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Constrained nonlinear least squares

Nonlinear least squares

minimize 𝑓1(𝑥)2 + · · · + 𝑓𝑚 (𝑥)2 = ∥ 𝑓 (𝑥)∥2

• variable is 𝑛-vector 𝑥

• 𝑓𝑖 (𝑥) is 𝑖th (scalar) residual

• 𝑓 : R𝑛 → R𝑚 is the vector function 𝑓 (𝑥) = ( 𝑓1(𝑥), . . . , 𝑓𝑚 (𝑥))

Algorithms (see 133A)

• Newton’s method

• Gauss–Newton method

• Levenberg–Marquardt method

This lecture: add 𝑝 equality constraints

𝑔1(𝑥) = 0, 𝑔2(𝑥) = 0, . . . , 𝑔𝑝 (𝑥) = 0
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Notation

we use the same derivative notation as in 133A

• gradient and Hessian of a scalar function ℎ : R𝑛 → R are denoted by

∇ℎ(𝑥) =


𝜕ℎ

𝜕𝑥1
(𝑥)
...

𝜕ℎ

𝜕𝑥𝑛
(𝑥)


, ∇2ℎ(𝑥) =



𝜕2ℎ

𝜕𝑥2
1
(𝑥) · · · 𝜕2ℎ

𝜕𝑥1𝜕𝑥𝑛
(𝑥)

... ...
𝜕2ℎ

𝜕𝑥𝑛𝜕𝑥1
(𝑥) · · · 𝜕2ℎ

𝜕𝑥2
𝑛

(𝑥)


• Jacobian of vector function 𝑓 : R𝑛 → R𝑚 is denoted by

𝐷 𝑓 (𝑥) =


𝜕 𝑓1
𝜕𝑥1

(𝑥) · · · 𝜕 𝑓1
𝜕𝑥𝑛

(𝑥)
... ...

𝜕 𝑓𝑚
𝜕𝑥1

(𝑥) · · · 𝜕 𝑓𝑚
𝜕𝑥𝑛

(𝑥)


=


∇ 𝑓1(𝑥)𝑇

...
∇ 𝑓𝑚 (𝑥)𝑇


Constrained nonlinear least squares 13.3



Minimization with equality constraints

minimize ℎ(𝑥)
subject to 𝑔1(𝑥) = 0

. . .
𝑔𝑝 (𝑥) = 0

ℎ, 𝑔1, . . . , 𝑔𝑝 are functions from R𝑛 to R

• 𝑥 is feasible if it satisfies the constraints:

𝑔(𝑥) =

𝑔1(𝑥)
...

𝑔𝑝 (𝑥)

 = 0

• feasible 𝑥 is optimal (or a minimum) if ℎ(𝑥) ≤ ℎ(𝑥) for all feasible 𝑥

• feasible 𝑥 is locally optimal (a local minimum) if there exists an 𝑅 > 0 such that

ℎ(𝑥) ≤ ℎ(𝑥) for all feasible 𝑥 with ∥𝑥 − 𝑥∥ ≤ 𝑅
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Lagrange multipliers

Lagrangian: the Lagrangian is the function

𝐿 (𝑥, 𝑧) = ℎ(𝑥) + 𝑧𝑇𝑔(𝑥)
= ℎ(𝑥) + 𝑧1𝑔1(𝑥) + · · · + 𝑧𝑝𝑔𝑝 (𝑥)

the 𝑝-vector 𝑧 = (𝑧1, . . . , 𝑧𝑝) is the vector of Lagrange multipliers 𝑧1, . . . , 𝑧𝑝

Gradient of Lagrangian

∇𝐿 (𝑥, 𝑧) =
[ ∇𝑥𝐿 (𝑥, 𝑧)
∇𝑧𝐿 (𝑥, 𝑧)

]
where

∇𝑥𝐿 (𝑥, 𝑧) = ∇ℎ(𝑥) + 𝑧1∇𝑔1(𝑥) + · · · + 𝑧𝑝∇𝑔𝑝 (𝑥)
= ∇ℎ(𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧

∇𝑧𝐿 (𝑥, 𝑧) = 𝑔(𝑥)
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First-order optimality conditions

minimize ℎ(𝑥)
subject to 𝑔(𝑥) = 0

ℎ is a function from R𝑛 to R, 𝑔 is a function from R𝑛 to R𝑝

First-order necessary optimality conditions

if 𝑥 is locally optimal and rank(𝐷𝑔(𝑥)) = 𝑝, then there exist multipliers 𝑧 with

∇𝐿𝑥 (𝑥, 𝑧) = ∇ℎ(𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧 = 0

• together with 𝑔(𝑥) = 0, this forms a set of 𝑛 + 𝑝 equations in 𝑛 + 𝑝 variables 𝑥, 𝑧

• gradient ∇ℎ(𝑥) is a linear combination of gradients ∇𝑔1(𝑥), . . . , ∇𝑔𝑝 (𝑥)

Regular feasible point

• a feasible 𝑥 with if rank(𝐷𝑔(𝑥)) = 𝑝 is called a regular feasible point

• at a regular feasible point, ∇𝑔1(𝑥), . . . ,∇𝑔𝑝 (𝑥) are linearly independent
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Example

suppose 𝐴 is a symmetric 𝑛 × 𝑛 matrix

minimize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝑥 = 1

• Lagrangian is
𝐿 (𝑥, 𝑧) = 𝑥𝑇𝐴𝑥 + 𝑧(𝑥𝑇𝑥 − 1)

• first-order necessary optimality condition:

𝑥𝑇𝑥 = 1, ∇𝑥𝐿 (𝑥, 𝑧) = 0 ⇐⇒ 𝑥𝑇𝑥 = 1, 𝐴𝑥 = −𝑧𝑥

• hence optimal 𝑥 must be an eigenvector
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Example

minimize 𝑥2
subject to 𝑥2

1 + 𝑥2
2 = 1

(𝑥1 − 2)2 + 𝑥2
2 = 1

𝑥1

𝑥2

𝑥 = (1, 0)

• 𝑥 = (1, 0) is the only feasible point, hence optimal

• Lagrangian is 𝐿 (𝑥, 𝑧) = 𝑥2 + 𝑧1(𝑥2
1 + 𝑥2

2 − 1) + 𝑧2((𝑥1 − 2)2 + 𝑥2
2 − 1)

• 1st order optimality condition at 𝑥 = (1, 0):

0 = ∇𝑥𝐿 (𝑥, 𝑧) =

[
0
1

]
+ 2𝑧1

[
𝑥1
𝑥2

]
+ 2𝑧2

[
𝑥1 − 2
𝑥2

]
=

[
0
1

]
+ 2𝑧1

[
1
0

]
+ 2𝑧2

[ −1
0

]
• this does not hold for any 𝑧1, 𝑧2

• 𝑥 is not a regular point: gradients (2, 0) and (−2, 0) are linearly dependent
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Constrained nonlinear least squares

minimize 𝑓1(𝑥)2 + · · · + 𝑓𝑚 (𝑥)2

subject to 𝑔1(𝑥) = 0, . . . , 𝑔𝑝 (𝑥) = 0

• variable is 𝑛-vector 𝑥

• 𝑓𝑖 (𝑥) is 𝑖th (scalar) residual

• 𝑔𝑖 (𝑥) = 0 is 𝑖th (scalar) equality constraint

Vector notation
minimize ∥ 𝑓 (𝑥)∥2

subject to 𝑔(𝑥) = 0

• 𝑓 : R𝑛 → R𝑚 is vector function 𝑓 (𝑥) = ( 𝑓1(𝑥), . . . , 𝑓𝑚 (𝑥))
• 𝑔 : R𝑛 → R𝑝 is vector function 𝑔(𝑥) = (𝑔1(𝑥), . . . , 𝑔𝑝 (𝑥))
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First-order necessary optimality condition

Lagrangian

𝐿 (𝑥, 𝑧) = 𝑓1(𝑥)2 + · · · + 𝑓𝑚 (𝑥)2 + 𝑧1𝑔1(𝑥) + · · · + 𝑧𝑝𝑔𝑝 (𝑥)
= ∥ 𝑓 (𝑥)∥2 + 𝑧𝑇𝑔(𝑥)

Gradients of Lagrangian: ∇𝑧𝐿 (𝑥, 𝑧) = 𝑔(𝑥) and

∇𝑥𝐿 (𝑥, 𝑧) = 2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧

= 2
[∇ 𝑓1(𝑥) · · · ∇ 𝑓𝑚 (𝑥)

] 
𝑓1(𝑥)
...

𝑓𝑚 (𝑥)

 +
[∇𝑔1(𝑥) · · · ∇𝑔𝑝 (𝑥)

] 
𝑧1
...
𝑧𝑝


Optimality condition: if 𝑥 is locally optimal, then there exists 𝑧 such that

2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧 = 0, 𝑔(𝑥) = 0

(provided the rows of 𝐷𝑔(𝑥) are linearly independent)
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Constrained (linear) least squares

minimize ∥𝐴𝑥 − 𝑏∥2

subject to 𝐶𝑥 = 𝑑

• a special case of the nonlinear problem with

𝑓 (𝑥) = 𝐴𝑥 − 𝑏, 𝑔(𝑥) = 𝐶𝑥 − 𝑑

• apply general optimality condition:

2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧 = 2𝐴𝑇 (𝐴𝑥 − 𝑏) + 𝐶𝑇 𝑧 = 0, 𝑔(𝑥) = 𝐶𝑥 − 𝑑 = 0

• these are the Karush–Kuhn–Tucker (KKT) equations[
2𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
=

[
2𝐴𝑇𝑏
𝑑

]
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Penalty method

solve a sequence of (unconstrained) nonlinear least squares problems

minimize ∥ 𝑓 (𝑥)∥2 + 𝜇∥𝑔(𝑥)∥2 =





[ 𝑓 (𝑥)√
𝜇𝑔(𝑥)

]



2

• 𝜇 is a positive penalty parameter

• instead of insisting on 𝑔(𝑥) = 0 we assign a penalty to deviations from zero

• for increasing sequence 𝜇(1), 𝜇(2), . . . , we compute 𝑥 (𝑘+1) by minimizing

∥ 𝑓 (𝑥)∥2 + 𝜇(𝑘)∥𝑔(𝑥)∥2

• 𝑥 (𝑘+1) is computed by Levenberg–Marquardt algorithm started at 𝑥 (𝑘)
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Termination

optimality condition for constrained nonlinear least squares problem:

2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧 = 0, 𝑔(𝑥) = 0 (1)

• 𝑥 (𝑘) in penalty method satisfies normal equations for linear least squares:

2𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘)) + 2𝜇(𝑘−1)𝐷𝑔(𝑥 (𝑘))𝑇𝑔(𝑥 (𝑘)) = 0

• if we define 𝑧(𝑘) = 2𝜇(𝑘−1)𝑔(𝑥 (𝑘)), this can be written as

2𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘)) + 𝐷𝑔(𝑥 (𝑘))𝑇 𝑧(𝑘) = 0

• we see that 𝑥 (𝑘), 𝑧(𝑘) satisfy first equation in optimality condition (1)

• feasibility 𝑔(𝑥 (𝑘)) = 0 is only satisfied approximately for 𝜇(𝑘−1) large enough

• penalty method is terminated when ∥𝑔(𝑥 (𝑘))∥ becomes sufficiently small
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Example

𝑓 (𝑥1, 𝑥2) =
[
𝑥1 + exp(−𝑥2)
𝑥2

1 + 2𝑥2 + 1

]
, 𝑔(𝑥1, 𝑥2) = 𝑥1 + 𝑥3

1 + 𝑥2 + 𝑥2
2

−1 0 1−1

0

1

𝑔(𝑥) = 0

𝑔(𝑥) = −1

𝑔(𝑥) = 1

𝑥

𝑥1

𝑥 2

: contour lines of ∥ 𝑓 (𝑥)∥2

: minimizer of ∥ 𝑓 (𝑥)∥2

: contour lines of 𝑔(𝑥)
: solution 𝑥
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First six iterations

−0.5
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`(1) = 1

G (3)

`(2) = 2

G (4)

`(3) = 4

−0.5 0 0.5
−0.5

0

0.5

G (5)

`(4) = 8

−0.5 0 0.5

G (6)

`(5) = 16

−0.5 0 0.5

G (7)

`(6) = 32

: contour lines of ∥ 𝑓 (𝑥)∥2 + 𝜇(𝑘)∥𝑔(𝑥)∥2
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Convergence
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`
figure on the left shows the two residuals in optimality condition:

• blue curve is norm of 𝑔(𝑥 (𝑘))
• red curve is norm of 2𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘)) + 𝐷𝑔(𝑥 (𝑘))𝑇 𝑧(𝑘)
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Drawback of penalty method

• 𝜇(𝑘) increases rapidly and must become large to drive 𝑔(𝑥) to (near) zero

• for large 𝜇(𝑘), nonlinear least squares subproblem becomes harder

• for large 𝜇(𝑘), Levenberg–Marquardt method can take many iterations, or fail

Constrained nonlinear least squares 13.17



Outline

• Lagrange multipliers

• constrained nonlinear least squares

• penalty method

• augmented Lagrangian method

• nonlinear control example



Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

𝐿𝜇(𝑥, 𝑧) = 𝐿 (𝑥, 𝑧) + 𝜇∥𝑔(𝑥)∥2

= ∥ 𝑓 (𝑥)∥2 + 𝑔(𝑥)𝑇 𝑧 + 𝜇∥𝑔(𝑥)∥2

• this is the Lagrangian 𝐿 (𝑥, 𝑧) augmented with a quadratic penalty

• 𝜇 is a positive penalty parameter

• augmented Lagrangian is the Lagrangian of the equivalent problem

minimize ∥ 𝑓 (𝑥)∥2 + 𝜇∥𝑔(𝑥)∥2

subject to 𝑔(𝑥) = 0
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Minimizing augmented Lagrangian

• equivalent expressions for augmented Lagrangian

𝐿𝜇(𝑥, 𝑧) = ∥ 𝑓 (𝑥)∥2 + 𝑔(𝑥)𝑇 𝑧 + 𝜇 ∥𝑔(𝑥)∥2

= ∥ 𝑓 (𝑥)∥2 + 𝜇



𝑔(𝑥) + 1

2𝜇𝑧



2

− 1
2𝜇 ∥𝑧∥2

=







[

𝑓 (𝑥)√
𝜇𝑔(𝑥) + 1

2√𝜇
𝑧

]




2

− 1
2𝜇 ∥𝑧∥2

• can be minimized over 𝑥 (for fixed 𝜇, 𝑧) by Levenberg–Marquardt method:

minimize







[

𝑓 (𝑥)√
𝜇𝑔(𝑥) + 1

2√𝜇
𝑧

]




2
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Lagrange multiplier update

optimality conditions for constrained nonlinear least squares problem:

2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 𝑧 = 0, 𝑔(𝑥) = 0

• minimizer 𝑥 of augmented Lagrangian 𝐿𝜇(𝑥, 𝑧) satisfies

2𝐷 𝑓 (𝑥)𝑇 𝑓 (𝑥) + 𝐷𝑔(𝑥)𝑇 (2𝜇𝑔(𝑥) + 𝑧) = 0

• first equation in optimality condition is satisfied if we define

𝑧 = 𝑧 + 2𝜇𝑔(𝑥)

• this shows that if 𝑔(𝑥) = 0, then 𝑥 is optimal

• if 𝑔(𝑥) is not small, suggests 𝑧 is a good update for 𝑧
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Augmented Lagrangian algorithm

1. set 𝑥 (𝑘+1) to be the (approximate) minimizer of

∥ 𝑓 (𝑥)∥2 + 𝜇(𝑘)



𝑔(𝑥) + 1

2𝜇(𝑘) 𝑧
(𝑘)




2

𝑥 (𝑘+1) is computed using Levenberg–Marquardt algorithm, starting from 𝑥 (𝑘)

2. multiplier update:
𝑧(𝑘+1) = 𝑧(𝑘) + 2𝜇(𝑘)𝑔(𝑥 (𝑘+1))

3. penalty parameter update:

𝜇(𝑘+1) =
{
𝜇(𝑘) if ∥𝑔(𝑥 (𝑘+1))∥ < 0.25∥𝑔(𝑥 (𝑘))∥
2𝜇(𝑘) otherwise

• iteration starts at 𝑧(1) = 0, 𝜇(1) = 1, some initial 𝑥 (1)

• 𝜇 is increased only when needed, more slowly than in penalty method

• continues until 𝑔(𝑥 (𝑘)) is sufficiently small (or iteration limit is reached)
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Example of slide 13.14

−0.5

0

0.5

G (2)

`(1) = 1, I(1) = 0

G (3)

`(2) = 2, I(2) = −0.893

G (4)

`(3) = 4, I(3) = −1.569

−0.5 0 0.5
−0.5

0

0.5

G (5)

`(4) = 4, I(4) = −1.898

−0.5 0 0.5

G (6)

`(5) = 4, I(5) = −1.976

−0.5 0 0.5

G (7)

`(6) = 4, I(6) = −1.994

: contour lines of augmented Lagrangian 𝐿𝜇(𝑘) (𝑥, 𝑧(𝑘))
Constrained nonlinear least squares 13.22



Convergence
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`
figure on the left shows residuals in optimality condition:

• blue curve is norm of 𝑔(𝑥 (𝑘))
• red curve is norm of 2𝐷 𝑓 (𝑥 (𝑘))𝑇 𝑓 (𝑥 (𝑘)) + 𝐷𝑔(𝑥 (𝑘))𝑇 𝑧(𝑘)
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Simple model of a car

!

\

q

(?1, ?2)

𝑑𝑝1
𝑑𝑡

= 𝑠(𝑡) cos 𝜃 (𝑡)
𝑑𝑝2
𝑑𝑡

= 𝑠(𝑡) sin 𝜃 (𝑡)
𝑑𝜃

𝑑𝑡
=

𝑠(𝑡)
𝐿

tan 𝜙(𝑡)

• 𝑠(𝑡) is speed of vehicle

• 𝜙(𝑡) is steering angle

• 𝑝(𝑡) is position

• 𝜃 (𝑡) is orientation
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Discretized model

• discretized model (for small time interval ℎ):

𝑝1(𝑡 + ℎ) ≈ 𝑝1(𝑡) + ℎ𝑠(𝑡) cos(𝜃 (𝑡))
𝑝2(𝑡 + ℎ) ≈ 𝑝2(𝑡) + ℎ𝑠(𝑡) sin(𝜃 (𝑡))

𝜃 (𝑡 + ℎ) ≈ 𝜃 (𝑡) + ℎ
𝑠(𝑡)
𝐿

tan(𝜙(𝑡))

• define input vector 𝑢𝑘 = (𝑠(𝑘ℎ), 𝜙(𝑘ℎ))
• define state vector 𝑥𝑘 = (𝑝1(𝑘ℎ), 𝑝2(𝑘ℎ), 𝜃 (𝑘ℎ))
• discretized model is 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘) with

𝑓 (𝑥𝑘 , 𝑢𝑘) =


(𝑥𝑘)1 + ℎ(𝑢𝑘)1 cos((𝑥𝑘)3)
(𝑥𝑘)2 + ℎ(𝑢𝑘)1 sin((𝑥𝑘)3)

(𝑥𝑘)3 + ℎ(𝑢𝑘)1 tan((𝑢𝑘)2)/𝐿


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Control problem

• move car from given initial to desired final position and orientation

• using a small and slowly varying input sequence

• this is a constrained nonlinear least squares problem:

minimize
𝑁∑︁
𝑘=1

∥𝑢𝑘 ∥2 + 𝛾
𝑁−1∑︁
𝑘=1

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

subject to 𝑥2 = 𝑓 (0, 𝑢1)
𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘), 𝑘 = 2, . . . , 𝑁 − 1

𝑥final = 𝑓 (𝑥𝑁 , 𝑢𝑁)

• variables are 𝑢1, . . . , 𝑢𝑁 , 𝑥2, . . . , 𝑥𝑁
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Example solution trajectories

−0.5 0 0.5

0

1

Gfinal = (0, 1, 0)

−0.5 0 0.5

0

1

Gfinal = (0, 1, c/2)
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Example solution trajectories

−0.5 0

0

0.5

Gfinal = (0, 0.5, 0)

0 0.5

0

0.5

Gfinal = (0.5, 0.5,−c/2)
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Inputs for four trajectories

0 10 20 30 40 50

−0.5

0

0.5

Speed

Steering angle

:

D
:

0 10 20 30 40 50

−0.5

0

0.5
Speed

Steering angle

:

D
:

0 10 20 30 40 50

−0.5

0

0.5

Speed

Steering angle

:

D
:

0 10 20 30 40 50

−0.5

0

0.5
Speed Steering angle

:

D
:
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