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7. Spectral clustering

• Laplacian matrix

• graph partitioning

• spectral partitioning with two sets

• spectral clustering

7.1



Undirected graph

𝐺 = (𝑉, 𝐸)

• 𝑉 is a finite set of vertices; we will assume 𝑉 = {1, 2, . . . , 𝑛}

• 𝐸 ⊆ {{𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉} is the set of (undirected) edges

• two vertices 𝑖 and 𝑗 are adjacent if {𝑖, 𝑗} ∈ 𝐸

• the neighborhood N(𝑖) of vertex 𝑖 is the set of vertices adjacent to 𝑖

1

2 3

4

𝑉 = {1, 2, 3, 4}
𝐸 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}}

N (4) = {1, 3}

Spectral clustering 7.2



Edge weights

Weights: each edge {𝑖, 𝑗} has a positive weight 𝑊𝑖 𝑗 = 𝑊 𝑗𝑖

• if all the edge weights are one the graph is called unweighted

• we define 𝑊𝑖 𝑗 = 0 if 𝑖 and 𝑗 are not adjacent ({𝑖, 𝑗} is not an edge) or if 𝑖 = 𝑗

• the symmetric matrix 𝑊 with elements 𝑊𝑖 𝑗 is the (weighted) adjacency matrix

edge weights express strength of connection, association, similarity of vertices

Degree: the degree of a vertex is the sum of the weights of the incident edges

deg(𝑖) =
∑︁
𝑗∈N (𝑖)

𝑊𝑖 𝑗 =
𝑛∑︁
𝑗=1
𝑊𝑖 𝑗 = (𝑊1)𝑖

in the example on the previous page, deg(4) = 𝑊14 +𝑊34
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Graph Laplacian

Graph Laplacian: the symmetric 𝑛 × 𝑛 matrix

𝐿 = diag(𝑊1) −𝑊

=


deg(1) −𝑊12 · · · −𝑊1𝑛
−𝑊21 deg(2) · · · −𝑊2𝑛
... ... . . . ...

−𝑊𝑛1 −𝑊𝑛2 · · · deg(𝑛)


Normalized graph Laplacian: includes a symmetric scaling of rows and columns

𝐿n = diag(𝑊1)−1/2𝐿 diag(𝑊1)−1/2

normalized Laplacian has unit diagonal, off-diagonal elements

(𝐿n)𝑖 𝑗 =
−𝑊𝑖 𝑗√︁

deg(𝑖) deg( 𝑗)
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Laplacian as Gram matrix

the Laplacian can be written as a Gram matrix (page 2.17)

𝐿 = 𝐴 diag(𝑤)𝐴𝑇

• we number the edges 1 to 𝑚

• we make the graph directed by giving each edge an (arbitrary) orientation

• 𝐴 is the 𝑛 × 𝑚 incidence matrix of the directed graph

𝐴𝑖𝑘 =


−1 directed edge 𝑘 points from vertex 𝑖
1 directed edge 𝑘 points at vertex 𝑖
0 otherwise

• 𝑤 is the positive 𝑚-vector of edge weights (between adjacent vertices)

𝑤𝑘 = 𝑊𝑖 𝑗 if edge 𝑘 points from vertex 𝑗 to vertex 𝑖
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Example

1

2 3

4

1 54

2

3

𝐴 =


−1 −1 0 1 0

1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1



𝐴 diag(𝑤)𝐴𝑇 =


𝑤1 + 𝑤2 + 𝑤4 −𝑤1 −𝑤4 −𝑤2

−𝑤1 𝑤1 + 𝑤3 −𝑤3 0
−𝑤4 −𝑤3 𝑤3 + 𝑤4 + 𝑤5 −𝑤5
−𝑤2 0 −𝑤5 𝑤2 + 𝑤5


=


deg(1) −𝑊12 −𝑊13 −𝑊14
−𝑊21 deg(2) −𝑊23 −𝑊24
−𝑊31 −𝑊32 deg(3) −𝑊34
−𝑊41 −𝑊42 −𝑊43 deg(4)
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Laplacian quadratic form

𝑥𝑇𝐿𝑥 =
∑︁

{𝑖, 𝑗}∈𝐸
𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2

(see derivation on next page)

• 𝑥 is an 𝑛-vector, 𝑥𝑖 is some scalar quantity associated with vertex 𝑖

• 𝑥𝑇𝐿𝑥 is small if entries of 𝑥 at adjacent vertices are close to each other

• each edge appears once in this sum

• other equivalent expressions are

𝑥𝑇𝐿𝑥 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2 (𝑊𝑖 𝑗 = 0 if {𝑖, 𝑗} ∉ 𝐸)

=
1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2 (𝑊 is symmetric with zero diagonal)
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the formula for 𝑥𝑇𝐿𝑥 can be verified in several ways

• from the definition 𝐿 = diag(𝑊1) −𝑊 :

𝑥𝑇𝐿𝑥 =
𝑛∑︁
𝑖=1

(
𝑛∑︁
𝑗=1
𝑊𝑖 𝑗)𝑥2

𝑖 −
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑊𝑖 𝑗𝑥𝑖𝑥 𝑗

=
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑊𝑖 𝑗 (𝑥2

𝑖 − 𝑥𝑖𝑥 𝑗)

=
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖 𝑗 (𝑥2
𝑖 − 2𝑥𝑖𝑥 𝑗 + 𝑥2

𝑗 )

=
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2

• from the Gram matrix expression 𝐿 = 𝐴 diag(𝑤)𝐴𝑇 :

𝑥𝑇𝐿𝑥 =
𝑚∑︁
𝑘=1

𝑤𝑘 (𝐴𝑇𝑥)2𝑘 =
𝑚∑︁
𝑘=1

𝑤𝑘 (𝑥𝑖𝑘 − 𝑥 𝑗𝑘)2

if in the directed graph edge 𝑘 is oriented from vertex 𝑗𝑘 to 𝑖𝑘
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Matrix extension

suppose 𝑋 is an 𝑛 × 𝑝 matrix with rows 𝑥𝑇1 , . . . , 𝑥𝑇𝑛

trace(𝑋𝑇𝐿𝑋) =
∑︁

{𝑖, 𝑗}∈𝐸
𝑊𝑖 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥2

• here we associate a vector 𝑥𝑖 with vertex 𝑖

• trace(𝑋𝑇𝐿𝑋) is small if distances of vectors at adjacent vertices are small

• follows from formula for Laplacian quadratic form applied to the columns of 𝑋 :

trace(𝑋𝑇𝐿𝑋) =
𝑝∑︁
𝑘=1

(𝑋𝑒𝑘)𝑇𝐿 (𝑋𝑒𝑘) =
𝑝∑︁
𝑘=1

∑︁
{𝑖, 𝑗}∈𝐸

𝑊𝑖 𝑗 (𝑋𝑖𝑘 − 𝑋 𝑗 𝑘)2

• other expressions:

trace(𝑋𝑇𝐿𝑋) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑊𝑖 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥2

=
1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑊𝑖 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥2
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Rank and nullspace

the following properties were shown in lecture 2 and homework 1

• the graph Laplacian 𝐿 is positive semidefinite

• the rank of 𝐿 is 𝑛 minus the number of connected components in the graph

• if the graph is connected, the nullspace of 𝐿 is spanned by the 𝑛-vector 1

• if the graph has 𝑐 connected components, nullspace is span (𝑦1, . . . , 𝑦𝑐), where

(𝑦𝑘)𝑖 =
{

1 vertex 𝑖 is in connected component 𝑘
0 otherwise

Example

1

2

3
4

5

𝑛 = 5, rank(𝐿) = 3, null(𝐿) = span (


1
1
1
0
0


,


0
0
0
1
1


)
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Algebraic connectivity

consider eigendecomposition of weighted Laplacian:

𝐿 =
[
𝑞1 · · · 𝑞𝑛−1 𝑞𝑛

] 
𝜆1 · · · 0 0
... . . . ... ...
0 · · · 𝜆𝑛−1 0
0 · · · 0 𝜆𝑛



𝑞𝑇1...
𝑞𝑇𝑛−1
𝑞𝑇𝑛


• since 𝐿 is positive semidefinite, 𝜆1 ≥ · · · ≥ 𝜆𝑛−1 ≥ 𝜆𝑛 ≥ 0

• from page 7.10, 𝜆𝑛 = 0 with corresponding eigenvector 1 (define 𝑞𝑛 = 1/
√
𝑛)

• eigenvectors 𝑞1, . . . , 𝑞𝑛−1 span subspace of 𝑛-vectors orthogonal to 1

• eigenvalue 𝜆𝑛−1 is known as algebraic connectivity or Fiedler value of the graph

• from page 7.10, 𝜆𝑛−1 > 0 if graph is connected, 𝜆𝑛−1 = 0 if it is not connected
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Max–min characterization of algebraic connectivity

max–min characterization of 𝜆𝑛−1 (page 3.40):

𝜆𝑛−1 = max
𝑋𝑇𝑋=𝐼𝑛−1

𝜆min(𝑋𝑇𝐿𝑋)

= max
𝑋𝑇𝑋=𝐼𝑛−1

min
∥𝑦∥=1

𝑦𝑇 (𝑋𝑇𝐿𝑋)𝑦

= max
𝑢≠0

min
𝑢𝑇𝑥=0
∥𝑥∥=1

𝑥𝑇𝐿𝑥

• on lines 1 and 2, we take maximum over 𝑛 × (𝑛 − 1) matrices 𝑋

• equivalently, we maximize over (𝑛 − 1)-dimensional subspaces {𝑋𝑦 | 𝑦 ∈ R𝑛−1}
• on line 3, we maximize over (𝑛 − 1)-dimensional subspaces {𝑥 | 𝑢𝑇𝑥 = 0}
• maxima are achieved for 𝑋 =

[
𝑞1 · · · 𝑞𝑛−1

]
and for 𝑢 = 𝑞𝑛 = 1/

√
𝑛

hence,
𝜆𝑛−1 = min

1𝑇𝑥=0
∥𝑥∥=1

𝑥𝑇𝐿𝑥 = min
1𝑇𝑥=0
∥𝑥∥=1

∑︁
{𝑖, 𝑗}∈𝐸

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2
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Exercise

a graph is complete if all pairs of vertices are adjacent

• what is the (unweighted) Laplacian of the complete graph with 𝑛 vertices?

• what is the algebraic connectivity 𝜆𝑛−1?
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Outline

• Laplacian matrix

• graph partitioning

• spectral partitioning with two sets

• spectral clustering



Vertex partition

Vertex partition

• a vertex partition is a collection of nonempty subsets 𝑉1, . . . , 𝑉𝐾 of 𝑉 with

𝑉 = 𝑉1 ∪ · · · ∪𝑉𝐾 , 𝑉𝑖 ∩𝑉 𝑗 = ∅ for 𝑖 ≠ 𝑗

• a partition with two subsets 𝑉1 and 𝑉2 = 𝑉 \𝑉1 is called a cut

Value of a cut
cut(𝑉𝑘) =

∑︁
𝑖∈𝑉𝑘 , 𝑗∉𝑉𝑘

𝑊𝑖 𝑗

• sum of the weights of the edges connecting vertices in 𝑉𝑘 to vertices outside 𝑉𝑘

• with this notation, the total weight of edges between subsets of the partition is

1
2

𝐾∑︁
𝑘=1

cut(𝑉𝑘)
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Weight of a subgraph

• we give a positive weight 𝑑𝑖 to each vertex 𝑖

• the total weight of a subset 𝑉𝑘 in the partition is denoted by

size(𝑉𝑘) =
∑︁
𝑖∈𝑉𝑘

𝑑𝑖

• if 𝑑𝑖 = 1, then size(𝑉𝑘) is simply the number of vertices in 𝑉𝑘

• another common choice of vertex weight is the degree: 𝑑𝑖 = deg(𝑖)
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Example

1 2

4 6

5

3

7

1 2

4 6

5

3

7

vertex partition with three sets 𝑉1 = {1, 4, 5}, 𝑉2 = {2, 3}, 𝑉3 = {6, 7}

cut(𝑉1) = 𝑊12 +𝑊56

cut(𝑉2) = 𝑊12 +𝑊26 +𝑊36 +𝑊37

cut(𝑉3) = 𝑊56 +𝑊26 +𝑊36 +𝑊37

1
2

3∑︁
𝑘=1

cut(𝑉𝑘) = 𝑊12 +𝑊26 +𝑊36 +𝑊37 +𝑊56

size(𝑉1) = 𝑑1 + 𝑑4 + 𝑑5

size(𝑉2) = 𝑑2 + 𝑑3

size(𝑉3) = 𝑑6 + 𝑑7
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Graph partitioning as optimization problem

in a graph partitioning problem, one is typically interested in minimizing

1
2

𝐾∑︁
𝑘=1

cut(𝑉𝑘)

(total weight of edges between subsets 𝑉𝑘), with constraints on the sizes of 𝑉𝑘

Example: graph bisection

• partition vertices in two sets 𝑉1, 𝑉2 of equal size (for vertex weights 𝑑 = 1)

• a combinatorial optimization problem

minimize cut(𝑉1)
subject to size(𝑉1) = 𝑛/2

(assuming 𝑛 is even)
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Ratio cut and normalized cut objectives

a popular cost function for evaluating the quality of a partition 𝑉1, . . . , 𝑉𝑘 is

𝐾∑︁
𝑘=1

cut(𝑉𝑘)
size(𝑉𝑘)

• cut(𝑉𝑘) is the total weight of edges between 𝑉𝑘 and 𝑉 \𝑉𝑘
• dividing by size(𝑉𝑘) discourages using small sets 𝑉𝑘 in the partition

• with vertex weights 𝑑𝑖 = 1, this is called the ratio cut objective

• with vertex weights 𝑑𝑖 = deg(𝑖), it is called the normalized cut objective

Example: ratio cut objective for 𝐾 = 2

cut(𝑉1)
size(𝑉1)

+ cut(𝑉2)
size(𝑉2)

= cut(𝑉1) (
1

size(𝑉1)
+ 1
𝑛 − size(𝑉1)

)

=
𝑛 cut(𝑉1)

size(𝑉1) (𝑛 − size(𝑉1))

denominator encourages 𝑉1 and 𝑉2 of roughly equal size
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Spectral partitioning

• most graph partitioning problems are difficult combinatorial problems

• spectral clustering uses eigendecomposition to find approximate solutions

to illustrate the idea, we first discuss the graph bisection problem on page 7.17

minimize cut(𝑉1)
subject to size(𝑉1) = size(𝑉2)

• 𝑉1 and 𝑉2 = 𝑉 \𝑉1 are the two sets in the partitioning

• the objective is the total weight of the edges between 𝑉1 and 𝑉2

cut(𝑉1) = cut(𝑉2) =
∑︁

𝑖∈𝑉1, 𝑗∈𝑉2

𝑊𝑖 𝑗

• we use weights 𝑑 = 1: constraint is that 𝑉1, 𝑉2 have 𝑛/2 vertices

• we assume 𝑛 is even
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Matrix formulation of graph bisection

• represent membership in 𝑉1 by 𝑛-vector 𝑥 with 𝑥𝑖 ∈ {−1, 1}:

𝑉1 = {𝑖 ∈ {1, . . . , 𝑛} | 𝑥𝑖 = 1}, 𝑉2 = {𝑖 ∈ {1, . . . , 𝑛} | 𝑥𝑖 = −1}

• if 𝐿 is the weighted Laplacian,

cut(𝑉1) = cut(𝑉2) =
1
4

∑︁
{𝑖, 𝑗}∈𝐸

𝑊𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗)2 =
1
4
𝑥𝑇𝐿𝑥

• if 𝑑 is the vector of vertex weights,

size(𝑉1) − size(𝑉2) = 𝑑𝑇𝑥

with this notation, and taking 𝑑 = 1, graph bisection problem is

minimize 1
4𝑥
𝑇𝐿𝑥

subject to 1𝑇𝑥 = 0
𝑥𝑖 ∈ {−1, +1}, 𝑖 = 1, . . . , 𝑛
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Spectral algorithm for graph bisection

minimize 1
4𝑥
𝑇𝐿𝑥

subject to 1𝑇𝑥 = 0
𝑥𝑖 ∈ {−1, +1}, 𝑖 = 1, . . . , 𝑛

(1)

• the second constraint makes the problem difficult

• to simplify the problem we replace it with an easier constraint

• the simpler problem is called a relaxation of the difficult problem

Relaxed problem
minimize 1

4𝑥
𝑇𝐿𝑥

subject to 1𝑇𝑥 = 0
𝑥𝑇𝑥 = 𝑛, 𝑖 = 1, . . . , 𝑛

(2)

• solution is 𝑥 =
√
𝑛𝑞𝑛−1, where 𝑞𝑛−1 is eigenvector 𝑛 − 1 of 𝐿

• optimal value is (𝑛/4)𝜆𝑛−1, where 𝜆𝑛−1 is algebraic connectivity

• define 𝑉1 as the set of indices of the 𝑛/2 largest elements of 𝑥

• in general, this partition is suboptimal for (1)
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Example

1

2 3

4

5

6 7

8

• solution 𝑥 of relaxed problem (2)

𝑥1 𝑥2𝑥3𝑥4
0

𝑥5 𝑥6𝑥7 𝑥8

• optimal value of relaxed problem (2) is (𝑛/4)𝜆𝑛−1 = 1.97

• from the solution 𝑥, we decide to partition in sets

𝑉1 = {1, 2, 3, 4}, 𝑉2 = {5, 6, 7, 8}
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Indicator vector

Indicator vector

• an 𝑛-vector with elements 0 and 1

• indicator vector 𝑥 indicates membership of a subset 𝑆 ⊆ 𝑉 :

𝑥𝑖 =

{
1 𝑖 ∈ 𝑆
0 𝑖 ∉ 𝑆

Normalization

• we’ll call a positive multiple of an indicator vector a scaled indicator vector

• the scaling of a scaled indicator vector 𝑥 will be defined via a normalization

𝑥𝑇 diag(𝑑)𝑥 =
𝑛∑︁
𝑖=1

𝑑𝑖𝑥
2
𝑖 = 1

• with this normalization (and using notation size(𝑆) = ∑
𝑖∈𝑆 𝑑𝑖),

𝑥𝑖 =

{
1/
√︁

size(𝑆) 𝑖 ∈ 𝑆
0 𝑖 ∉ 𝑆

Spectral clustering 7.23



Indicator matrix

we represent a vertex partition by an 𝑛 × 𝐾 indicator matrix 𝑋 :

1. columns are scaled indicator vectors (defining 𝐾 subsets 𝑉1, . . . , 𝑉𝐾 of 𝑉)

2. columns are scaled so that nonzero in column 𝑘 is 1/
√︁

size(𝑉𝑘)

𝑋𝑖𝑘 =

{
1/
√︁

size(𝑉𝑘) 𝑖 ∈ 𝑉𝑘
0 otherwise

3. columns are mutually orthogonal (𝑉𝑖 ∩𝑉 𝑗 = ∅ for 𝑖 ≠ 𝑗 )

4. no row is zero (𝑉1 ∪ · · · ∪𝑉𝐾 = 𝑉)

if property 1 holds, properties 2 and 3 can be summarized as

𝑋𝑇 diag(𝑑)𝑋 = 𝐼
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Example

1 2

4 6

5

3

7

indicator matrix for this partition, with unit vertex weights 𝑑𝑖 = 1

𝑋 =



1/
√

3 0 0
0 1/

√
2 0

0 1/
√

2 0
1/
√

3 0 0
1/
√

3 0 0
0 0 1/

√
2

0 0 1/
√

2
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Clustering objective

suppose 𝑋 is an indicator matrix (satisfying the four properties on page 7.24)

• if 𝑥𝑇𝑖 and 𝑥𝑇𝑗 are two rows of 𝑋 , then

∥𝑥𝑖 − 𝑥 𝑗 ∥2 =


0 vertices 𝑖 and 𝑗 are in the same subset

1
size(𝑉𝑘)

+ 1
size(𝑉𝑙)

𝑖 ∈ 𝑉𝑘 , 𝑗 ∈ 𝑉𝑙, and 𝑘 ≠ 𝑙

• the clustering objective of page 7.18 can be written as trace(𝑋𝑇𝐿𝑋):

trace(𝑋𝑇𝐿𝑋) =
∑︁

{𝑖, 𝑗}∈𝐸
𝑊𝑖 𝑗 ∥𝑥𝑖 − 𝑥 𝑗 ∥2

=
𝐾∑︁
𝑘=1

∑︁
𝑖∈𝑉𝑘 , 𝑗∉𝑉𝑘

𝑊𝑖 𝑗

size(𝑉𝑘)

=
𝐾∑︁
𝑘=1

cut(𝑉𝑘)
size(𝑉𝑘)
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Optimal partition

to summarize, optimal partitions are solutions 𝑋 of the optimization problem

minimize trace(𝑋𝑇𝐿𝑋)
subject to 𝑋𝑇 diag(𝑑)𝑋 = 𝐼

columns of 𝑋 are scaled indicator vectors
𝑋 has no zero rows

• the 𝑛 × 𝐾 matrix 𝑋 is an indicator matrix of the partition

• the second constraint makes this a difficult combinatorial problem

• to relax the problem we omit the difficult constraints

• we solve the relaxation and round its solution to a suboptimal indicator matrix 𝑋
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Spectral clustering for ratio cut objective

first consider the relaxed problem with vertex weights 𝑑𝑖 = 1:

minimize trace(𝑋𝑇𝐿𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

• solution follows from eigendecomposition of Laplacian

𝐿 = 𝑄Λ𝑄𝑇 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖

• columns of optimal �̃� are last 𝐾 eigenvectors (for smallest 𝐾 eigenvalues):

𝑋 =
[
𝑞𝑛−𝐾+1 · · · 𝑞𝑛

]
• if the graph is connected, 1 is in the range of 𝑋 , so 𝑋 has no zero rows

optimal solution of relaxed problem is not necessarily a valid indicator matrix
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𝑘-means rounding

to find a valid partition 𝑉1, . . . , 𝑉𝐾 from the solution 𝑋 of the relaxed problem:

• apply the 𝑘-means algorithm (with 𝑘 = 𝐾) to the 𝑛 rows of 𝑋

• the result is a clustering of the rows in 𝐾 groups with representatives 𝑠1, . . . , 𝑠𝐾

• assign vertex 𝑖 to set 𝑉𝑘 if row 𝑖 of 𝑋 is assigned to the cluster of 𝑠𝑘
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Motivation for 𝑘-means rounding

the 𝑘-means rounding method may be justified as follows

• 𝑘-means applied to the rows of 𝑋 computes an approximate factorization

𝑋 ≈ �̃�𝑆

• �̃� is an 𝑛 × 𝐾 indicator matrix (elements in column 𝑘 are 0 and 1/
√︁

size(𝑉𝑘))

• 𝑆 is a 𝐾 × 𝐾 matrix; rows are scaled representatives
√︁

size(𝑉𝑘)𝑠𝑇𝑘
• since 𝑋𝑇𝑋 = �̃�𝑇 �̃� 𝐼, the matrix 𝑆 is approximately orthogonal:

𝐼 = 𝑋𝑇𝑋 ≈ 𝑆𝑇 �̃�𝑇 �̃�𝑆 = 𝑆𝑇𝑆

• therefore �̃� ≈ 𝑋𝑆𝑇 is an indicator matrix with clustering objective

trace( �̃�𝑇𝐿�̃�) ≈ trace(𝑆𝑋𝑇𝐿𝑋𝑆𝑇) ≈ trace(𝑋𝑇𝐿𝑋)

i.e., close to the optimal value of the relaxed optimization problem
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Example

1 2

4 6

5

3

7

suppose 𝑘-means applied to the rows of the solution 𝑋 of the relaxation gives

𝑋 ≈



1 0 0
0 1 0
0 1 0
1 0 0
1 0 0
0 0 1
0 0 1




𝑠𝑇1
𝑠𝑇2
𝑠𝑇3

 = �̃�𝑆, �̃� =



1/
√

3 0 0
0 1/

√
2 0

0 1/
√

2 0
1/
√

3 0 0
1/
√

3 0 0
0 0 1/

√
2

0 0 1/
√

2


, 𝑆 =


√

3𝑠𝑇1√
2𝑠𝑇2√
2𝑠𝑇3


we take the partition indicated by �̃� as approximate solution of partitioning problem
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Spectral clustering for normalized cut

the relaxed problem with vertex weights 𝑑𝑖 = deg(𝑖) is

minimize trace(𝑋𝑇𝐿𝑋)
subject to 𝑋𝑇 diag(𝑑)𝑋 = 𝐼

• solution follows from generalized eigendecomposition of 𝐿, diag(𝑑)

• solution is 𝑋 = diag(𝑑)−1/2𝑌 where 𝑌 is the solution of

minimize trace(𝑌𝑇𝐿n𝑌 )
subject to 𝑌𝑇𝑌 = 𝐼

and 𝐿n is the normalized Laplacian (page 7.4)

𝐿n = diag(𝑑)−1/2𝐿 diag(𝑑)−1/2

• columns of optimal 𝑌 are the last 𝐾 eigenvectors of 𝐿n

• we can use 𝑘-means to round solution 𝑋 of relaxation to valid indicator matrix
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Example

• participants in a study are asked to score 24 animals on a list of 764 properties1

• the result is a 764 × 24 table of scores from 0 to 4

bee donkey shark frog sparrow · · ·
is dangerous 2 0 4 0 0 · · ·
has a tail 0 4 2 1 2 · · ·
lives in the woods 3 0 0 2 3 · · ·
is beautiful 0 2 1 0 2 · · ·
... ... ... ... ... ...

• cosine similarities of columns give a semantic similarity between the 24 names

• we define a graph with 24 vertices and the cosine similarities as edge weights

1Liuzzi, A. G. et al., Cross-modal representation of spoken and written word meaning in left pars triangularis,
NeuroImage (2017).
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Spectral clustering with normalized ratio cut

• the figure shows the entries of the generalized eigenvectors 22 and 23 of 𝐿

• the six clusters are found by 𝑘-means with 𝐾 = 6

bee

dolphin

magpie

donkey

shark
lizard

chameleon
frog

cow

chickadee
blackbird

mosquito

sparrow
orca

horse

eel plaice
ray

salamander

sheep

stickleback

fly

whale

wasp

eigenvector 23

ei
ge

nv
ec

to
r2

2
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