L. Vandenberghe ECE133B (Spring 2023)

6. Geometric applications

e |ocalization from multiple camera views
e orthogonal Procrustes problem and polar decomposition
e fitting affine sets to points

e linear discriminant analysis
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Introduction

applications in this lecture use matrix methods to solve problems in geometry

e m X n matrix is interpreted as collection of m points in R" or n points in R™
e m X n matrices parametrize affine functions f(x) = Ax + b from R” to R”

e m X n matrices parametrize affine sets {x | Ax = b} in R"
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Multiple view geometry

e 1 Objects at positions x; € R3 j=1,...,n, are viewed by I cameras
® yj € R? is the location of object j in the image acquired by camera i

e each camera is modeled as an affine mapping:

yij:Pixj+qi, i=1,...,l, jzl,...,n

define a 2/ x n matrix with the observations y;;:

oy yi2 o oy | | Proar ]
yo| Y2t Y2 o ya | _ | P2oq2 | 1o x2 o Xn
: : : : I 1 1

Yy Y2 0 Ym | | Proqi |

e 2nd equality assumes noise-free observations and perfectly affine cameras

e the goal is to estimate the positions x; and the camera models P;, g;
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Factorization algorithm

minimize Frobenius norm of error between model predictions and observations Y

e Pis 2/ x 3 matrix and g is 2[/-vector with the / camera models:

minimize || PX +q1" - Y ||%

P
P = : , q =
..Pl..

-ql-

| 4l

e variables are the 3 X n position matrix X = [x1 fe xn] and camera models P, g

e variable ¢ can be eliminated: least squares estimate is ¢ = (1/n)(Y — PX)1

e substituting expression for optimal g gives

here Y, =Y (I — (1/n)11") and the variable is X. = X(I — (1/n)117)
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Factorization algorithm

minimize  ||PX. — Y|l
subjectto X.1=0

with variables P (a 2/ x 3 matrix) and X, (a 3 X 2n matrix)

e the solution follows from an SVD of Y.:

min{2/,n}

T

Y. = Z OiU;V;
i=1

e (assuming rank(Y;) > 3) truncate SVD after 3 terms and define:

P:[O'lul ooU2 03'43], XC:[Vl V2 V3]T

e vectors vi, vy, v3 are in the row space of Y, hence orthogonal to 1, so X;.1 =0
e solution is not unique, since PX. = (PT)(T~'X,) for any nonsingular T

e this ambiguity corresponds to the choice of coordinate system in R?
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Orthogonal Procrustes problem

given m X n matrices A, B, solve the optimization problem

minimize  ||AX — BJ|%
subjectto X'X =1

the variable is an n X n matrix X

e a maitrix least squares problem with constraint that X is orthogonal

e rows of B are approximated by orthogonal linear function applied to rows of A

Solution: X = UVT with U, V from an SVD of the n x n matrix A’B = UXV’!
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Solution of orthogonal Procrustes problem

e the problem is equivalent to maximizing trace(B! AX) over orthogonal X:

|IAX - B||% = trace((AX — B)(AX - B)")
= trace(AXX! A") + trace(BB') — 2 trace(AXB")
= ||A||% + ||B]|% — 2 trace(BT AX)

e compute n x n SVD A’ B = UZV! and make change of variables Y = U XV

maximize trace(XY) = ;.“:1 oiYii
subjectto Y'Y =1

e if Y is orthogonal, then |Y;;| < 1 and trace(XY) < X7 | oy

T 2 2 2
I=(Y)i=Y;+2,Y; >Y;
j#

e henceY = I is optimal for (2) and X = UYV! = UV is optimal for (1)
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Application
given two sets of points x1,...,x,; and yq, ..., y, in R, solve the problem
G 2
minimize X [|Ox; + ¢ — il
i=1
subjectto QTQ =1

e the variables are an n X n matrix Q and n-vector c
e (O and c define a shape-preserving affine mapping f(x) = Ox + ¢

X
| Y1

Y2

X2 X3 Ox4+c Y3
Yya

4 S Y5
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Solution

the problem is equivalent to an orthogonal Procrustes problem

e for given Q, optimal c is

1 m
c=— ;()’i - 0x;)

e substitute expression for optimal ¢ in the cost function:
S 2~ 2 > o2
Do I0xi+ ¢ = yill” = D II0% - Fill” = 10X - Y%
i=1 i=1
where X = [%; -+ &, ¥ = [J1 -+ Fm|, and &;, 3; are the centered points
1 & 1 &
Ti=xi—— D Xj,  Fi=yi—— D,V
m < m <

o optimal Q minimizes [|QX — ¥||Z = || X" Q" — YT||2 over orthogonal matrices
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Polar decomposition

every m X n matrix A with m > n can be factorized as
A=0H

e (O is m x n with orthonormal columns (Q1Q =1
e His n X n, symmetric, and positive semidefinite

e called polar decomposition (after the polar representation of complex numbers)

Proof: from (reduced) SVD A = UZV!
e U is m X n with orthonormal columns, X is n X n, V is n X n and orthogonal

e write SVD in the form of the polar decomposition:

A=Uzvl = wvhHwzvlY=0H whereQ=UVT and H =vzVT
e (O has orthonormal columns because Q70 = VUTUVT =vvT =]

e H is symmetric, positive semidefinite, with eigenvalues o7, ..., o,
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Applications

Orthogonal Procrustes problem

minimize  ||AX — B||%
subjectto X'X =1

e A, B are matrices of the same dimensions
e X is square and constrained to be orthogonal

e from page 6.7, solution X is the Q-factor in polar decomposition A’ B = QH

Nearest matrix with orthonormal columns

minimize  ||X — B||%
subjectto X'X =1

e Bisan m X n matrix withm > n
e X is m X n and constrained to have orthonormal columns

e optimal X is Q-factor in polar decomposition of B (proof on next page)
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Proof

e the problem is equivalent to maximizing trace(B! X) subjectto X' X = I

| X — B||12¢ = trace(X’ X) + trace(B' B) — 2 trace(B' X)
= n+|B||% - 2trace(B” X)

e consider full and reduced SVDs of B

2

B=Uzv' = U Uz]l 0

]vT = Uz v

(Wwhere U is m X m and U; is m X n)

e make change of variables Y = U' XV, where Y is m X n:

maximize trace(2'Y) = 37 07Y;
subjectto Y'Y =1

-

e optimal Y and X are

(I)], x =vuyvl =uy,v?!
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Exercise

suppose A, B are m X n matrices that satisfy
AAT = BB
we show that B = AX for some orthogonal matrix X
e show that A and B have SVDs of the form
A=UZV), B=UZV,)

(these are full SVDs, i.e., with U, V;, V» square and orthogonal)

e show that A” B has a polar decomposition
A"B=QH  where Q =V,V! and H = V,=T=V!

e showthat B=AX for X =0
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Affine set

a subset S of R" is affine if
ax+ By €S

for all vectors x,y € § and all scalars a, B witha + 5 =1

e affine combinations of elements of S are in S

e if x # y are two points in S, then the entire line through x, yisin S

Examples

e a subspace V is an affine set: if x,y € V then ax + By € V for all a, 8
e subspace plus vector: {x +a | x € V} where YV is a subspace and a a vector
e solution set of linear equation {x | Ax = b}

e the empty set is affine (but not a subspace)
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Parallel subspace

suppose S is a nonempty affine set, xq is a point in S, and define
V={x—-x9|x €S}
e Visasubspace:ifxeV,yeV,thenx+xgeS,y+xy€S, and
ax+PBy+xg=alx+x9)+B(y+xp)+(1l—a—-B)xpeS foralla,p
(right-hand side is affine combination of 3 points x + xg, y + xg9, and xg in S)
e V does not depend on the choice of xg € S: if x + xg € S and yg € S, then
x+yo=(x+x0)—x0+y0 €S
(right-hand side is affine combination of 3 points x + xq, xq, yo in S)

e the dimension of S is defined as the dimension of the parallel subspace V
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Range representation

every nonempty affine set S C R can be represented as
S={Ax+b|x eR"}

e b is any vectorin S
e A is any matrix with range equal to the parallel subspace: S =range(A) + b

e dim(S) =rank(A)
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Nullspace representation

every affine set S C R” (including the empty set) can be represented as
S={xeR"| Ax = b}

for a nonempty affine set S:

e b = Axg where xg is any vector in S
e A is any matrix with nullspace equal to the parallel subspace: S = null(A) + xg

e dim(S) =rank(A) —n

the empty set is the solution set of an inconsistent equation (e.g., A =0, b # 0)
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Distance to affine set
suppose S is the affine set S = {y | Ay = b}

Projection: projection of x on § is the solution y of the “least-distance” problem

minimize ||y — x||
subjectto Ay =b»b

e if A has linearly independent rows, y = x + AT(b — Ax)

e if A has orthonormal rows, y = x + AT (b — Ax)

Distance: we denote the distance of x to S by d(x,S)

e if A has linearly independent rows, d(x,S) = ||[AT(Ax — b)||

e if A has orthonormal rows, d(x,S) = ||Ax — b||
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Least squares fit of affine set to

fit an affine set S of specified dimension k to N points x1,

N
minimize d(x,-,S)z
i=1
Example: k=1, N=50,n=2
. . '.\..\. 5
X; 3. & C .. ° ©
Q Q ) .\.\ \ 5 > .
d(xi’S)
e
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Least squares fit of affine set to points

use nullspace representation S = {x | Ax = b}, where A has orthonormal rows:
N 2
minimize 3 ||Ax; — b]|
i=1
subjectto AAT =1
the variables are the m X n matrix A and m-vector b, where m =n — k
Algorithm (assuming m < n < N):

e compute center x = (1/N)(x| + -+ xp)

e rows of optimal A are the last m left singular vectors of matrix of centered points

X:[xl—i X —X - xN—)E]

e optimal b is b = Ax

we derive this solution on the next page
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Least squares fit of affine set to points

e for given A, the optimal b is the average (1/N)A(x; +---+xpy) = AX

e eliminating b reduces the problem to an optimization over m X n variable A

minimize  [|AX]|%
subjectto AAl =1

e denote singular values and left singular vectors of n X N matrix X by

o] = - 2 0Oy, Ul,...,Un

e from page 4.28, singular values 7; > --- > 1, of the m X N matrix AX satisfy

Tl 2 On—m+1- T 2 Op—m+2s ce e Tm—1 2 Op—1, Tm = Op

all inequalities are equalities if A = [un_m+1 un]T

e this choice of A also minimizes

2 2 2
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k-means clustering with affine sets

partition N points xi, ..., xy in k classes

e in the k-means algorithm, clusters are represented by representative vectors s;

e the k-means algorithm is a heuristic for minimizing the clustering objective

1 N
Jetust — N E ||x,-—sjl.||2 (ji is the index of the cluster that point i is assigned to)
i=1

by alternating minimization over assignment and over representatives

as an extension, we can use affine sets as representatives

o 093

° ...o e

¥ e,
° . ..

o 8 o

® o

o: ° ‘: .....v.....:.i:... L4
° °
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k-means clustering with affine sets

e represent the k clusters by affine sets Sy, ..., S; of specified dimension

e use the k-means alternating minimization heuristic to minimize the objective

JClust _ Z d(x;, S l)z (j; is the index of the cluster that point i is assigned to)

e to update partition we assign each point x; to nearest representative
e to update each group representative S; we fit affine set to points in group

e standard k-means is a special case with affine sets of dimension zero
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Example: iteration 1

we start with a random initial assignment

fit representatives to groups update assignment
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Example: iteration 2

fit representatives to groups update assignment
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Example: iteration 3

fit representatives to groups update assignment
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Example: iteration 8

fit representatives to groups update assignment
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Example: iteration 9

fit representatives to groups update assignment
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Example: iteration 10

fit representatives to groups update assignment
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Motivation

principal components are not necessarily good features for classification

1st principal
component 2 e

e the two sets of points (large dots) are linearly separable

e their projections on the 1st principal component direction (small circles) are not
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Classification problem

we are given a training set with examples of K classes

Cr: set of examples for class k

Ni: number of examples for class k

C: setof all training examplesC=C; U ---UCxg

N total number of training examples N = N +--- + Ng

e x; denotes the mean for class k, x denotes the mean for the entire set:

1
Xk=— >, x, X=— > x=—(NX +--+Ngky)
Nk x€Cy NxeC N

e S, is the covariance matrix for class k:
Z (x — %) (x —x) = — Z xx! = xkxk
xEC’k xeCk
e S is the covariance matrix for the entire set:
Z (x —%)(x —x0) = Z xx! —xx!

xEC’ xEC’
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Principal components

the principal component directions are the eigenvectors of the covariance matrix

n

T

S = Z /L'V,'Vl-
i=1

e principal component directions can be defined recursively: v solves

maximize x!Sx
subjectto ||x|| =1
vix=0 fori=1,..., k-1

i
e max—min characterization: the matrix of first k eigenvectors [v; - -- vi| solves

maximize Ay (X! SX)
subjectto X'X =1,

PCA does not distinguish between variance within and between classes
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Within-class and between-class covariance
the covariance of the entire set can be written as a sum of two terms
S=8w+Sp
Within-class covariance

K N K
kZ_:W =—(Zxx —;Nkfkfz)

xEC
e S, is the weighted average of the class covariance matrices S
e describes the variability of points within the same class
Between-class covariance
X R
Sp = ~ Z Ni(xp — %) (Fp — %) = ~ Z kakxk — XX
k=1 k=1

e Sy is the covariance matrix of the class means (weighted by class size)

e describes the variability between classes

Geometric applications 6.34



Linear discriminant analysis (LDA)

e good directions for classification make v’ Syv large while keeping v! Sy,v small

e instead of maximizing (v Sv)/(v'v) as in PCA, it is better to maximize

vTSbv
vIS,v

LDA directions: a sequence of vectors vy, vy, ...

e first direction v maximizes (x! Spx)/(xT Swx) or, equivalently, solves

maximize x!Syx
subjectto  x!Syx =1

e other directions are defined recursively: v; is the solution x of
maximize xTbe

subjectto  x!Syx =1
vISyx=0 fori=1,....,k—1
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Computation via eigendecomposition

the kth LDA direction v is the solution x of

maximize x! Spx

subjectto  x!Syx =1

viSyx=0 fori=1,....,k—1
we assume Sy, has full rank (is positive definite)
e compute Cholesky factorization Sy = R’ R
e make a change of variables y = Rx:
maximize y! ' (R7TSyR™1)y

subjectto y'y =1
vIRTy=0 fori=1,....,k-1

the vectors w; = Rvy are the eigenvectors of RIS, R

Geometric applications 6.36



Generalized eigenvectors

suppose A and B are symmetric, and B is positive definite

e nonzero x is a generalized eigenvector of A, B, with generalized eigenvalue A, if

Ax = ABx

e via the Cholesky factorization B = R! R this can be written as

(R"TAR™Y(Rx) = A(Rx)

e generalized eigenvalues of A, B are eigenvalues of R"TAR™!

e x is a generalized eigenvector if and only if Rx is eigenvector of R-TAR™!

LDA directions are generalized eigenvectors of Sy, Sw
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Number of LDA directions

the between-class covariance matrix has rank at most K — 1
L S NG - D) = BT = Lyy?
= — NG —x)(kg —X) = —
N i N

where Y is the n x K matrix

- VN (-0
Y = :
| VNk (Gx - %)
the rank of Y is at most K — 1 because the rows of Y are linearly dependent:
YN
y! : =NiX;+Noxr+---+Ngig— (Nj+---+Ng)x =0
L NK -

e therefore R-7S,R~! has at most K — 1 nonzero eigenvalues
e there are at most K — 1 LDA directions (other directions are in null(Sy))
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LDA for Boolean classification (K = 2)

in the Boolean case, x = (Njx; + N»Xx») /N and

N N
Sp = Wl(xl—X)@h—@“ﬁ(@—@(@—fﬂ
2N1N» N _
= ]\12 2(%) - %) (%) - %)

e the LDA direction v is defined as the solution x of
maximize x!Spx

subjectto  x'Syx =1

e via the change of variable y = Rx, where S, = R’ R, we find the solution

RT (% - %) o Sl (X1 — %)
Y TN R T (21 — VER Y= e e s a2
IR~ (X1 — X2)|| ((x1 = x)TSHH(x) —x2)) Y/

the LDA direction is the direction of S (X] — X,)
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Example

the example of page 6.31

LDA direction

) ¢ R ® W o °
° ¢ . .0.;:.$’..' ‘ ° ) ) N
° o o °e o °
o $'e 'o'.: o * e,
° )°&’ o ® *

projections on LDA direction (small circles) are separable
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First two principal components

Fisher’s Iris flower data set

LDA components

« Setosa . .
*Versicolor - . o
e Virginica | 4 e o o %°
.o: ° ...0 o. o . . . .: o. o2
... [ 11 .? ® P ® ° ¢ ° ° g.
Co,0 o'.“." .. ¢ o§~o o0 .ooh °.
o Ca e e ol Rz %
o:o. o o o.:. d . %“°° . oo’ \‘.
) i ::..° °.. o~:.. : .o v ° ’ .\..
.. o [ ] PY o @ ° ° ° [ ] o
° & * ° ¢ o of
° e ® o.. ® .
[ ] p o0 [ ]
V1 V1

e 50 examples of each of the three classes, 4 features

e first LDA direction separates the classes better than first PCA direction

e second LDA direction does not add much information

e eigenvalues of R-TS,R~! are (32.19, 0.29, 0, 0) (see page 6.36)
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Reference

e Peter N. Belhumeur, Joao P. Hespanha, David J. Kriegman, Eigenfaces vs.
Fisherfaces: recognition using class specific linear projection, IEEE
Transactions on Pattern Analysis and Machine Intelligence (1997).

discusses PCA and LDA for face recognition
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