑥) (𝑥1 − 𝑥)𝑇 +
𝑁2
𝑁

(𝑥2 − 𝑥) (𝑥2 − 𝑥)𝑇

=
2𝑁1𝑁2
𝑁2 (𝑥1 − 𝑥2) (𝑥1 − 𝑥2)𝑇

• the LDA direction 𝑣 is defined as the solution 𝑥 of

maximize 𝑥𝑇𝑆b𝑥
subject to 𝑥𝑇𝑆w𝑥 = 1

• via the change of variable 𝑦 = 𝑅𝑥, where 𝑆w = 𝑅𝑇𝑅, we find the solution

𝑦 =
𝑅−𝑇 (𝑥1 − 𝑥2)
∥𝑅−𝑇 (𝑥1 − 𝑥2)∥

, 𝑣 = 𝑅−1𝑦 =
𝑆−1

w (𝑥1 − 𝑥2)
((𝑥1 − 𝑥2)𝑇𝑆−1

w (𝑥1 − 𝑥2))1/2

the LDA direction is the direction of 𝑆−1
w (𝑥1 − 𝑥2)
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Example

the example of page 6.31

LDA direction

projections on LDA direction (small circles) are separable
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Fisher’s Iris flower data set

𝑣1

𝑣 2

First two principal components

Setosa
Versicolor
Virginica

𝑣1

𝑣 2

LDA components

• 50 examples of each of the three classes, 4 features

• first LDA direction separates the classes better than first PCA direction

• second LDA direction does not add much information

• eigenvalues of 𝑅−𝑇𝑆b𝑅
−1 are (32.19, 0.29, 0, 0) (see page 6.36)
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