L. Vandenberghe ECE133B (Spring 2023)

13. Constrained nonlinear least squares
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e nonlinear control example
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Constrained nonlinear least squares

Nonlinear least squares
.« e . 2 2 2
minimize  fi(x)"+ -+ fn(x)” = || f ()]

e variable is n-vector x
e fi(x) is ith (scalar) residual

e f:R"” — R"is the vector function f(x) = (fi(x),..., fm(x))

Algorithms (see 133A)
e Newton’s method
e Gauss—Newton method

e |evenberg—Marquardt method

This lecture: add p equality constraints

gi(x) =0, g®=0, ..., gx)=0
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Notation

we use the same derivative notation as in 133A

e gradient and Hessian of a scalar function # :

6x1
Vh(F) = :
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| Oxy,
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e Jacobian of vector function f : R" — R™ is denoted by

Df(x) =

Constrained nonlinear least squares

- Ifi

——(X)

5)61

fm
m s

] 8x1

d f1
0xy,

3

0x;,

B [ va®T

@ | L V@

(%)

13.3



Minimization with equality constraints

minimize  h(x)
subjectto g1(x) =0

¢p(x) =0

h, g1, ..., gp are functions from R” to R

e x is feasible if it satisfies the constraints:

[ g1(x) |

g(x) = =0

I gp(x) |
e feasible x is optimal (or a minimum) if h(X) < h(x) for all feasible x

e feasible X is locally optimal (a local minimum) if there exists an R > 0 such that

h(x) < h(x) for all feasible x with ||x — X|| < R
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Lagrange multipliers

Lagrangian: the Lagrangian is the function

L(x,2) = h(x)+z'g(x)
= h(x)+z181(x)+---+ Zpgp(x)
the p-vector z = (z1, ..., 2p) is the vector of Lagrange multipliers z, ...

Gradient of Lagrangian

. V.L(%,7%)
VL , — X ~7 N
(¥.2) [ V.L(%,?) ]
where
Vi.L(%,Z7) = Vh(i)+21Vg1()Z)+---+ZpVgp()Z)

= Vh(x)+Dg(®)'z
V.L(%,7) = g(%)
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First-order optimality conditions

minimize  h(x)
subjectto g(x) =0

h is a function from R" to R, g is a function from R" to R”

First-order necessary optimality conditions

if £ is locally optimal and rank(Dg (X)) = p, then there exist multipliers Z with
VL,(%,2) =Vh(R) +Dg(®)2=0

e together with g(%) = 0, this forms a set of n + p equations in n + p variables %, 2

e gradient V(%) is a linear combination of gradients Vg (%), ..., Vg, (%)

Regular feasible point

e a feasible x with if rank(Dg(x)) = p is called a regular feasible point
e at a regular feasible point, Vgi(x), ..., Vg,(x) are linearly independent
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Example

suppose A is a symmetric n X n matrix

minimize x! Ax
subjectto x'x =1

e lLagrangian is
L(x,2) =xTAx+z(xx = 1)

e first-order necessary optimality condition:
T

T2=1, V,L(%2)=0 < 3

e hence optimal X must be an eigenvector
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minimize

subjectto x

Example

)
%+x§ =1
(x1 —2)2+x§ =1

X1

N

X = (1,0) is the only feasible point, hence optimal

Lagrangian is L(x,z) = xp + z1 (x5 +x5 — 1) + 22((x] = 2)* +x5 — 1)

1st order optimality condition at X = (1, 0):

0=V,L(x,2) =

+221

+221

r LI 1
_— _—
L ] L ]

this does not hold for any 21, 2>

1
0

¢ +222[XA 2]
X2 2
. -1
+2Z2[ 0 ]

X is not a regular point: gradients (2,0) and (-2, 0) are linearly dependent
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Constrained nonlinear least squares

minimize  fi(x)%+ - + fu(x)?
subjectto gi(x) =0, ..., gp(x) =0
e variable is n-vector x
e fi(x) is ith (scalar) residual

e g;(x) = 0is ith (scalar) equality constraint

Vector notation
minimize || f(x)|*

subjectto g(x) =0

e f:R"” — R"™isvector function f(x) = (fi(x),..., fm(x))
e g:R" — RP is vector function g(x) = (g1(x),...,gp(x))
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First-order necessary optimality condition

Lagrangian

FIO)Z+ -+ fu(0)* +2181(X) + -+ 2pgp (X)

= If@I*+2"gx)

L(x,z)

Gradients of Lagrangian: V,L(x,Z7) = g(%) and

ViL(%,2) = 2Df(X)f(®) +Dg(%)'2
AR B
|+ [Va1(®) - Vgp(d)]

= 2[VA® - Va®]|
i fm(ﬁ) | | <p

Optimality condition: if X is locally optimal, then there exists Z such that
2Df(R)' f() + Dg(®)'2=0,  g(&) =0

(provided the rows of Dg(x) are linearly independent)
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Constrained (linear) least squares

minimize  ||Ax — b||?
subjectto Cx =d

e a special case of the nonlinear problem with

f(x) =Ax - b, g(x)=Cx—-d

e apply general optimality condition:

2DF(R) f(2)+Dg(®) 2 =24T(A%-b)+CT2=0, g(X)=Ci-d=0

e these are the Karush—Kuhn—Tucker (KKT) equations

ARSI M

X
C 0 2
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Penalty method

solve a sequence of (unconstrained) nonlinear least squares problems

e e . = f(x) 2
minimize || £ (x)||” + ullg(x)|1* = H[ Vg (x) ]

e U is a positive penalty parameter
e instead of insisting on g(x) = 0 we assign a penalty to deviations from zero

e for increasing sequence p'V, 1@, ..., we compute x**1) by minimizing

LF P+ PN (o)1

o x**1) is computed by Levenberg—Marquardt algorithm started at x (%)
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Termination

optimality condition for constrained nonlinear least squares problem:
2Df(®)' f(R) +Dg(®)'2=0,  g(%) =0 (1)
e x(®) in penalty method satisfies normal equations for linear least squares:

2D f (DT f (1) + 26 DD (x ) Tg (rM) = 0

e if we define z(K) = 2, (k=D g(x(K)) this can be written as
2D f (x')T £ (x¥) + Dg(x")T2H) = 0
e we see that x(K), z(K) satisfy first equation in optimality condition (1)

o feasibility g(x¥)) = 0 is only satisfied approximately for u*~1 large enough

e penalty method is terminated when ||g (x¥))|| becomes sufficiently small
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X2

X1+ exp(—xz)

Example

3 2
= =X +Xx]+x2+
f(x19x2) X% +2X2 +1 > g(xlaXZ) X1 -xl X2 X2
1r S
) =
. : contour lines of || £ (x)]|?
¢ g(x) =0 )
0 gx)=-1 - . minimizer of || f(x)]||
F U 2 N N T R R : contour lines of g(x)
e : solution £
L 0 1
X
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First six iterations
u® =2

u® =8

7

0.5

o N

—-0.5 0 0.5-0.5 0 0.5-0.5 0 0.5

——: contour lines of || £ (X) |2 + £®]|g (x) 2
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Convergence
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figure on the left shows the two residuals in optimality condition:

e blue curve is norm of g(x()

e red curve is norm of 2D f (x )T £(x®) + Dg(x(F)T7(K)
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Drawback of penalty method

e 1% increases rapidly and must become large to drive g(x) to (near) zero
e for large 1¥), nonlinear least squares subproblem becomes harder

e for large u'%), Levenberg—Marquardt method can take many iterations, or fail
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Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

Ly(x,2) = L(x,2)+ullgx)]|?
= If@I*+gx) 2+ ullg@)]?

e this is the Lagrangian L(x, z) augmented with a quadratic penalty
e U is a positive penalty parameter

e augmented Lagrangian is the Lagrangian of the equivalent problem

minimize || f(x)[|* + ullg (x)|?
subjectto g(x) =0
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Minimizing augmented Lagrangian

e equivalent expressions for augmented Lagrangian

Lu(x,z) FOOIP+g@) z+ullgo)l?

2
= PP+ ||g00 + e = 112l

J(x)
Vg (x) + ﬁﬁ Z

2

L (112
— 25 lIzll

e can be minimized over x (for fixed u, z) by Levenberg—Marquardt method:

2

minimize ||

J(x)
Vg (x) + ﬁﬁ Z
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Lagrange multiplier update

optimality conditions for constrained nonlinear least squares problem:

2DF(R) f(®) +Dg(®)"'2=0, g(* =0

e minimizer X of augmented Lagrangian L, (x, z) satisfies
2D f() f(%) + Dg (%) (2ug (%) +2) =0

e first equation in optimality condition is satisfied if we define

Z=z+2ug(x)

e this shows that if g(X) = 0, then X is optimal

e if g(X) is not small, suggests 7 is a good update for z
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Augmented Lagrangian algorithm

1. set x(**D to be the (approximate) minimizer of

2
£+ |lg () + 51 20
x*1) is computed using Levenberg—Marquardt algorithm, starting from x (%)

2. multiplier update:

LKD) 2 () 4o (R) g (kD)

g(x

3. penalty parameter update:

kD) p® it g (D) < 0.25)1g (x|
2u'%) otherwise

e iteration starts at z(!) = 0, u() = 1, some initial x(!)
e u is increased only when needed, more slowly than in penalty method

e continues until g(x¥)) is sufficiently small (or iteration limit is reached)
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Example of slide 13.14
u =1z =0 u?® =2 72 =-0.893 ud =4,z =1 569

u® =4, 4 =_1.898 u® =4, 76 =-1.976

0.5 » \\

0.5 B

=0.5 0 0.5-0.5 0

—— . contour lines of augmented Lagrangian Luuc) (x, Z(k))
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Convergence
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figure on the left shows residuals in optimality condition:

e blue curve is norm of g(x(k))

e red curve is norm of 2D f (x!)T £ (x(K)) + Dg (x0T 7(K)
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Simple model of a car

dp1
W = S(t) COS Q(I)
dpy .
W = S(t) S1n H(t)
g s(1)
E = _L tan ¢(f)

e s(t) is speed of vehicle
e (1) is steering angle
e p(t) is position

e 0(t) is orientation
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Discretized model

e discretized model (for small time interval h):

pi(t+h)
pa(t+h)

O(t + h)

%

p1(t) + hs(t) cos(6(t))
~ po(t)+ hs(t) sin(6(1))

) tan(e (1))

O(I) + hT

%

e define input vector uy = (s(kh), ¢(kh))

e define state vector x; = (p1(kh), pa(kh),0(kh))

e discretized model is x;41 = f(xg, uy) with

f(xp,ug) =

Constrained nonlinear least squares

(x)1 + h(ug)y cos((xg)3)
(xk)2 + h(ug) sin((xg)3)

| (xk)3 + h(ug)g tan((ug)2) /L
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Control problem

e move car from given initial to desired final position and orientation

e using a small and slowly varying input sequence

e this is a constrained nonlinear least squares problem:

N N-1
. 7 2
minimize E url||” + v §:||Mk+1 — ugl|
k:l k:1

subjectto x> = f(0,u;)
Xie1 = f(xp ug), k=2,...,N—-1

Xfinal = f(xn, uN)

e variables are Uly. . s UN, XDy ..., XN
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Example solution trajectories

Xfinal = (0, 1,0) Xfinal = (0,1, 7/2)
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Example solution trajectories

Xfinal = (O, 05’ O) xﬁnal — (05, 057 _71-/2)

0.5/

0.5 HENNRRERED
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Inputs for four trajectories

057 Steering angle | 0.5 |
Speed
s o0 |
Steering angle
-0.5| :

0.5 ' Steering angle

Steering angle

Uk
-}
Uk
-}

—-0.5
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20

30
k

40

-0.5

20
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