- motivation
- kernel formulations
- kernel functions

Linear-in-parameters model

Linear-in-parameters model (in the notation of 133A, lecture 9)

$$\theta^T F(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x)$$

- x is an independent variable, not necessarily a vector
- F(x) is a *feature map:* maps x to a p-vector of features (possibly redundant)

$$F(x) = (f_1(x), f_2(x), \dots, f_p(x))$$

• the function $\theta^T F(x)$ is linear in the parameters θ

Training set: *N* data points $x^{(1)}, \ldots, x^{(N)}$ define an $N \times p$ data matrix

$$A = \begin{bmatrix} F(x^{(1)})^T \\ F(x^{(2)})^T \\ \vdots \\ F(x^{(N)})^T \end{bmatrix}$$

Kernel methods

Kernel matrix

 $Q = AA^T$

Q is $N \times N$ and symmetric positive semidefinite with entries

$$Q_{ij} = F(x^{(i)})^T F(x^{(j)}), \quad i, j = 1, ..., N$$

Kernel function

$$\kappa(x, y) = F(x)^T F(y)$$

in this notation, the entries of the kernel matrix are

$$Q_{ij} = \kappa(x^{(i)}, x^{(j)}), \quad i, j = 1, \dots, N$$

- algorithms that use kernel matrix Q and function $\kappa(x, y)$, avoid F(x), A, $A^T A$
- of interest if $N \ll p$ (including extensions to infinite-dimensional feature maps)

Polynomial kernel

 $\theta^T F(x)$ is a polynomial of degree d or less in n variables

- here we assume *x* is an *n*-vector
- dimension of F(x) is extremely large unless *n* or *d* is small:

$$p = \left(\begin{array}{c} n+d\\n\end{array}\right) = \frac{(n+d)!}{n!\,d!}$$

• with appropriately scaled (or repeated) monomials as features in F(x),

$$\kappa(x, y) = F(x)^T F(y) = (1 + x^T y)^d$$

(see 133A, lecture 12)

Model fitting by regularized least squares

an example of a kernel method was discussed in 133A, lecture 12

minimize $||A\theta - b||^2 + \lambda ||\theta||^2$

- we fit a model $\hat{f}(x) = \theta^T F(x)$ to data points $x^{(1)}, \dots, x^{(N)}, y^{(1)}, \dots, y^{(N)}$
- *b* is the *N*-vector with entries $y^{(1)}, \ldots, y^{(N)}$
- second objective $\lambda \|\theta\|^2$ is added to avoid over-fitting
- optimal solution is $\hat{f}(x) = \hat{\theta}^T F(x)$ where

$$\hat{\theta} = (A^T A + \lambda I)^{-1} A^T b$$

Kernel method for regularized least squares fitting

via the "push-through" identity the solution $\hat{\theta}$ can be written as

$$\hat{\theta} = (A^T A + \lambda I)^{-1} A^T b = A^T (A A^T + \lambda I)^{-1} b$$

• can be computed as $\hat{\theta} = A^T \hat{w}$ where

 $\hat{w} = (Q + \lambda I)^{-1}b, \qquad Q = AA^T$ is the kernel matrix

• fitted model $\hat{\theta}^T F(x)$ can be evaluated using \hat{w} and the kernel function:

$$\hat{f}(x) = \hat{\theta}^T F(x) = \hat{w}^T A F(x) = \hat{w}^T \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$
$$= \sum_{i=1}^N \hat{w}_i \kappa(x^{(i)}, x)$$

this method only requires kernel matrix Q and kernel function κ , not A, F, or $A^T A$

Principal components

another example is principal component analysis of the $N \times p$ data matrix A

• compute the leading right singular vectors v_1, \ldots, v_k of A:

$$A = \begin{bmatrix} F(x^{(1)})^T \\ F(x^{(2)})^T \\ \vdots \\ F(x^{(N)})^T \end{bmatrix} = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i u_i v_i^T$$

- in feature space \mathbf{R}^p , principal components are linear functions $v_i^T y$ of $y \in \mathbf{R}^p$
- evaluated at y = F(x), principal components are nonlinear functions

$$v_1^T F(x), \quad v_2^T F(x), \quad \dots, \quad v_k^T F(x)$$

• using $A^T u_i = \sigma_i v_i$ the principal components can be written as

$$\frac{1}{\sigma_1}u_1^T AF(x), \quad \frac{1}{\sigma_2}u_2^T AF(x), \quad \dots, \quad \frac{1}{\sigma_k}u_k^T AF(x)$$

Kernel PCA

• find leading singular values, left singular vectors of A via eigendecomposition

$$AA^T = Q = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i^2 u_i u_i^T$$

• right singular vectors v_i are given by

$$v_i = \frac{1}{\sigma_i} A^T u_i, \quad i = 1, \dots, \operatorname{rank}(A)$$

• p.c.'s can be computed from left singular vectors and kernel function:

$$v_i^T F(x) = \frac{1}{\sigma_i} u_i^T A F(x) = \frac{1}{\sigma_i} u_i^T \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

this method only requires kernel matrix Q and kernel function κ , not A, F, or $A^T A$

Exercises

1. modify the method on page 8.6 to solve

minimize
$$||A\theta - b||^2 + \lambda \sum_{i=2}^{p} \theta_i^2$$
,

assuming the elements in the first column of A are all ones

2. principal component analysis is usually applied to the centered data matrix

$$A_{\rm c} = (I - \frac{1}{N} \mathbf{1} \mathbf{1}^T) A$$

what changes in the method on page 8.8 if we are interested in

$$v_1^T F(x), v_2^T F(x), \dots, v_k^T F(x)$$

where v_1, \ldots, v_k are leading right singular vectors of A_c ?

Outline

- motivation
- kernel formulations
- kernel functions

A general class of model fitting problems

we consider optimization problems in which the variable θ enters in only two ways

1. terms in objective and constraints that depend on model predictions on data set

$$A\theta = \begin{bmatrix} F(x^{(1)})^T \theta \\ \vdots \\ F(x^{(N)})^T \theta \end{bmatrix}$$

2. terms in objective that penalize $\|\theta\|$, or upper bounds on $\|\theta\|$ in the constraints

these properties imply that we can restrict θ to the row space of A

- $A\theta$ only depends on component of θ in the row space of A
- adding a nonzero component from the nullspace of A would only increase $\|\theta\|$

in machine learning, this is known as the *representer theorem*

Examples

Regularized least squares

minimize $||A\theta - b||^2 + \lambda ||\theta||^2$

Principal component analysis

• first right singular vector v_1 of A is solution of

 $\begin{array}{ll} \text{maximize} & \|A\theta\| \\ \text{subject to} & \|\theta\| \leq 1 \end{array}$

• *i*th right singular vector v_i , where $i \leq \operatorname{rank}(A)$, is the solution of

$$\begin{array}{ll} \text{maximize} & \|A\theta\| \\ \text{subject to} & v_j^T\theta = 0, \quad j = 1, \dots, i-1 \\ \|\theta\| \leq 1 \end{array}$$

constraints
$$v_j^T \theta = 0$$
 are equivalent to $u_j^T A \theta = 0$, since $\sigma_j v_j = A^T u_j$

Factorization of kernel matrix

we discuss one approach to exploit the "representer theorem" on page 8.10

- denote by *r* the rank of the kernel matrix: $r = \operatorname{rank}(AA^T) = \operatorname{rank}(A)$
- the kernel matrix $Q = AA^T$ can be factored as

$$Q = BB^T$$

where *B* is $N \times r$ with linearly independent columns

• the matrix $C = B^{\dagger}A$ has orthonormal columns and satisfies

$$A = BC$$

(proof on next page)

• the rows of *C* are an orthonormal basis for the row space of *A*

range(
$$C^T$$
) = range(A^T) = span($F(x^{(1)}), \ldots, F(x^{(N)})$)

Proof: $C = B^{\dagger}A$ has orthonormal rows and satisfies A = BC

- the columns of *B* are a basis for $range(AA^T) = range(A)$
- the matrix BB^{\dagger} projects on range(A); in particular,

$$BC = BB^{\dagger}A = A$$

• *C* has orthonormal rows because

$$CC^{T} = B^{\dagger}AA^{T}(B^{\dagger})^{T} = B^{\dagger}BB^{T}(B^{\dagger})^{T} = I$$

Reformulation of model fitting problem

every θ can be decomposed in components in the row space and nullspace of A:

$$\theta = C^T w + v, \qquad Cv = 0$$

• the vector $A\theta$ of model predictions only depends on w, and not on v:

$$A\theta = (BC)(C^Tw + v) = Bw$$

• for given w, the Euclidean norm of θ is minimized by setting v = 0:

$$\|\theta\|^{2} = \|C^{T}w\|^{2} + \|v\|^{2} = \|w\|^{2} + \|v\|^{2}$$

therefore we can set $\theta = C^T w$ in any problem of the type described on page 8.10

Change of variables

we make the substitution

$$\theta = C^T w = (B^{\dagger} A)^T w$$

- $A\theta$ is replaced by Bw
- $\|\theta\|$ is replaced by $\|w\|$
- the *r*-vector *w* replaces the *p*-vector variable θ (a large reduction if $N \ll p$)
- the model function is linearly parametrized by the optimal solution \hat{w} :

$$\hat{f}(x) = \hat{\theta}^T F(x) = \hat{w}^T B^{\dagger} A F(x) = \hat{w}^T B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x) \\ \kappa(x^{(2)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

this formulation only requires B (computed from Q) and κ , not A, $A^T A$, F, or C

Regularized least squares

minimize
$$||A\theta - b||^2 + \lambda ||\theta||^2$$

- variable θ is a *p*-vector
- solution $\hat{\theta}$ parametrizes the fitted model $\hat{f}(x) = \hat{\theta}^T F(x)$

Kernel method: solve reformulated problem

minimize
$$||Bw - b||^2 + \lambda ||w||^2$$

- $N \times r$ matrix B is full-rank factor of kernel matrix $Q = BB^T$
- variable *w* is an *r*-vector, where $r = \operatorname{rank}(Q) \le N$
- from solution \hat{w} , we obtain fitted model

$$\hat{f}(x) = \hat{w}^T B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

Approximation problems

model fitting with non-quadratic penalty function h

minimize $h(A\theta - b) + \lambda \|\theta\|^2$

Examples

 $h(u) = ||u||_1$ or a smooth approximation

$$h(u) = \sum_{i=1}^{N} \phi(u_i)$$

Kernel method

• solve problem in *r*-vector variable *w* (for example, using Newton's method)

minimize
$$h(Bw - b) + \lambda ||w||^2$$

• no assumptions are made about *h*

Nonlinear least squares example

another example from 133A (lecture 13)

minimize
$$\sum_{i=1}^{N} \left(\phi(F(x^{(i)})^{T} \theta) - y^{(i)} \right)^{2} + \lambda \|\theta\|^{2}$$

- $y^{(i)} \in \{-1, 1\}$ are labels for two classes in a Boolean classification problem
- $\phi(u)$ is sigmoidal function (a smooth approximation of sign(*u*))

Kernel method: solve the nonlinear least squares problem in *r*-vector variable *w*

minimize
$$\sum_{i=1}^{N} (\phi((Bw)_i) - y^{(i)})^2 + \lambda ||w||^2$$

Boolean classification

the goal is to find a nonlinear decision function $\theta^T F(x)$ for a Boolean classifier:

$$\hat{f}(x) = 1$$
 if $\theta^T F(x) > 0$, $\hat{f}(x) = -1$ if $\theta^T F(x) < 0$

Maximum-margin classifier

• given N examples $x^{(i)}$ with labels $y^{(i)} \in \{-1, 1\}$, find θ by solving

$$\begin{array}{ll} \text{minimize} & \|\theta\|^2 \\ \text{subject to} & \theta^T F(x^{(i)}) \geq 1 & \text{if } y^{(i)} = 1 \\ & \theta^T F(x^{(i)}) \leq -1 & \text{if } y^{(i)} = -1 \end{array}$$

• in matrix–vector form, if $d = (y^{(1)}, \dots, y^{(N)})$ and A has rows $F(x^{(i)})^T$,

minimize $\|\theta\|^2$ subject to $\operatorname{diag}(d)A\theta \ge 1$

this is a *quadratic program*

Kernel formulation of maximum-margin classifier

solve a quadratic program in r-vector variable w:

 $\begin{array}{ll} \text{minimize} & \|w\|^2\\ \text{subject to} & \textbf{diag}(d)Bw \geq \mathbf{1} \end{array}$

- *B* is computed from a kernel matrix factorization $Q = AA^T = BB^T$
- optimal solution \hat{w} determines the nonlinear decision function $\tilde{f}(x) = \hat{\theta}^T F(x)$:

$$\tilde{f}(x) = \hat{w}^T B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

• Boolean classifier returns

$$\hat{f}(x) = 1$$
 if $\tilde{f}(x) > 0$, $\hat{f}(x) = -1$ if $\tilde{f}(x) < 0$

Support vector machine classifier

a variation on the maximum-margin classifier: compute $\boldsymbol{\theta}$ from

minimize
$$\sum_{i=1}^{N} \max\left\{0, 1 - y^{(i)}(\theta^T F(x^{(i)}))\right\} + \lambda \|\theta\|^2$$

instead of imposing hard constraints

$$\theta^T F(x^{(i)}) \ge 1$$
 if $y^{(i)} = 1$, $\theta^T F(x^{(i)}) \le -1$ if $y^{(i)} = -1$

we impose a penalty on misclassified points:

Kernel formulation of support vector machine classifier

first term in support vector machine objective is a function of $A\theta$:

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - y^{(i)}(A\theta)_i\} + \lambda \|\theta\|^2$$

Kernel formulation

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - y^{(i)}(Bw)_i\} + \lambda ||w||^2$$

- *B* is a full-rank factor of the kernel matrix $Q = BB^T$
- variable *w* is an *r*-vector
- from optimal \hat{w} we directly find the decision function

$$\hat{\theta}^T F(x) = \hat{w}^T B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

Outline

- motivation
- kernel formulations
- kernel functions

Kernel property

Kernel function: we require two properties of a kernel function

- 1. symmetry: $\kappa(x, y) = \kappa(y, x)$
- 2. for every finite set of points $x^{(1)}, \ldots, x^{(N)}$, the $N \times N$ matrix Q with entries

$$Q_{ij} = \kappa(x^{(i)}, x^{(j)}), \quad i, j = 1, \dots, N$$

is positive semidefinite

Properties: suppose κ_1, κ_2 are kernel functions

- $\kappa(x, y) = \alpha_1 \kappa_1(x, y) + \alpha_2 \kappa_2(x, y)$ is a kernel function, for all $\alpha_1, \alpha_2 \ge 0$
- $\kappa(x, y) = \kappa_1(x, y)\kappa_2(x, y)$ is a kernel function (see homework 2)

Examples

• polynomial kernel with degree d

$$\kappa(x, y) = (1 + x^T y)^d$$

• more generally,

$$\kappa(x, y) = q(x^T y)$$

where $q(t) = c_0 + c_1 t + \dots + c_n t^n$ is a polynomial with nonnegative coefficients

• Gaussian kernel

$$\kappa(x, y) = \exp(-\frac{\|x - y\|^2}{2\sigma^2})$$

where $\sigma > 0$

From kernel to feature map

suppose κ is a function with the properties on page 8.23

• it can be shown that there exists a feature map F such that

 $\kappa(y, x) = \langle F(y), F(x) \rangle$ for all x, y

where $\langle \cdot, \cdot \rangle$ denotes an inner product

• however, in general the feature map F(x) has infinite dimension

Finite-dimensional feature map

• for any given data set $x^{(1)}, \ldots, x^{(N)}$ we can construct a feature map F such that

$$\kappa(x^{(i)}, x) = F(x^{(i)})^T F(x)$$
 for all x and for $i = 1, \dots, N$

• F(x) can be chosen to have finite dimension $r = \operatorname{rank}(Q)$

Constructing a finite-dimensional feature map

we are given a kernel function κ and N points $x^{(1)}, \ldots, x^{(N)}$

• construct the $N \times N$ kernel matrix Q

$$Q_{ij} = \kappa(x^{(i)}, x^{(j)}), \quad i, j = 1, \dots, N$$

- factor Q as $Q = BB^T$ with B an $N \times r$ matrix and $r = \operatorname{rank}(Q)$
- define the *r*-dimensional feature map

$$F(x) = B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x) \\ \kappa(x^{(2)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$$

on the next page we show that $F(x^{(i)})^T F(x) = \kappa(x^{(i)}, x)$ for all x and i = 1, ..., N

Proof

• the vectors $F(x^{(1)}), \ldots, F(x^{(N)})$ are the transposes of the rows of *B*:

$$F(x^{(i)}) = B^{\dagger} \begin{bmatrix} \kappa(x^{(1)}, x^{(i)}) \\ \vdots \\ \kappa(x^{(N)}, x^{(i)}) \end{bmatrix} = B^{\dagger} Q e_i = B^{\dagger} (BB^T) e_i = B^T e_i$$

- consider any x and define $d = \begin{bmatrix} \kappa(x^{(1)}, x) \\ \vdots \\ \kappa(x^{(N)}, x) \end{bmatrix}$
- by the kernel property the following matrix is positive semidefinite

$$\left[\begin{array}{cc} Q & d \\ d^T & \kappa(x,x) \end{array}\right] = \left[\begin{array}{cc} BB^T & d \\ d^T & \kappa(x,x) \end{array}\right]$$

• this implies that $d \in \operatorname{range}(B)$, *i.e.*, $BB^{\dagger}d = d$, and therefore

$$F(x^{(i)})^T F(x) = e_i^T B B^{\dagger} d = e_i^T d = \kappa(x^{(i)}, x)$$

References

- Bernhard Schölkopf and Alexander J. Smola, *Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond* (2002).
- John Shawe-Taylor and Nello Cristianini, *Kernel Methods for Pattern Analysis* (2004).