13. Constrained nonlinear least squares

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Constrained nonlinear least squares

Nonlinear least squares

minimize
$$f_1(x)^2 + \dots + f_m(x)^2 = ||f(x)||^2$$

- variable is *n*-vector *x*
- $f_i(x)$ is *i*th (scalar) *residual*
- $f : \mathbf{R}^n \to \mathbf{R}^m$ is the vector function $f(x) = (f_1(x), \dots, f_m(x))$

Algorithms (see 133A)

- Newton's method
- Gauss–Newton method
- Levenberg–Marquardt method

This lecture: add *p* equality constraints

$$g_1(x) = 0,$$
 $g_2(x) = 0,$..., $g_p(x) = 0$

Outline

• Lagrange multipliers

- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Notation

we use the same derivative notation as in 133A

• gradient and Hessian of a scalar function $h : \mathbf{R}^n \to \mathbf{R}$ are denoted by

$$\nabla h(\tilde{x}) = \begin{bmatrix} \frac{\partial h}{\partial x_1}(\tilde{x}) \\ \vdots \\ \frac{\partial h}{\partial x_n}(\tilde{x}) \end{bmatrix}, \qquad \nabla^2 h(\tilde{x}) = \begin{bmatrix} \frac{\partial^2 h}{\partial x_1^2}(\tilde{x}) & \cdots & \frac{\partial^2 h}{\partial x_1 \partial x_n}(\tilde{x}) \\ \vdots & \vdots \\ \frac{\partial^2 h}{\partial x_n \partial x_1}(\tilde{x}) & \cdots & \frac{\partial^2 h}{\partial x_n^2}(\tilde{x}) \end{bmatrix}$$

• Jacobian of vector function $f : \mathbf{R}^n \to \mathbf{R}^m$ is denoted by

$$Df(\tilde{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\tilde{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\tilde{x}) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\tilde{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\tilde{x}) \end{bmatrix} = \begin{bmatrix} \nabla f_1(\tilde{x})^T \\ \vdots \\ \nabla f_m(\tilde{x})^T \end{bmatrix}$$

Minimization with equality constraints

minimize h(x)subject to $g_1(x) = 0$ \dots $g_p(x) = 0$

 h, g_1, \ldots, g_p are functions from \mathbf{R}^n to \mathbf{R}

• *x* is *feasible* if it satisfies the constraints:

$$g(x) = \begin{bmatrix} g_1(x) \\ \vdots \\ g_p(x) \end{bmatrix} = 0$$

- feasible \hat{x} is *optimal* (or a *minimum*) if $h(\hat{x}) \le h(x)$ for all feasible x
- feasible \hat{x} is *locally optimal* (a *local minimum*) if there exists an R > 0 such that

$$h(\hat{x}) \le h(x)$$
 for all feasible x with $||x - \hat{x}|| \le R$

Lagrange multipliers

Lagrangian: the Lagrangian is the function

$$L(x,z) = h(x) + z^T g(x)$$

= $h(x) + z_1 g_1(x) + \dots + z_p g_p(x)$

the *p*-vector $z = (z_1, \ldots, z_p)$ is the vector of Lagrange multipliers z_1, \ldots, z_p

Gradient of Lagrangian

$$\nabla L(\tilde{x}, \tilde{z}) = \begin{bmatrix} \nabla_x L(\tilde{x}, \tilde{z}) \\ \nabla_z L(\tilde{x}, \tilde{z}) \end{bmatrix}$$

where

$$\begin{aligned} \nabla_x L(\tilde{x}, \tilde{z}) &= \nabla h(\tilde{x}) + \tilde{z}_1 \nabla g_1(\tilde{x}) + \dots + \tilde{z}_p \nabla g_p(\tilde{x}) \\ &= \nabla h(\tilde{x}) + Dg(\tilde{x})^T \tilde{z} \\ \nabla_z L(\tilde{x}, \tilde{z}) &= g(\tilde{x}) \end{aligned}$$

First-order optimality conditions

 $\begin{array}{ll} \text{minimize} & h(x) \\ \text{subject to} & g(x) = 0 \end{array}$

h is a function from \mathbf{R}^n to \mathbf{R} , *g* is a function from \mathbf{R}^n to \mathbf{R}^p

First-order necessary optimality conditions

if \hat{x} is locally optimal and rank $(Dg(\hat{x})) = p$, then there exist multipliers \hat{z} with

 $\nabla L_x(\hat{x}, \hat{z}) = \nabla h(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0$

- together with $g(\hat{x}) = 0$, this forms a set of n + p equations in n + p variables \hat{x} , \hat{z}
- gradient $\nabla h(\hat{x})$ is a linear combination of gradients $\nabla g_1(\hat{x}), \ldots, \nabla g_p(\hat{x})$

Regular feasible point

- a feasible x with if rank(Dg(x)) = p is called a *regular* feasible point
- at a regular feasible point, $\nabla g_1(x), \ldots, \nabla g_p(x)$ are linearly independent

Example

suppose *A* is a symmetric $n \times n$ matrix

minimize $x^T A x$ subject to $x^T x = 1$

• Lagrangian is

$$L(x, z) = x^T A x + z(x^T x - 1)$$

• first-order necessary optimality condition:

$$\hat{x}^T \hat{x} = 1, \quad \nabla_x L(\hat{x}, \hat{z}) = 0 \qquad \Longleftrightarrow \qquad \hat{x}^T \hat{x} = 1, \quad A\hat{x} = -\hat{z}\hat{x}$$

• hence optimal \hat{x} must be an eigenvector

Example

- $\hat{x} = (1, 0)$ is the only feasible point, hence optimal
- Lagrangian is $L(x, z) = x_2 + z_1(x_1^2 + x_2^2 1) + z_2((x_1 2)^2 + x_2^2 1)$
- 1st order optimality condition at $\hat{x} = (1, 0)$:

$$0 = \nabla_{x} L(\hat{x}, \hat{z}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\hat{z}_{1} \begin{bmatrix} \hat{x}_{1} \\ \hat{x}_{2} \end{bmatrix} + 2\hat{z}_{2} \begin{bmatrix} \hat{x}_{1} - 2 \\ \hat{x}_{2} \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 2\hat{z}_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2\hat{z}_{2} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

- this does not hold for any \hat{z}_1 , \hat{z}_2
- \hat{x} is not a regular point: gradients (2,0) and (-2,0) are linearly dependent

Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Constrained nonlinear least squares

minimize
$$f_1(x)^2 + \cdots + f_m(x)^2$$

subject to $g_1(x) = 0, \ldots, g_p(x) = 0$

- variable is *n*-vector *x*
- $f_i(x)$ is *i*th (scalar) *residual*
- $g_i(x) = 0$ is *i*th (scalar) equality constraint

Vector notation

minimize $||f(x)||^2$ subject to g(x) = 0

- $f : \mathbf{R}^n \to \mathbf{R}^m$ is vector function $f(x) = (f_1(x), \dots, f_m(x))$
- $g : \mathbf{R}^n \to \mathbf{R}^p$ is vector function $g(x) = (g_1(x), \dots, g_p(x))$

First-order necessary optimality condition

Lagrangian

$$L(x,z) = f_1(x)^2 + \dots + f_m(x)^2 + z_1g_1(x) + \dots + z_pg_p(x)$$

= $||f(x)||^2 + z^Tg(x)$

Gradients of Lagrangian: $\nabla_z L(\hat{x}, \hat{z}) = g(\hat{x})$ and

$$\nabla_{x}L(\hat{x},\hat{z}) = 2Df(\hat{x})^{T}f(\hat{x}) + Dg(\hat{x})^{T}\hat{z}$$

$$= 2\left[\nabla f_{1}(\hat{x}) \cdots \nabla f_{m}(\hat{x})\right] \begin{bmatrix} f_{1}(\hat{x}) \\ \vdots \\ f_{m}(\hat{x}) \end{bmatrix} + \left[\nabla g_{1}(\hat{x}) \cdots \nabla g_{p}(\hat{x})\right] \begin{bmatrix} \hat{z}_{1} \\ \vdots \\ \hat{z}_{p} \end{bmatrix}$$

Optimality condition: if \hat{x} is locally optimal, then there exists \hat{z} such that

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \qquad g(\hat{x}) = 0$$

(provided the rows of $Dg(\hat{x})$ are linearly independent)

Constrained nonlinear least squares

Constrained (linear) least squares

minimize $||Ax - b||^2$ subject to Cx = d

• a special case of the nonlinear problem with

$$f(x) = Ax - b, \qquad g(x) = Cx - d$$

• apply general optimality condition:

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 2A^T (A\hat{x} - b) + C^T \hat{z} = 0, \qquad g(\hat{x}) = C\hat{x} - d = 0$$

• these are the Karush–Kuhn–Tucker (KKT) equations

$$\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{z} \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$

Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Penalty method

solve a sequence of (unconstrained) nonlinear least squares problems

minimize
$$||f(x)||^2 + \mu ||g(x)||^2 = \left\| \begin{bmatrix} f(x) \\ \sqrt{\mu}g(x) \end{bmatrix} \right\|^2$$

- μ is a positive *penalty parameter*
- instead of insisting on g(x) = 0 we assign a penalty to deviations from zero
- for increasing sequence $\mu^{(1)}, \mu^{(2)}, \ldots$, we compute $x^{(k+1)}$ by minimizing

$$\|f(x)\|^2 + \mu^{(k)} \|g(x)\|^2$$

• $x^{(k+1)}$ is computed by Levenberg–Marquardt algorithm started at $x^{(k)}$

Termination

optimality condition for constrained nonlinear least squares problem:

$$2Df(\hat{x})^T f(\hat{x}) + Dg(\hat{x})^T \hat{z} = 0, \qquad g(\hat{x}) = 0$$
(1)

• $x^{(k)}$ in penalty method satisfies normal equations for linear least squares:

$$2Df(x^{(k)})^T f(x^{(k)}) + 2\mu^{(k-1)} Dg(x^{(k)})^T g(x^{(k)}) = 0$$

• if we define $z^{(k)} = 2\mu^{(k-1)}g(x^{(k)})$, this can be written as

$$2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)} = 0$$

- we see that $x^{(k)}$, $z^{(k)}$ satisfy first equation in optimality condition (1)
- feasibility $g(x^{(k)}) = 0$ is only satisfied approximately for $\mu^{(k-1)}$ large enough
- penalty method is terminated when $||g(x^{(k)})||$ becomes sufficiently small

Example

$$f(x_1, x_2) = \begin{bmatrix} x_1 + \exp(-x_2) \\ x_1^2 + 2x_2 + 1 \end{bmatrix}, \qquad g(x_1, x_2) = \begin{bmatrix} x_1 + \exp(-x_2) \\ x_1^2 + 2x_2 + 1 \end{bmatrix},$$

$$g(x_1, x_2) = x_1 + x_1^3 + x_2 + x_2^2$$

- —: contour lines of $||f(x)||^2$
 - : minimizer of $||f(x)||^2$
- ••••• : contour lines of g(x)
 - : solution \hat{x}

First six iterations

Convergence

figure on the left shows the two residuals in optimality condition:

- blue curve is norm of $g(x^{(k)})$
- red curve is norm of $2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)}$

Drawback of penalty method

- $\mu^{(k)}$ increases rapidly and must become large to drive g(x) to (near) zero
- for large $\mu^{(k)}$, nonlinear least squares subproblem becomes harder
- for large $\mu^{(k)}$, Levenberg–Marquardt method can take many iterations, or fail

Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Augmented Lagrangian

the augmented Lagrangian for the constrained NLLS problem is

$$L_{\mu}(x, z) = L(x, z) + \mu \|g(x)\|^{2}$$

= $\|f(x)\|^{2} + g(x)^{T}z + \mu \|g(x)\|^{2}$

- this is the Lagrangian L(x, z) augmented with a quadratic penalty
- μ is a positive penalty parameter
- augmented Lagrangian is the Lagrangian of the equivalent problem

minimize $||f(x)||^2 + \mu ||g(x)||^2$ subject to g(x) = 0

Minimizing augmented Lagrangian

• equivalent expressions for augmented Lagrangian

$$L_{\mu}(x,z) = \|f(x)\|^{2} + g(x)^{T}z + \mu \|g(x)\|^{2}$$

$$= \|f(x)\|^{2} + \mu \|g(x) + \frac{1}{2\mu}z\|^{2} - \frac{1}{2\mu} \|z\|^{2}$$

$$= \|\left[\int_{\sqrt{\mu}g(x) + \frac{1}{2\sqrt{\mu}}z}^{f(x)} dx\right]^{2} - \frac{1}{2\mu} \|z\|^{2}$$

• can be minimized over x (for fixed μ , z) by Levenberg–Marquardt method:

minimize
$$\left\| \begin{bmatrix} f(x) \\ \sqrt{\mu}g(x) + \frac{1}{2\sqrt{\mu}}z \end{bmatrix} \right\|^2$$

Lagrange multiplier update

optimality conditions for constrained nonlinear least squares problem:

$$2Df(\hat{x})^{T}f(\hat{x}) + Dg(\hat{x})^{T}\hat{z} = 0, \qquad g(\hat{x}) = 0$$

• minimizer \tilde{x} of augmented Lagrangian $L_{\mu}(x, z)$ satisfies

$$2Df(\tilde{x})^T f(\tilde{x}) + Dg(\tilde{x})^T (2\mu g(\tilde{x}) + z) = 0$$

• first equation in optimality condition is satisfied if we define

$$\tilde{z} = z + 2\mu g(\tilde{x})$$

- this shows that if $g(\tilde{x}) = 0$, then \tilde{x} is optimal
- if $g(\tilde{x})$ is not small, suggests \tilde{z} is a good update for z

Augmented Lagrangian algorithm

1. set $x^{(k+1)}$ to be the (approximate) minimizer of

$$||f(x)||^2 + \mu^{(k)} \left\|g(x) + \frac{1}{2\mu^{(k)}} z^{(k)}\right\|^2$$

 $x^{(k+1)}$ is computed using Levenberg–Marquardt algorithm, starting from $x^{(k)}$

2. multiplier update:

$$z^{(k+1)} = z^{(k)} + 2\mu^{(k)}g(x^{(k+1)})$$

3. penalty parameter update:

$$\mu^{(k+1)} = \begin{cases} \mu^{(k)} & \text{if } \|g(x^{(k+1)})\| < 0.25 \|g(x^{(k)})\| \\ 2\mu^{(k)} & \text{otherwise} \end{cases}$$

- iteration starts at $z^{(1)} = 0$, $\mu^{(1)} = 1$, some initial $x^{(1)}$
- μ is increased only when needed, more slowly than in penalty method
- continues until $g(x^{(k)})$ is sufficiently small (or iteration limit is reached)

— : contour lines of augmented Lagrangian $L_{\mu^{(k)}}(x, z^{(k)})$

Constrained nonlinear least squares

Convergence

figure on the left shows residuals in optimality condition:

- blue curve is norm of $g(x^{(k)})$
- red curve is norm of $2Df(x^{(k)})^T f(x^{(k)}) + Dg(x^{(k)})^T z^{(k)}$

Outline

- Lagrange multipliers
- constrained nonlinear least squares
- penalty method
- augmented Lagrangian method
- nonlinear control example

Simple model of a car

$$\frac{dp_1}{dt} = s(t)\cos\theta(t)$$
$$\frac{dp_2}{dt} = s(t)\sin\theta(t)$$
$$\frac{d\theta}{dt} = \frac{s(t)}{L}\tan\phi(t)$$

- *s*(*t*) is speed of vehicle
- $\phi(t)$ is steering angle
- p(t) is position
- $\theta(t)$ is orientation

Discretized model

• discretized model (for small time interval *h*):

$$p_1(t+h) \approx p_1(t) + hs(t)\cos(\theta(t))$$

$$p_2(t+h) \approx p_2(t) + hs(t)\sin(\theta(t))$$

$$\theta(t+h) \approx \theta(t) + h\frac{s(t)}{L}\tan(\phi(t))$$

- define input vector $u_k = (s(kh), \phi(kh))$
- define state vector $x_k = (p_1(kh), p_2(kh), \theta(kh))$
- discretized model is $x_{k+1} = f(x_k, u_k)$ with

$$f(x_k, u_k) = \begin{bmatrix} (x_k)_1 + h(u_k)_1 \cos((x_k)_3) \\ (x_k)_2 + h(u_k)_1 \sin((x_k)_3) \\ (x_k)_3 + h(u_k)_1 \tan((u_k)_2)/L \end{bmatrix}$$

Control problem

- move car from given initial to desired final position and orientation
- using a small and slowly varying input sequence
- this is a constrained nonlinear least squares problem:

minimize
$$\sum_{k=1}^{N} ||u_k||^2 + \gamma \sum_{k=1}^{N-1} ||u_{k+1} - u_k||^2$$

subject to $x_2 = f(0, u_1)$
 $x_{k+1} = f(x_k, u_k), \quad k = 2, \dots, N-1$
 $x_{\text{final}} = f(x_N, u_N)$

• variables are
$$u_1, \ldots, u_N, x_2, \ldots, x_N$$

Example solution trajectories

Example solution trajectories

Inputs for four trajectories

