13. Constrained nonlinear least squares

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example
Constrained nonlinear least squares

Nonlinear least squares

\[
\text{minimize} \quad f_1(x)^2 + \cdots + f_m(x)^2 = \|f(x)\|^2
\]

- variable is \(n\)-vector \(x\)
- \(f_i(x)\) is \(i\)th (scalar) residual
- \(f: \mathbb{R}^n \to \mathbb{R}^m\) is the vector function \(f(x) = (f_1(x), \ldots, f_m(x))\)

Algorithms (see 133A)
- Newton’s method
- Gauss–Newton method
- Levenberg–Marquardt method

This lecture: add \(p\) equality constraints

\[g_1(x) = 0, \quad g_2(x) = 0, \quad \ldots, \quad g_p(x) = 0\]
Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example
we use the same derivative notation as in 133A

• gradient and Hessian of a scalar function \(h : \mathbb{R}^n \rightarrow \mathbb{R} \) are denoted by

\[
\nabla h(\tilde{x}) = \begin{bmatrix}
\frac{\partial h}{\partial x_1}(\tilde{x}) \\
\vdots \\
\frac{\partial h}{\partial x_n}(\tilde{x})
\end{bmatrix},
\nabla^2 h(\tilde{x}) = \begin{bmatrix}
\frac{\partial^2 h}{\partial x_1^2}(\tilde{x}) & \cdots & \frac{\partial^2 h}{\partial x_1 \partial x_n}(\tilde{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 h}{\partial x_n \partial x_1}(\tilde{x}) & \cdots & \frac{\partial^2 h}{\partial x_n^2}(\tilde{x})
\end{bmatrix}
\]

• Jacobian of vector function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is denoted by

\[
D f(\tilde{x}) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(\tilde{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\tilde{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(\tilde{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\tilde{x})
\end{bmatrix}
= \begin{bmatrix}
\nabla f_1(\tilde{x})^T \\
\vdots \\
\nabla f_m(\tilde{x})^T
\end{bmatrix}
\]
Minimization with equality constraints

\[
\begin{align*}
\text{minimize} & \quad h(x) \\
\text{subject to} & \quad g_1(x) = 0 \\
& \quad \ldots \\
& \quad g_p(x) = 0
\end{align*}
\]

\(h, g_1, \ldots, g_p\) are functions from \(\mathbb{R}^n\) to \(\mathbb{R}\)

- \(x\) is \textit{feasible} if it satisfies the constraints:

\[
g(x) = \begin{bmatrix}
g_1(x) \\
\vdots \\
g_p(x)
\end{bmatrix} = 0
\]

- feasible \(\hat{x}\) is \textit{optimal} (or a \textit{minimum}) if \(h(\hat{x}) \leq h(x)\) for all feasible \(x\)

- feasible \(\hat{x}\) is \textit{locally optimal} (a \textit{local minimum}) if there exists an \(R > 0\) such that

\[
h(\hat{x}) \leq h(x) \quad \text{for all feasible} \ x \ \text{with} \ \|x - \hat{x}\| \leq R
\]
Lagrange multipliers

Lagrangian: the *Lagrangian* is the function

\[
L(x, z) = h(x) + z^T g(x)
\]

\[
= h(x) + z_1 g_1(x) + \cdots + z_p g_p(x)
\]

the \(p \)-vector \(z = (z_1, \ldots, z_p) \) is the vector of *Lagrange multipliers* \(z_1, \ldots, z_p \)

Gradient of Lagrangian

\[
\nabla L(\tilde{x}, \tilde{z}) = \begin{bmatrix}
\nabla_x L(\tilde{x}, \tilde{z}) \\
\nabla_z L(\tilde{x}, \tilde{z})
\end{bmatrix}
\]

where

\[
\nabla_x L(\tilde{x}, \tilde{z}) = \nabla h(\tilde{x}) + \tilde{z}_1 \nabla g_1(\tilde{x}) + \cdots + \tilde{z}_p \nabla g_p(\tilde{x})
\]

\[
= \nabla h(\tilde{x}) + D g(\tilde{x})^T \tilde{z}
\]

\[
\nabla_z L(\tilde{x}, \tilde{z}) = g(\tilde{x})
\]
First-order optimality conditions

\[
\begin{align*}
\text{minimize} & \quad h(x) \\
\text{subject to} & \quad g(x) = 0
\end{align*}
\]

\(h\) is a function from \(\mathbb{R}^n\) to \(\mathbb{R}\), \(g\) is a function from \(\mathbb{R}^n\) to \(\mathbb{R}^p\)

First-order necessary optimality conditions

if \(\hat{x}\) is locally optimal and \(\text{rank}(Dg(\hat{x})) = p\), then there exist multipliers \(\hat{z}\) with

\[
\nabla L_x(\hat{x}, \hat{z}) = \nabla h(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0
\]

- together with \(g(\hat{x}) = 0\), this forms a set of \(n + p\) equations in \(n + p\) variables \(\hat{x}, \hat{z}\)
- gradient \(\nabla h(\hat{x})\) is a linear combination of gradients \(\nabla g_1(\hat{x}), \ldots, \nabla g_p(\hat{x})\)

Regular feasible point

- a feasible \(x\) with if \(\text{rank}(Dg(x)) = p\) is called a regular feasible point
- at a regular feasible point, \(\nabla g_1(x), \ldots, \nabla g_p(x)\) are linearly independent
Example

suppose A is a symmetric $n \times n$ matrix

\[
\begin{align*}
\text{minimize} & \quad x^T A x \\
\text{subject to} & \quad x^T x = 1
\end{align*}
\]

- Lagrangian is

\[
L(x, z) = x^T A x + z(x^T x - 1)
\]

- first-order necessary optimality condition:

\[
\hat{x}^T \hat{x} = 1, \quad \nabla_x L(\hat{x}, \hat{z}) = 0 \quad \iff \quad \hat{x}^T \hat{x} = 1, \quad A \hat{x} = -\hat{z} \hat{x}
\]

- hence optimal \hat{x} must be an eigenvector
Example

minimize \(x_2 \)
subject to \(x_1^2 + x_2^2 = 1 \)
\[(x_1 - 2)^2 + x_2^2 = 1 \]

- \(\hat{x} = (1, 0) \) is the only feasible point, hence optimal
- Lagrangian is \(L(x, z) = x_2 + z_1(x_1^2 + x_2^2 - 1) + z_2((x_1 - 2)^2 + x_2^2 - 1) \)
- 1st order optimality condition at \(\hat{x} = (1, 0) \):

\[
0 = \nabla_x L(\hat{x}, \hat{z}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\hat{z}_1 \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} + 2\hat{z}_2 \begin{bmatrix} \hat{x}_1 - 2 \\ \hat{x}_2 \end{bmatrix} \\
= \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\hat{z}_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2\hat{z}_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix}
\]

- this does not hold for any \(\hat{z}_1, \hat{z}_2 \)
- \(\hat{x} \) is not a regular point: gradients \((2, 0)\) and \((-2, 0)\) are linearly dependent
Outline

- Lagrange multipliers

- **constrained nonlinear least squares**

- penalty method

- augmented Lagrangian method

- nonlinear control example
Constrained nonlinear least squares

\[
\text{minimize} \quad f_1(x)^2 + \cdots + f_m(x)^2 \\
\text{subject to} \quad g_1(x) = 0, \ldots, g_p(x) = 0
\]

- variable is \(n \)-vector \(x \)
- \(f_i(x) \) is \(i \)th (scalar) residual
- \(g_i(x) = 0 \) is \(i \)th (scalar) equality constraint

Vector notation

\[
\text{minimize} \quad \| f(x) \|^2 \\
\text{subject to} \quad g(x) = 0
\]

- \(f : \mathbb{R}^n \to \mathbb{R}^m \) is vector function \(f(x) = (f_1(x), \ldots, f_m(x)) \)
- \(g : \mathbb{R}^n \to \mathbb{R}^p \) is vector function \(g(x) = (g_1(x), \ldots, g_p(x)) \)
First-order necessary optimality condition

Lagrangian

\[
L(x, z) = f_1(x)^2 + \cdots + f_m(x)^2 + z_1 g_1(x) + \cdots + z_p g_p(x)
\]

\[
= \|f(x)\|^2 + z^T g(x)
\]

Gradients of Lagrangian: \(\nabla_z L(\hat{x}, \hat{z}) = g(\hat{x}) \) and

\[
\nabla_x L(\hat{x}, \hat{z}) = 2D f(\hat{x})^T f(\hat{x}) + D g(\hat{x})^T \hat{z}
\]

\[
= 2 \begin{bmatrix} \nabla f_1(\hat{x}) & \cdots & \nabla f_m(\hat{x}) \end{bmatrix} \begin{bmatrix} f_1(\hat{x}) \\ \vdots \\ f_m(\hat{x}) \end{bmatrix} + \begin{bmatrix} \nabla g_1(\hat{x}) & \cdots & \nabla g_p(\hat{x}) \end{bmatrix} \begin{bmatrix} \hat{z}_1 \\ \vdots \\ \hat{z}_p \end{bmatrix}
\]

Optimality condition: if \(\hat{x} \) is locally optimal, then there exists \(\hat{z} \) such that

\[
2D f(\hat{x})^T f(\hat{x}) + D g(\hat{x})^T \hat{z} = 0, \quad g(\hat{x}) = 0
\]

(provided the rows of \(D g(\hat{x}) \) are linearly independent)
Constrained (linear) least squares

minimize \[\|Ax - b\|^2 \]
subject to \[Cx = d \]

- a special case of the nonlinear problem with

\[f(x) = Ax - b, \quad g(x) = Cx - d \]

- apply general optimality condition:

\[2D f(\hat{x})^T f(\hat{x}) + D g(\hat{x})^T \hat{z} = 2A^T (A\hat{x} - b) + C^T \hat{z} = 0, \quad g(\hat{x}) = C\hat{x} - d = 0 \]

- these are the Karush–Kuhn–Tucker (KKT) equations

\[
\begin{bmatrix}
2A^T A & C^T \\
C & 0
\end{bmatrix}
\begin{bmatrix}
\hat{x} \\
\hat{z}
\end{bmatrix}
=
\begin{bmatrix}
2A^T b \\
d
\end{bmatrix}
\]
Outline

• Lagrange multipliers
• constrained nonlinear least squares
• penalty method
• augmented Lagrangian method
• nonlinear control example
Penalty method

solve a sequence of (unconstrained) nonlinear least squares problems

\[
\text{minimize } \| f(x) \|^2 + \mu \| g(x) \|^2 = \left\| \begin{bmatrix} f(x) \\ \sqrt{\mu} g(x) \end{bmatrix} \right\|^2
\]

- \(\mu \) is a positive *penalty parameter*

- instead of insisting on \(g(x) = 0 \) we assign a penalty to deviations from zero

- for increasing sequence \(\mu^{(1)}, \mu^{(2)}, \ldots \), we compute \(x^{(k+1)} \) by minimizing

\[
\| f(x) \|^2 + \mu^{(k)} \| g(x) \|^2
\]

- \(x^{(k+1)} \) is computed by Levenberg–Marquardt algorithm started at \(x^{(k)} \)
optimality condition for constrained nonlinear least squares problem:

\[2Df(\hat{x})^Tf(\hat{x}) + Dg(\hat{x})^T\hat{z} = 0, \quad g(\hat{x}) = 0 \] (1)

• \(x^{(k)} \) in penalty method satisfies normal equations for linear least squares:

\[2Df(x^{(k)})^Tf(x^{(k)}) + 2\mu^{(k-1)}Dg(x^{(k)})^Tg(x^{(k)}) = 0 \]

• if we define \(z^{(k)} = 2\mu^{(k-1)}g(x^{(k)}) \), this can be written as

\[2Df(x^{(k)})^Tf(x^{(k)}) + Dg(x^{(k)})^Tz^{(k)} = 0 \]

• we see that \(x^{(k)}, z^{(k)} \) satisfy first equation in optimality condition (1)

• feasibility \(g(x^{(k)}) = 0 \) is only satisfied approximately for \(\mu^{(k-1)} \) large enough

• penalty method is terminated when \(\|g(x^{(k)})\| \) becomes sufficiently small
Example

\[f(x_1, x_2) = \begin{bmatrix} x_1 + \exp(-x_2) \\ x_1^2 + 2x_2 + 1 \end{bmatrix}, \quad g(x_1, x_2) = x_1 + x_1^3 + x_2 + x_2^2 \]

- : contour lines of \(\|f(x)\|^2 \)
- : minimizer of \(\|f(x)\|^2 \)
- : contour lines of \(g(x) \)
- : solution \(\hat{x} \)
First six iterations

\begin{align*}
\mu^{(1)} &= 1 \\
\mu^{(2)} &= 2 \\
\mu^{(3)} &= 4 \\
\mu^{(4)} &= 8 \\
\mu^{(5)} &= 16 \\
\mu^{(6)} &= 32
\end{align*}

\begin{align*}
x^{(2)} &\quad x^{(3)} &\quad x^{(4)} \\
x^{(5)} &\quad x^{(6)} &\quad x^{(7)}
\end{align*}

\[\text{---: contour lines of } \|f(x)\|^2 + \mu^{(k)} \|g(x)\|^2 \]

Constrained nonlinear least squares
figure on the left shows the two residuals in optimality condition:

- blue curve is norm of $g(x^{(k)})$
- red curve is norm of $2D f(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)}$
Drawback of penalty method

- $\mu^{(k)}$ increases rapidly and must become large to drive $g(x)$ to (near) zero
- for large $\mu^{(k)}$, nonlinear least squares subproblem becomes harder
- for large $\mu^{(k)}$, Levenberg–Marquardt method can take many iterations, or fail
Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example
Augmented Lagrangian

the *augmented Lagrangian* for the constrained NLLS problem is

\[
L_\mu(x, z) = L(x, z) + \mu \| g(x) \|^2 \\
= \| f(x) \|^2 + g(x)^T z + \mu \| g(x) \|^2
\]

- this is the Lagrangian \(L(x, z) \) augmented with a quadratic penalty
- \(\mu \) is a positive penalty parameter
- augmented Lagrangian is the Lagrangian of the equivalent problem

\[
\text{minimize } \| f(x) \|^2 + \mu \| g(x) \|^2 \\
\text{subject to } g(x) = 0
\]
Minimizing augmented Lagrangian

- equivalent expressions for augmented Lagrangian

\[
L_\mu(x, z) = \| f(x) \|^2 + g(x)^T z + \mu \| g(x) \|^2 \\
= \| f(x) \|^2 + \mu \left\| g(x) + \frac{1}{2\mu} z \right\|^2 - \frac{1}{2\mu} \| z \|^2 \\
= \left\| \begin{bmatrix} f(x) \\ \sqrt{\mu} g(x) + \frac{1}{2\sqrt{\mu}} z \end{bmatrix} \right\|^2 - \frac{1}{2\mu} \| z \|^2
\]

- can be minimized over \(x \) (for fixed \(\mu, z \)) by Levenberg–Marquardt method:

\[
\text{minimize } \left\| \begin{bmatrix} f(x) \\ \sqrt{\mu} g(x) + \frac{1}{2\sqrt{\mu}} z \end{bmatrix} \right\|^2
\]
Lagrange multiplier update

optimality conditions for constrained nonlinear least squares problem:

\[2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \quad g(\hat{x}) = 0 \]

- minimizer \(\tilde{x} \) of augmented Lagrangian \(L_\mu(x, z) \) satisfies

\[2Df(\tilde{x})^T f(\tilde{x}) + Dg(\tilde{x})^T (2\mu g(\tilde{x}) + z) = 0 \]

- first equation in optimality condition is satisfied if we define

\[\tilde{z} = z + 2\mu g(\tilde{x}) \]

- this shows that if \(g(\tilde{x}) = 0 \), then \(\tilde{x} \) is optimal

- if \(g(\tilde{x}) \) is not small, suggests \(\tilde{z} \) is a good update for \(z \)
Augmented Lagrangian algorithm

1. set $x^{(k+1)}$ to be the (approximate) minimizer of

$$\| f(x) \|^2 + \mu^{(k)} \left\| g(x) + \frac{1}{2\mu^{(k)}} z^{(k)} \right\|^2$$

$x^{(k+1)}$ is computed using Levenberg–Marquardt algorithm, starting from $x^{(k)}$

2. multiplier update:

$$z^{(k+1)} = z^{(k)} + 2\mu^{(k)} g(x^{(k+1)})$$

3. penalty parameter update:

$$\mu^{(k+1)} = \begin{cases}
\mu^{(k)} & \text{if } \| g(x^{(k+1)}) \| < 0.25 \| g(x^{(k)}) \| \\
2\mu^{(k)} & \text{otherwise}
\end{cases}$$

• iteration starts at $z^{(1)} = 0$, $\mu^{(1)} = 1$, some initial $x^{(1)}$
• μ is increased only when needed, more slowly than in penalty method
• continues until $g(x^{(k)})$ is sufficiently small (or iteration limit is reached)
Example of slide 13.14

\[
\begin{align*}
\mu^{(1)} &= 1, \ z^{(1)} = 0 \\
\mu^{(2)} &= 2, \ z^{(2)} = -0.893 \\
\mu^{(3)} &= 4, \ z^{(3)} = -1.569 \\
\mu^{(4)} &= 4, \ z^{(4)} = -1.898 \\
\mu^{(5)} &= 4, \ z^{(5)} = -1.976 \\
\mu^{(6)} &= 4, \ z^{(6)} = -1.994
\end{align*}
\]

| contour lines of augmented Lagrangian $L_{\mu^{(k)}}(x, z^{(k)})$ |

Constrained nonlinear least squares
figure on the left shows residuals in optimality condition:

- **blue curve** is norm of $g(x^{(k)})$
- **red curve** is norm of $2Df(x^{(k)})^Tf(x^{(k)}) + Dg(x^{(k)})^Tz^{(k)}$
Outline

• Lagrange multipliers

• constrained nonlinear least squares

• penalty method

• augmented Lagrangian method

• nonlinear control example
Simple model of a car

\[
\begin{align*}
\frac{dp_1}{dt} &= s(t) \cos \theta(t) \\
\frac{dp_2}{dt} &= s(t) \sin \theta(t) \\
\frac{d\theta}{dt} &= \frac{s(t)}{L} \tan \phi(t)
\end{align*}
\]

- $s(t)$ is speed of vehicle
- $\phi(t)$ is steering angle
- $p(t)$ is position
- $\theta(t)$ is orientation
Discretized model

- discretized model (for small time interval h):

\[
\begin{align*}
p_1(t + h) & \approx p_1(t) + hs(t) \cos(\theta(t)) \\
p_2(t + h) & \approx p_2(t) + hs(t) \sin(\theta(t)) \\
\theta(t + h) & \approx \theta(t) + h \frac{s(t)}{L} \tan(\phi(t))
\end{align*}
\]

- define input vector $u_k = (s(kh), \phi(kh))$
- define state vector $x_k = (p_1(kh), p_2(kh), \theta(kh))$
- discretized model is $x_{k+1} = f(x_k, u_k)$ with

\[
f(x_k, u_k) = \begin{bmatrix}
(x_k)_1 + h(u_k)_1 \cos((x_k)_3) \\
(x_k)_2 + h(u_k)_1 \sin((x_k)_3) \\
(x_k)_3 + h(u_k)_1 \tan((u_k)_2)/L
\end{bmatrix}
\]
Control problem

- move car from given initial to desired final position and orientation
- using a small and slowly varying input sequence
- this is a constrained nonlinear least squares problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{k=1}^{N} \|u_k\|^2 + \gamma \sum_{k=1}^{N-1} \|u_{k+1} - u_k\|^2 \\
\text{subject to} & \quad x_2 = f(0, u_1) \\
& \quad x_{k+1} = f(x_k, u_k), \quad k = 2, \ldots, N - 1 \\
& \quad x_{\text{final}} = f(x_N, u_N)
\end{align*}
\]

- variables are \(u_1, \ldots, u_N, x_2, \ldots, x_N \)
Example solution trajectories

\[x_{\text{final}} = (0, 1, 0) \]

\[x_{\text{final}} = (0, 1, \pi/2) \]
Example solution trajectories

\[x_{\text{final}} = (0, 0.5, 0) \]

\[x_{\text{final}} = (0.5, 0.5, -\pi/2) \]
Inputs for four trajectories

Constrained nonlinear least squares