
L. Vandenberghe ECE133B (Spring 2023)

8. Kernel methods

• motivation

• kernel formulations

• kernel functions

8.1

Linear-in-parameters model

Linear-in-parameters model (in the notation of 133A, lecture 9)

𝜃𝑇𝐹 (𝑥) = 𝜃1 𝑓1(𝑥) + 𝜃2 𝑓2(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

• 𝑥 is an independent variable, not necessarily a vector

• 𝐹 (𝑥) is a feature map: maps 𝑥 to a 𝑝-vector of features (possibly redundant)

𝐹 (𝑥) = (
𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑝 (𝑥)

)
• the function 𝜃𝑇𝐹 (𝑥) is linear in the parameters 𝜃

Training set: 𝑁 data points 𝑥 (1), . . . , 𝑥 (𝑁) define an 𝑁 × 𝑝 data matrix

𝐴 =

𝐹 (𝑥 (1))𝑇
𝐹 (𝑥 (2))𝑇

...

𝐹 (𝑥 (𝑁))𝑇

Kernel methods 8.2

Kernel methods

Kernel matrix
𝑄 = 𝐴𝐴𝑇

𝑄 is 𝑁 × 𝑁 and symmetric positive semidefinite with entries

𝑄𝑖 𝑗 = 𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥 (𝑗)), 𝑖, 𝑗 = 1, . . . , 𝑁

Kernel function
𝜅(𝑥, 𝑦) = 𝐹 (𝑥)𝑇𝐹 (𝑦)

in this notation, the entries of the kernel matrix are

𝑄𝑖 𝑗 = 𝜅(𝑥 (𝑖), 𝑥 (𝑗)), 𝑖, 𝑗 = 1, . . . , 𝑁

Kernel methods

• algorithms that use kernel matrix 𝑄 and function 𝜅(𝑥, 𝑦), avoid 𝐹 (𝑥), 𝐴, 𝐴𝑇𝐴

• of interest if 𝑁 ≪ 𝑝 (including extensions to infinite-dimensional feature maps)

Kernel methods 8.3

Polynomial kernel

𝜃𝑇𝐹 (𝑥) is a polynomial of degree 𝑑 or less in 𝑛 variables

• here we assume 𝑥 is an 𝑛-vector

• dimension of 𝐹 (𝑥) is extremely large unless 𝑛 or 𝑑 is small:

𝑝 =

(
𝑛 + 𝑑
𝑛

)
=
(𝑛 + 𝑑)!
𝑛! 𝑑!

• with appropriately scaled (or repeated) monomials as features in 𝐹 (𝑥),

𝜅(𝑥, 𝑦) = 𝐹 (𝑥)𝑇𝐹 (𝑦) = (1 + 𝑥𝑇 𝑦)𝑑

(see 133A, lecture 12)

Kernel methods 8.4

Model fitting by regularized least squares

an example of a kernel method was discussed in 133A, lecture 12

minimize ∥𝐴𝜃 − 𝑏∥2 + 𝜆∥𝜃∥2

• we fit a model 𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥) to data points 𝑥 (1), . . . , 𝑥 (𝑁), 𝑦(1), . . . , 𝑦(𝑁)

• 𝑏 is the 𝑁-vector with entries 𝑦(1), . . . , 𝑦(𝑁)

• second objective 𝜆∥𝜃∥2 is added to avoid over-fitting

• optimal solution is 𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥) where

𝜃 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑏

Kernel methods 8.5

Kernel method for regularized least squares fitting

via the “push-through” identity the solution 𝜃 can be written as

𝜃 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑏 = 𝐴𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)−1𝑏

• can be computed as 𝜃 = 𝐴𝑇 �̂� where

�̂� = (𝑄 + 𝜆𝐼)−1𝑏, 𝑄 = 𝐴𝐴𝑇 is the kernel matrix

• fitted model 𝜃𝑇𝐹 (𝑥) can be evaluated using �̂� and the kernel function:

𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥) = �̂�𝑇𝐴𝐹 (𝑥) = �̂�𝑇

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

=

𝑁∑︁
𝑖=1

�̂�𝑖𝜅(𝑥 (𝑖), 𝑥)

this method only requires kernel matrix 𝑄 and kernel function 𝜅, not 𝐴, 𝐹, or 𝐴𝑇𝐴
Kernel methods 8.6

Principal components

another example is principal component analysis of the 𝑁 × 𝑝 data matrix 𝐴

• compute the leading right singular vectors 𝑣1, . . . , 𝑣𝑘 of 𝐴:

𝐴 =

𝐹 (𝑥 (1))𝑇
𝐹 (𝑥 (2))𝑇

...

𝐹 (𝑥 (𝑁))𝑇

 =
rank(𝐴)∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• in feature space R𝑝, principal components are linear functions 𝑣𝑇𝑖 𝑦 of 𝑦 ∈ R𝑝

• evaluated at 𝑦 = 𝐹 (𝑥), principal components are nonlinear functions

𝑣𝑇1𝐹 (𝑥), 𝑣𝑇2𝐹 (𝑥), . . . , 𝑣𝑇𝑘𝐹 (𝑥)

• using 𝐴𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖 the principal components can be written as

1
𝜎1

𝑢𝑇1 𝐴𝐹 (𝑥),
1
𝜎2

𝑢𝑇2 𝐴𝐹 (𝑥), . . . ,
1
𝜎𝑘

𝑢𝑇𝑘 𝐴𝐹 (𝑥)

Kernel methods 8.7

Kernel PCA

• find leading singular values, left singular vectors of 𝐴 via eigendecomposition

𝐴𝐴𝑇 = 𝑄 =
rank(𝐴)∑︁
𝑖=1

𝜎2
𝑖 𝑢𝑖𝑢

𝑇
𝑖

• right singular vectors 𝑣𝑖 are given by

𝑣𝑖 =
1
𝜎𝑖

𝐴𝑇𝑢𝑖, 𝑖 = 1, . . . , rank(𝐴)

• p.c.’s can be computed from left singular vectors and kernel function:

𝑣𝑇𝑖 𝐹 (𝑥) =
1
𝜎𝑖
𝑢𝑇𝑖 𝐴𝐹 (𝑥) =

1
𝜎𝑖
𝑢𝑇𝑖

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

this method only requires kernel matrix 𝑄 and kernel function 𝜅, not 𝐴, 𝐹, or 𝐴𝑇𝐴
Kernel methods 8.8

Exercises

1. modify the method on page 8.6 to solve

minimize ∥𝐴𝜃 − 𝑏∥2 + 𝜆
𝑝∑︁
𝑖=2

𝜃2
𝑖 ,

assuming the elements in the first column of 𝐴 are all ones

2. principal component analysis is usually applied to the centered data matrix

𝐴c = (𝐼 − 1
𝑁

11𝑇)𝐴

what changes in the method on page 8.8 if we are interested in

𝑣𝑇1𝐹 (𝑥), 𝑣𝑇2𝐹 (𝑥), , . . . , 𝑣𝑇𝑘𝐹 (𝑥)

where 𝑣1, . . . , 𝑣𝑘 are leading right singular vectors of 𝐴c?

Kernel methods 8.9

Outline

• motivation

• kernel formulations

• kernel functions

A general class of model fitting problems

we consider optimization problems in which the variable 𝜃 enters in only two ways

1. terms in objective and constraints that depend on model predictions on data set

𝐴𝜃 =

𝐹 (𝑥 (1))𝑇𝜃

...

𝐹 (𝑥 (𝑁))𝑇𝜃

2. terms in objective that penalize ∥𝜃∥, or upper bounds on ∥𝜃∥ in the constraints

these properties imply that we can restrict 𝜃 to the row space of 𝐴

• 𝐴𝜃 only depends on component of 𝜃 in the row space of 𝐴

• adding a nonzero component from the nullspace of 𝐴 would only increase ∥𝜃∥

in machine learning, this is known as the representer theorem

Kernel methods 8.10

Examples

Regularized least squares

minimize ∥𝐴𝜃 − 𝑏∥2 + 𝜆∥𝜃∥2

Principal component analysis

• first right singular vector 𝑣1 of 𝐴 is solution of

maximize ∥𝐴𝜃∥
subject to ∥𝜃∥ ≤ 1

• 𝑖th right singular vector 𝑣𝑖, where 𝑖 ≤ rank(𝐴), is the solution of

maximize ∥𝐴𝜃∥
subject to 𝑣𝑇𝑗 𝜃 = 0, 𝑗 = 1, . . . , 𝑖 − 1

∥𝜃∥ ≤ 1

constraints 𝑣𝑇𝑗 𝜃 = 0 are equivalent to 𝑢𝑇𝑗 𝐴𝜃 = 0, since 𝜎𝑗𝑣 𝑗 = 𝐴𝑇𝑢 𝑗

Kernel methods 8.11

Factorization of kernel matrix

we discuss one approach to exploit the “representer theorem” on page 8.10

• denote by 𝑟 the rank of the kernel matrix: 𝑟 = rank(𝐴𝐴𝑇) = rank(𝐴)
• the kernel matrix 𝑄 = 𝐴𝐴𝑇 can be factored as

𝑄 = 𝐵𝐵𝑇

where 𝐵 is 𝑁 × 𝑟 with linearly independent columns

• the matrix 𝐶 = 𝐵†𝐴 has orthonormal columns and satisfies

𝐴 = 𝐵𝐶

(proof on next page)

• the rows of 𝐶 are an orthonormal basis for the row space of 𝐴

range(𝐶𝑇) = range(𝐴𝑇) = span(𝐹 (𝑥 (1)), . . . , 𝐹 (𝑥 (𝑁)))

Kernel methods 8.12

Proof: 𝐶 = 𝐵†𝐴 has orthonormal rows and satisfies 𝐴 = 𝐵𝐶

• the columns of 𝐵 are a basis for range(𝐴𝐴𝑇) = range(𝐴)
• the matrix 𝐵𝐵† projects on range(𝐴); in particular,

𝐵𝐶 = 𝐵𝐵†𝐴 = 𝐴

• 𝐶 has orthonormal rows because

𝐶𝐶𝑇 = 𝐵†𝐴𝐴𝑇 (𝐵†)𝑇 = 𝐵†𝐵𝐵𝑇 (𝐵†)𝑇 = 𝐼

Kernel methods 8.13

Reformulation of model fitting problem

every 𝜃 can be decomposed in components in the row space and nullspace of 𝐴:

𝜃 = 𝐶𝑇𝑤 + 𝑣, 𝐶𝑣 = 0

• the vector 𝐴𝜃 of model predictions only depends on 𝑤, and not on 𝑣:

𝐴𝜃 = (𝐵𝐶) (𝐶𝑇𝑤 + 𝑣) = 𝐵𝑤

• for given 𝑤, the Euclidean norm of 𝜃 is minimized by setting 𝑣 = 0:

∥𝜃∥2 = ∥𝐶𝑇𝑤∥2 + ∥𝑣∥2 = ∥𝑤∥2 + ∥𝑣∥2

therefore we can set 𝜃 = 𝐶𝑇𝑤 in any problem of the type described on page 8.10

Kernel methods 8.14

Change of variables

we make the substitution

𝜃 = 𝐶𝑇𝑤 = (𝐵†𝐴)𝑇𝑤

• 𝐴𝜃 is replaced by 𝐵𝑤

• ∥𝜃∥ is replaced by ∥𝑤∥
• the 𝑟-vector 𝑤 replaces the 𝑝-vector variable 𝜃 (a large reduction if 𝑁 ≪ 𝑝)

• the model function is linearly parametrized by the optimal solution �̂�:

𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥) = �̂�𝑇𝐵†𝐴𝐹 (𝑥) = �̂�𝑇𝐵†

𝜅(𝑥 (1), 𝑥)
𝜅(𝑥 (2), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

this formulation only requires 𝐵 (computed from 𝑄) and 𝜅, not 𝐴, 𝐴𝑇𝐴, 𝐹, or 𝐶

Kernel methods 8.15

Regularized least squares

minimize ∥𝐴𝜃 − 𝑏∥2 + 𝜆∥𝜃∥2

• variable 𝜃 is a 𝑝-vector

• solution 𝜃 parametrizes the fitted model 𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥)

Kernel method: solve reformulated problem

minimize ∥𝐵𝑤 − 𝑏∥2 + 𝜆∥𝑤∥2

• 𝑁 × 𝑟 matrix 𝐵 is full-rank factor of kernel matrix 𝑄 = 𝐵𝐵𝑇

• variable 𝑤 is an 𝑟-vector, where 𝑟 = rank(𝑄) ≤ 𝑁

• from solution �̂�, we obtain fitted model

𝑓 (𝑥) = �̂�𝑇𝐵†

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

Kernel methods 8.16

Approximation problems

model fitting with non-quadratic penalty function ℎ

minimize ℎ(𝐴𝜃 − 𝑏) + 𝜆∥𝜃∥2

Examples

ℎ(𝑢) = ∥𝑢∥1 or a smooth approximation

ℎ(𝑢) =
𝑁∑︁
𝑖=1

𝜙(𝑢𝑖)
−3 −2 −1 1 2 3

1

2

3

𝑧

𝜙(𝑧) = log(𝑒𝑧 + 𝑒−𝑧)

Kernel method

• solve problem in 𝑟-vector variable 𝑤 (for example, using Newton’s method)

minimize ℎ(𝐵𝑤 − 𝑏) + 𝜆∥𝑤∥2

• no assumptions are made about ℎ

Kernel methods 8.17

Nonlinear least squares example

another example from 133A (lecture 13)

minimize
𝑁∑︁
𝑖=1

(
𝜙(𝐹 (𝑥 (𝑖))𝑇𝜃) − 𝑦(𝑖)

)2
+ 𝜆∥𝜃∥2

• 𝑦(𝑖) ∈ {−1, 1} are labels for two classes in a Boolean classification problem

• 𝜙(𝑢) is sigmoidal function (a smooth approximation of sign(𝑢))

𝜙(𝑢) = 𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢 −3 −1 1 3

−1

1

𝑢

𝜙(𝑢)

Kernel method: solve the nonlinear least squares problem in 𝑟-vector variable 𝑤

minimize
𝑁∑︁
𝑖=1

(𝜙((𝐵𝑤)𝑖) − 𝑦(𝑖))2 + 𝜆∥𝑤∥2

Kernel methods 8.18

Boolean classification

the goal is to find a nonlinear decision function 𝜃𝑇𝐹 (𝑥) for a Boolean classifier:

𝑓 (𝑥) = 1 if 𝜃𝑇𝐹 (𝑥) > 0, 𝑓 (𝑥) = −1 if 𝜃𝑇𝐹 (𝑥) < 0

Maximum-margin classifier

• given 𝑁 examples 𝑥 (𝑖) with labels 𝑦(𝑖) ∈ {−1, 1}, find 𝜃 by solving

minimize ∥𝜃∥2

subject to 𝜃𝑇𝐹 (𝑥 (𝑖)) ≥ 1 if 𝑦(𝑖) = 1
𝜃𝑇𝐹 (𝑥 (𝑖)) ≤ −1 if 𝑦(𝑖) = −1

• in matrix–vector form, if 𝑑 = (𝑦(1), . . . , 𝑦(𝑁)) and 𝐴 has rows 𝐹 (𝑥 (𝑖))𝑇 ,

minimize ∥𝜃∥2

subject to diag(𝑑)𝐴𝜃 ≥ 1

this is a quadratic program

Kernel methods 8.19

Kernel formulation of maximum-margin classifier

solve a quadratic program in 𝑟-vector variable 𝑤:

minimize ∥𝑤∥2

subject to diag(𝑑)𝐵𝑤 ≥ 1

• 𝐵 is computed from a kernel matrix factorization 𝑄 = 𝐴𝐴𝑇 = 𝐵𝐵𝑇

• optimal solution �̂� determines the nonlinear decision function 𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥):

𝑓 (𝑥) = �̂�𝑇𝐵†

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

• Boolean classifier returns

𝑓 (𝑥) = 1 if 𝑓 (𝑥) > 0, 𝑓 (𝑥) = −1 if 𝑓 (𝑥) < 0

Kernel methods 8.20

Support vector machine classifier

a variation on the maximum-margin classifier: compute 𝜃 from

minimize
𝑁∑︁
𝑖=1

max
{
0, 1 − 𝑦(𝑖) (𝜃𝑇𝐹 (𝑥 (𝑖)))

}
+ 𝜆∥𝜃∥2

instead of imposing hard constraints

𝜃𝑇𝐹 (𝑥 (𝑖)) ≥ 1 if 𝑦(𝑖) = 1, 𝜃𝑇𝐹 (𝑥 (𝑖)) ≤ −1 if 𝑦(𝑖) = −1

we impose a penalty on misclassified points:

1

1
𝑢𝑖

max{0, 1 − 𝑢𝑖}

−1

1
𝑢𝑖

max{0, 1 + 𝑢𝑖}

Kernel methods 8.21

Kernel formulation of support vector machine classifier

first term in support vector machine objective is a function of 𝐴𝜃:

minimize
𝑁∑︁
𝑖=1

max{0, 1 − 𝑦(𝑖) (𝐴𝜃)𝑖} + 𝜆∥𝜃∥2

Kernel formulation

minimize
𝑁∑︁
𝑖=1

max{0, 1 − 𝑦(𝑖) (𝐵𝑤)𝑖} + 𝜆∥𝑤∥2

• 𝐵 is a full-rank factor of the kernel matrix 𝑄 = 𝐵𝐵𝑇

• variable 𝑤 is an 𝑟-vector

• from optimal �̂� we directly find the decision function

𝜃𝑇𝐹 (𝑥) = �̂�𝑇𝐵†

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

Kernel methods 8.22

Outline

• motivation

• kernel formulations

• kernel functions

Kernel property

Kernel function: we require two properties of a kernel function

1. symmetry: 𝜅(𝑥, 𝑦) = 𝜅(𝑦, 𝑥)
2. for every finite set of points 𝑥 (1), . . . , 𝑥 (𝑁), the 𝑁 × 𝑁 matrix 𝑄 with entries

𝑄𝑖 𝑗 = 𝜅(𝑥 (𝑖), 𝑥 (𝑗)), 𝑖, 𝑗 = 1, . . . , 𝑁

is positive semidefinite

Properties: suppose 𝜅1, 𝜅2 are kernel functions

• 𝜅(𝑥, 𝑦) = 𝛼1𝜅1(𝑥, 𝑦) + 𝛼2𝜅2(𝑥, 𝑦) is a kernel function, for all 𝛼1, 𝛼2 ≥ 0

• 𝜅(𝑥, 𝑦) = 𝜅1(𝑥, 𝑦)𝜅2(𝑥, 𝑦) is a kernel function (see homework 2)

Kernel methods 8.23

Examples

• polynomial kernel with degree 𝑑

𝜅(𝑥, 𝑦) = (1 + 𝑥𝑇 𝑦)𝑑

• more generally,
𝜅(𝑥, 𝑦) = 𝑞(𝑥𝑇 𝑦)

where 𝑞(𝑡) = 𝑐0 + 𝑐1𝑡 + · · · + 𝑐𝑛𝑡
𝑛 is a polynomial with nonnegative coefficients

• Gaussian kernel
𝜅(𝑥, 𝑦) = exp(−∥𝑥 − 𝑦∥2

2𝜎2)
where 𝜎 > 0

Kernel methods 8.24

From kernel to feature map

suppose 𝜅 is a function with the properties on page 8.23

• it can be shown that there exists a feature map 𝐹 such that

𝜅(𝑦, 𝑥) = ⟨𝐹 (𝑦), 𝐹 (𝑥)⟩ for all 𝑥, 𝑦

where ⟨·, ·⟩ denotes an inner product

• however, in general the feature map 𝐹 (𝑥) has infinite dimension

Finite-dimensional feature map

• for any given data set 𝑥 (1), . . . , 𝑥 (𝑁) we can construct a feature map 𝐹 such that

𝜅(𝑥 (𝑖), 𝑥) = 𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥) for all 𝑥 and for 𝑖 = 1, . . . , 𝑁

• 𝐹 (𝑥) can be chosen to have finite dimension 𝑟 = rank(𝑄)

Kernel methods 8.25

Constructing a finite-dimensional feature map

we are given a kernel function 𝜅 and 𝑁 points 𝑥 (1), . . . , 𝑥 (𝑁)

• construct the 𝑁 × 𝑁 kernel matrix 𝑄

𝑄𝑖 𝑗 = 𝜅(𝑥 (𝑖), 𝑥 (𝑗)), 𝑖, 𝑗 = 1, . . . , 𝑁

• factor 𝑄 as 𝑄 = 𝐵𝐵𝑇 with 𝐵 an 𝑁 × 𝑟 matrix and 𝑟 = rank(𝑄)

• define the 𝑟-dimensional feature map

𝐹 (𝑥) = 𝐵†

𝜅(𝑥 (1), 𝑥)
𝜅(𝑥 (2), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

on the next page we show that 𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥) = 𝜅(𝑥 (𝑖), 𝑥) for all 𝑥 and 𝑖 = 1, . . . , 𝑁

Kernel methods 8.26

Proof

• the vectors 𝐹 (𝑥 (1)), . . . , 𝐹 (𝑥 (𝑁)) are the transposes of the rows of 𝐵:

𝐹 (𝑥 (𝑖)) = 𝐵†

𝜅(𝑥 (1), 𝑥 (𝑖))

...

𝜅(𝑥 (𝑁), 𝑥 (𝑖))

 = 𝐵†𝑄𝑒𝑖 = 𝐵†(𝐵𝐵𝑇)𝑒𝑖 = 𝐵𝑇𝑒𝑖

• consider any 𝑥 and define 𝑑 =

𝜅(𝑥 (1), 𝑥)

...

𝜅(𝑥 (𝑁), 𝑥)

• by the kernel property the following matrix is positive semidefinite[

𝑄 𝑑
𝑑𝑇 𝜅(𝑥, 𝑥)

]
=

[
𝐵𝐵𝑇 𝑑
𝑑𝑇 𝜅(𝑥, 𝑥)

]
• this implies that 𝑑 ∈ range(𝐵), i.e., 𝐵𝐵†𝑑 = 𝑑, and therefore

𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥) = 𝑒𝑇𝑖 𝐵𝐵
†𝑑 = 𝑒𝑇𝑖 𝑑 = 𝜅(𝑥 (𝑖), 𝑥)

Kernel methods 8.27

References

• Bernhard Schölkopf and Alexander J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond (2002).

• John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis
(2004).

Kernel methods 8.28

https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.1017/CBO9780511809682

