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Linear-in-parameters model

Linear-in-parameters model (in the notation of 133A, lecture 9)
0"F(x) = 01f1(x) + 02f2(x) + - -+ + 0 f(x)

e x is an independent variable, not necessarily a vector

e [I'(x) is a feature map: maps x to a p-vector of features (possibly redundant)

F()C) = (fl(x)’ fZ(X)’ .o ’fp(x))

e the function 67 F(x) is linear in the parameters 6

Training set: N data points x(1), ..., x) define an N x p data matrix

_ F(x(l))T -
F(x(2))T

F(X(.N))T

Kernel methods 8.2



Kernel methods

Kernel matrix
0 = AAT

Q is N x N and symmetric positive semidefinite with entries

Qi = F(xNTF (W), i,j=1,...,N

Kernel function
k(x,y) = F(x)'F(y)

in this notation, the entries of the kernel matrix are

Qij — K(x(i),x(f)), i,j=1,...,N

Kernel methods
e algorithms that use kernel matrix Q and function «(x, y), avoid F(x), A, AT A

e oOf interest if N <« p (including extensions to infinite-dimensional feature maps)
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Polynomial kernel

6" F(x) is a polynomial of degree d or less in n variables

e here we assume x is an n-vector

e dimension of F(x) is extremely large unless n or d is small:

_(n+d):(n+d)!

B n n!d!

e with appropriately scaled (or repeated) monomials as features in F(x),

k(x,y) = F(x)TF(y) = (1 +x"y)?

(see 133A, lecture 12)
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Model fitting by regularized least squares

an example of a kernel method was discussed in 133A, lecture 12

minimize ||A6 — b||* + 1/|6]|?

e we fit a model F(x) = 6T F(x) to data points x(1), ..., x®) y(

e b is the N-vector with entries y(1, ..., y(V)
e second objective 1||0||? is added to avoid over-fitting
e optimal solution is f(x) = 67 F(x) where

O=(ATA+aD)~1ATD
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Kernel method for regularized least squares fitting
via the “push-through” identity the solution @ can be written as
O=ATA+aD'ATb = AT(AAT + 2D~ D
e can be computed as 6 = ATV where

W=(0+A)7 b, O = AAT is the kernel matrix

o fitted model 67 F(x) can be evaluated using #w and the kernel function:

[ k(xD,x) ]
f(x) = HATF(x) = WTAF(x) - wl .

_ k(x™) x) _

N .
= Z Wik(x(’),x)
i=1

this method only requires kernel matrix Q and kernel function «, not A, F', or AT A
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Principal components

another example is principal component analysis of the N x p data matrix A

e compute the leading right singular vectors vy, ..., v of A:
[ F(xHT 7
ONT rank(A)
A= F(X: ) = Z O'iuivl-T
Feyr |

e in feature space R”, principal components are linear functions vl.Ty of y e R?

e evaluated at y = F(x), principal components are nonlinear functions

V{F(x), ng(x), e ng(x)

e using A'u; = ov; the principal components can be written as

1 1 1
—u{AF(x), —ugAF(x), A —u{AF(x)
01 0?2 Ok
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Kernel PCA

e find leading singular values, left singular vectors of A via eigendecomposition

rank(A)
AAT = O = Z O'l-zu,-uiT
i=1

e right singular vectors v; are given by

1
V; = —ATui, i=1,...,rank(A)
o

e p.C.’'s can be computed from left singular vectors and kernel function:

1 N IRNEIO
vl-TF(x) = —uiTAF(x) = —u? ;
O-- O-. N)
: bl k(x) x) _

this method only requires kernel matrix Q and kernel function «, not A, F', or AT A
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Exercises

1. modify the method on page 8.6 to solve

p
minimize |40 — b||* + A > 67,
i=2

assuming the elements in the first column of A are all ones

2. principal component analysis is usually applied to the centered data matrix

1
Ac = (I - NIIT)A

what changes in the method on page 8.8 if we are interested in
viF(x), vaF(x), ..., viF(x)

where vy, ..., vy are leading right singular vectors of A.?
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A general class of model fitting problems

we consider optimization problems in which the variable 6 enters in only two ways

1. terms in objective and constraints that depend on model predictions on data set

[ F(x))Tg
Af = :

_ F(x™)Tg |

2. terms in objective that penalize ||6||, or upper bounds on ||8]| in the constraints

these properties imply that we can restrict 6 to the row space of A

e A0 only depends on component of 6 in the row space of A

e adding a nonzero component from the nullspace of A would only increase ||6]||

in machine learning, this is known as the representer theorem
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Examples
Regularized least squares

minimize ||A6 — b||2 + /l||0||2

Principal component analysis

e first right singular vector v of A is solution of

maximize |[|Ad||
subjectto [|6|| <1

e ith right singular vector v;, where i < rank(A), is the solution of

maximize ||A6||
subject to VJT.Q:O, j=1,...,i—-1
0| <1

constraints v 6 = 0 are equivalent to u Af = 0, since ojv; = A’ u;

Kernel methods 8.11



Factorization of kernel matrix

we discuss one approach to exploit the “representer theorem” on page 8.10

e denote by r the rank of the kernel matrix: r = rank(AA’) = rank(A)

e the kernel matrix Q = AA’ can be factored as
O = BB

where B is N X r with linearly independent columns

e the matrix C = B'A has orthonormal columns and satisfies
A = BC

(proof on next page)

e the rows of C are an orthonormal basis for the row space of A
range(CT) = range(AT) = span(F(x(l)), A F(x(N)))
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Proof- C = B'A has orthonormal rows and satisfies A = BC

e the columns of B are a basis for range(AA’) = range(A)

e the matrix BB' projects on range(A); in particular,

BC=BB'A=A

e (C has orthonormal rows because

ccl =B'AAT (BN = B'BBT (BN =1

Kernel methods
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Reformulation of model fitting problem

every 6 can be decomposed in components in the row space and nullspace of A:
9=Clw+ v, Cv=0

e the vector A8 of model predictions only depends on w, and not on v:
A6 = (BC)(CTw +v) = Bw

e for given w, the Euclidean norm of 6 is minimized by setting v = 0:

2 T 112 2 2 2
16117 = [[CTwll* + [[v[]* = [lwl]]* + V]

therefore we can set 8 = C!w in any problem of the type described on page 8.10
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Change of variables

we make the substitution
0=Clw=(B"ATw

e AQis replaced by Bw

e ||6]| is replaced by ||w||

e the r-vector w replaces the p-vector variable 6 (a large reduction if N <« p)
e the model function is linearly parametrized by the optimal solution w:

C k(x,x) ]

3 ) (2)
Fx) = 6TF(x) = WTBIAF(x) = BT | KO )

| k(xW™) x)

this formulation only requires B (computed from Q) and «, not A, ATA, F, or C
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Regularized least squares

minimize ||A6 — b||2 + /l||0||2

e variable 6 is a p-vector

e solution § parametrizes the fitted model f(x) = 67 F(x)

Kernel method: solve reformulated problem
minimize ||Bw — b||* + A||w||?

e N x r matrix B is full-rank factor of kernel matrix Q = BB
e variable w is an r-vector, where r = rank(Q) < N
e from solution w, we obtain fitted model

A . T- k(x, x)
f(x)=w'B :

_ k(x) x) |
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Approximation problems

model fitting with non-quadratic penalty function &

minimize h(A0 —b) + /l||9||2

¢(z) = log(e” +e™)

Examples
3 |
h(u) = ||u||; or a smooth approximation
2 |
N (|
h(u) = D ¢(u;)
— -
l -3 -2 -1 12 3

Kernel method

e solve problem in r-vector variable w (for example, using Newton’s method)
minimize h(Bw — b) + A||w]|?
e NoO assumptions are made about A
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Nonlinear least squares example

another example from 133A (lecture 13)

N . 2\ 2
minimize >, (#(F(x™)76) - y0)"+ a6
i=1

° y(i) e {—1, 1} are labels for two classes in a Boolean classification problem

e ¢(u) is sigmoidal function (a smooth approximation of sign(u))

¢(u)
1 -

e —e7H

¢(u)=—eu+e_u 3 /1 3 "

Kernel method: solve the nonlinear least squares problem in r-vector variable w

N
minimize > | (¢((Bw);) — y')? + A[|w]?
=1
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Boolean classification

the goal is to find a nonlinear decision function 6” F(x) for a Boolean classifier:

fx)=1 if6TF(x)>0, fx)=-1 if0TF(x)<0

Maximum-margin classifier
e given N examples x) with labels y(© € {-1, 1}, find @ by solving
minimize  ||0]?
subjectto OTF(x®D) > 1 ify® =1
oTF(xD) < -1 if y() =1

e in matrix—vector form, if d = (y1, ..., y™)) and A has rows F(x)7,

minimize  ||6]?
subjectto diag(d)A6 > 1

this is a quadratic program
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Kernel formulation of maximum-margin classifier

solve a quadratic program in r-vector variable w:

minimize  ||w]|?
subjectto diag(d)Bw > 1

e B is computed from a kernel matrix factorization Q = AA’ = BB

e optimal solution v determines the nonlinear decision function f(x) = 67 F(x):

i . T- k(xD, x)
f(x)=w'B ;

_ K(x(N),x) _

e Boolean classifier returns
fx)=1 if fx)>0,  Ffx)=-1 if f(x) <0
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Support vector machine classifier

a variation on the maximum-margin classifier: compute 6 from

N , :
minimize > max {0,1 - yO (6" F(xD))} + a]l0]1
i=1

instead of imposing hard constraints
OTFN)>1 ifyD =1, oTFGD)<-1 ify®d=-1

we impose a penalty on misclassified points:

max{0, 1 — u;} max{0, 1 + u;}

1 1
\ U; / uij
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Kernel formulation of support vector machine classifier

first term in support vector machine objective is a function of A6:

N
minimize max{0, 1 — y©(A8);} + 1/|0||?
i=1

Kernel formulation

N

minimize max{0, 1 — y(l)(Bw)i} + Al|w]|?
i=1

e B is a full-rank factor of the kernel matrix Q = BB

e variable w is an r-vector

e from optimal w we directly find the decision function

k(M x) ]
O0TF(x) =w! BT :

k(™ x)
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Kernel property

Kernel function: we require two properties of a kernel function
1. symmetry: «(x,y) = k(y, x)

2. for every finite set of points x(1, ..., x™) the N x N matrix Q with entries
Qij = K(x(i),x(j)), i,j=1,...,N

is positive semidefinite

Properties: suppose ki, k> are kernel functions

o k(x,y) =aik1(x,y) + arka(x,y) is a kernel function, for all a1, a2 > 0

o k(x,y) =k1(x,y)k2(x,y) is a kernel function (see homework 2)
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Examples

e polynomial kernel with degree d

k(x,y) = (1+x"y)?

e more generally,
T
k(x,y) =q(x"y)

where g(t) = co+ cit + - - - + c,t" is a polynomial with nonnegative coefficients

e (Gaussian kernel

e = yI1?
K(x,y) =exp(—
(¥,3) = exp(~=— )

where o > 0
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From kernel to feature map

suppose « is a function with the properties on page 8.23

e it can be shown that there exists a feature map F' such that

k(y,x) =(F(y),F(x)) forallx,y
where (-, -) denotes an inner product

e however, in general the feature map F(x) has infinite dimension

Finite-dimensional feature map

e for any given data set x(1), ..., x™) we can construct a feature map F such that
k(xD x) = Fx)ITF(x) forallxandfori=1,...,N

e F(x) can be chosen to have finite dimension r = rank(Q)
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Constructing a finite-dimensional feature map

we are given a kernel function « and N points x(1), ..., x&)

e construct the N xX N kernel matrix O

Qij — K(x(i),x(j)), [, ] = I,....N

e factor Q as Q = BB! with B an N x r matrix and r = rank(Q)

e define the r-dimensional feature map

k(W x) ]

Fx) = gt K(x(z),x)

| k(™ x) ]

on the next page we show that F(x‘)TF(x) = k(xD,x) forallxandi=1,...,N
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Proof

e the vectors F(xD), ..., F(x™)) are the transposes of the rows of B:

k(D xD) ]
F(xy = BT

K(X(N.),x(i))

e consider any x and define d =

k(D x)

_ K(x(N),x) _

= B'Qe; = BT (BB )e; = B ¢;

e Dby the kernel property the following matrix is positive semidefinite

0, d _
l dl k(x,x) ] B

BB  d
l al K(x,x)]

e this implies that d € range(B), i.e., BB'd = d, and therefore

FGxNYTF(x) = el-TBBTd = el-Td = x(xV, x)
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