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12. Nonnegative matrices

• matrix norms and spectral radius

• linear dynamical systems

• Perron–Frobenius theorem
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Norms

recall the three defining properties of a norm (of vectors or matrices)

• positive definiteness: ∥𝑥∥ ≥ 0 for all 𝑥, and ∥𝑥∥ = 0 only if 𝑥 = 0

• homogeneity: ∥𝛾𝑥∥ = |𝛾 |∥𝑥∥ for all 𝑥 and all scalars 𝛾

• triangle inequality: ∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ for all 𝑥, 𝑦

Examples of vector norms (on R𝑛 or C𝑛)

• Euclidean norm ∥𝑥∥2 = ( |𝑥1 |2 + · · · + |𝑥𝑛 |2)1/2 (denoted by ∥𝑥∥ in this course)

• Chebyshev norm (infinity-norm): ∥𝑥∥∞ = max{|𝑥1 |, |𝑥2 |, . . . , |𝑥𝑛 |}
• 1-norm: ∥𝑥∥1 = |𝑥1 | + |𝑥2 | + · · · + |𝑥𝑛 |

Examples of matrix norms (on R𝑚×𝑛 or C𝑚×𝑛)

• Frobenius norm ∥𝑋 ∥𝐹 =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

|𝑋𝑖 𝑗 |2

• matrix 2-norm (spectral norm) ∥𝑋 ∥2 = 𝜎1(𝑋) (maximum singular value)

• max-row-sum norm ∥𝑋 ∥∞ = max
𝑖=1,...,𝑚

𝑛
∑
𝑗=1

|𝑋𝑖 𝑗 |
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Submultiplicative matrix norms

for matrix norms on R𝑛×𝑛 or C𝑛×𝑛 one often requires a fourth property:

∥𝐴𝐵∥ ≤ ∥𝐴∥∥𝐵∥ for all 𝐴, 𝐵

• such a norm is called submultiplicative

• for a submultiplicative norm, ∥𝐴𝑘 ∥ ≤ ∥𝐴∥𝑘 for positive integer 𝑘

Examples: the following matrix norms are submultiplicative

• Frobenius norm

• matrix 2-norm

• max-row-sum norm

Exercise: show that the following matrix norm is not submultiplicative

∥𝑋 ∥ = max
𝑖=1,...,𝑛

max
𝑗=1,...,𝑛

|𝑋𝑖 𝑗 |
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Spectral radius

the spectral radius of an 𝑛 × 𝑛 matrix 𝐴 is defined as

𝜌(𝐴) = max
𝑖=1,...,𝑛

|𝜆𝑖 (𝐴) |

Example

𝐴 =


−1 −2 6
−2 1 5

2 −5 −4

 real axis

imaginary axis

𝜆3

𝜆1

𝜆2

• eigenvalues of 𝐴:

𝜆1 = −2.72 + 2.91j, 𝜆2 = −2.72 − 2.91j, 𝜆3 = 1.45

• spectral radius is 𝜌(𝐴) = |𝜆1 | = |𝜆2 | = 3.99
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Spectral radius of normal matrix

for a normal matrix,
𝜌(𝐴) = ∥𝐴∥2

• recall definition of normal matrix on page 10.12: 𝐴𝐴𝐻 = 𝐴𝐻𝐴

• normal matrices include symmetric, skew-symmetric, orthogonal matrices

• Schur decomposition of normal matrix is of the form

𝐴 = 𝑈𝐷𝑈𝐻 with 𝑈 unitary, 𝐷 diagonal

diagonal entries of 𝐷 are the eigenvalues 𝜆𝑖 of 𝐴

• therefore, singular values 𝜎𝑘 are the absolute values of the eigenvalues, so

𝜌(𝐴) = max
𝑖=1,...,𝑛

|𝜆𝑖 | = max
𝑘=1,...,𝑛

𝜎𝑘 = ∥𝐴∥2

for non-normal matrices 𝜌(𝐴) and ∥𝐴∥2 can be very different: for 𝐴 on page 12.4,

𝜌(𝐴) = 3.99, ∥𝐴∥2 = 9.41
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Spectral radius is not a matrix norm

the spectral radius is not a norm on R𝑛×𝑛 or C𝑛×𝑛

• nonzero matrix can have zero spectral radius (all eigenvalues are zero)

𝐴 =

[
0 1
0 0

]
• triangle inequality does not hold for spectral radius

𝐴 =

[
1 3
0 1

]
, 𝐵 =

[ −1 0
3 −1

]
, 𝐴 + 𝐵 =

[
0 3
3 0

]
here, 𝜌(𝐴) = 𝜌(𝐵) = 1, but

𝜌(𝐴 + 𝐵) = 3 > 𝜌(𝐴) + 𝜌(𝐵)
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Norm bound on spectral radius

for any submultiplicative matrix norm,

𝜌(𝐴) ≤ ∥𝐴∥ (1)

Proof
• choose a vector norm that is consistent with the matrix norm, i.e.,

∥𝐴𝑥∥ ≤ ∥𝐴∥∥𝑥∥ for all 𝐴 and all 𝑥

• for example, define vector norm as ∥𝑥∥ = ∥𝑥𝑦𝑇 ∥ where 𝑦 ≠ 0 is a fixed 𝑛-vector:

∥𝐴𝑥∥ = ∥𝐴𝑥𝑦𝑇 ∥ ≤ ∥𝐴∥∥𝑥𝑦𝑇 ∥ = ∥𝐴∥∥𝑥∥

inequality follows from submultiplicative property of the matrix norm

• now, if 𝑥 is eigenvector with eigenvalue 𝜆 and |𝜆 | = 𝜌(𝐴), then (1) follows from:

𝜌(𝐴)∥𝑥∥ = |𝜆 |∥𝑥∥ = ∥𝜆𝑥∥ = ∥𝐴𝑥∥ ≤ ∥𝐴∥∥𝑥∥
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Outline

• matrix norms and spectral radius

• linear dynamical systems

• Perron–Frobenius theorem



Discrete-time linear dynamical system

𝑥(𝑡 + 1) = 𝐴(𝑡)𝑥(𝑡), 𝑡 = 0, 1, 2, . . .

• 𝑡 denotes time or period

• 𝑛-vector 𝑥(𝑡) is the state at time 𝑡

• 𝑛 × 𝑛 matrix 𝐴(𝑡) is the dynamics matrix at time 𝑡

• current state is a linear function of the previous state

• system is time-invariant if 𝐴(𝑡) = 𝐴 does not depend on time

for a time-invariant system,

𝑥(𝑡) = 𝐴𝑡𝑥(0), 𝑡 = 0, 1, 2, . . .

• properties of matrix power 𝐴𝑡 determine dynamical behavior

• in this lecture we will be interested in systems with 𝐴𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗
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Autoregressive model

𝑥(𝑡 + 1) = 𝐴1𝑥(𝑡) + 𝐴2𝑥(𝑡 − 1) + · · · + 𝐴𝑝𝑥(𝑡 − 𝑝 + 1)

• state evolution is described by a homogeneous difference equation

• current state is a linear function of the 𝑝 previous states

• linear dynamical system 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) is a special case with 𝑝 = 1

• for 𝑝 > 1, can be written as a linear dynamical system 𝑥(𝑡 + 1) = �̃�𝑥(𝑡):



𝑥(𝑡 + 1)
𝑥(𝑡)

𝑥(𝑡 − 1)
...

𝑥(𝑡 − 𝑝 + 3)
𝑥(𝑡 − 𝑝 + 2)

︸               ︷︷               ︸
𝑥(𝑡 + 1)

=



𝐴1 𝐴2 · · · 𝐴𝑝−1 𝐴𝑝

𝐼 0 · · · 0 0
0 𝐼 · · · 0 0
... ... ... ...
0 0 0 0
0 0 · · · 𝐼 0

︸                                   ︷︷                                   ︸
�̃�



𝑥(𝑡)
𝑥(𝑡 − 1)
𝑥(𝑡 − 2)

...
𝑥(𝑡 − 𝑝 + 2)
𝑥(𝑡 − 𝑝 + 1)

︸               ︷︷               ︸
𝑥(𝑡)
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Population dynamics

• 𝑥(𝑡) ∈ R100 gives age distribution of population in year 𝑡 (say, on January 1)

• 𝑥𝑖 (𝑡) for 𝑖 < 100 is the number of people with age 𝑖 − 1

• 𝑥100(𝑡) is the number of people aged 99 and above

• we exclude changes due to immigration

Linear dynamical model


𝑥1(𝑡 + 1)
𝑥2(𝑡 + 1)
𝑥3(𝑡 + 1)

...
𝑥100(𝑡 + 1)


=


𝑏1 𝑏2 · · · 𝑏99 𝑏100

1 − 𝑑1 0 · · · 0 0
0 1 − 𝑑2 · · · 0 0
... ... . . . ... ...
0 0 · · · 1 − 𝑑99 1 − 𝑑100




𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)
...

𝑥100(𝑡)


• 𝑏𝑖 ≥ 0 is number of births per person with age 𝑖 − 1

• 0 < 𝑑𝑖 < 1 is number of deaths per person with age 𝑖 − 1
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Epidemic dynamics

4-vector 𝑥(𝑡) gives proportion of population in 4 infection states

• susceptible: can acquire the disease the next day

• infected: have the disease

• recovered: had the disease, recovered, now immune

• deceased: had the disease, and unfortunately died

Example 
𝑥s(𝑡 + 1)
𝑥i(𝑡 + 1)
𝑥r(𝑡 + 1)
𝑥d(𝑡 + 1)

 =


0.95 0.04 0 0
0.05 0.85 0 0

0 0.10 1 0
0 0.01 0 1



𝑥s(𝑡)
𝑥i(𝑡)
𝑥r(𝑡)
𝑥d(𝑡)


each day,

• 5% of susceptible population acquires the disease, 95% remains susceptible

• 4% of infected recover without immunity, 10% with immunity, 1% die
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Simulation of epidemic dynamics

0 50 100 150 200

0.2

0.4

0.6

0.8

1

Susceptible

Infected

Recovered

Deceased

Time 𝑡

𝑥
(𝑡)

• figure shows 𝑥(𝑡) starting at 𝑥(1) = (1, 0, 0, 0)
• 𝑥(𝑡) → (0.0, 0.0, 0.91, 0.09) (an eigenvector of 𝐴 with eigenvalue 1)
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Finite Markov chain

• 𝑠(𝑡) is a random variable, with possible values 1, 2, . . . , 𝑛 (the 𝑛 “states”)

• 𝑥𝑖 (𝑡) is the probability that 𝑠(𝑡) = 𝑖

• 𝐴𝑖 𝑗 is probability that 𝑠(𝑡 + 1) = 𝑖, given that 𝑠(𝑡) = 𝑗 :

𝑥𝑖 (𝑡 + 1) = 𝐴𝑖1𝑥1(𝑡) + 𝐴𝑖2𝑥2(𝑡) + · · · + 𝐴𝑖𝑛𝑥𝑛(𝑡)

hence, 𝐴 is nonnegative, with 𝐴1 𝑗 + 𝐴2 𝑗 + · · · + 𝐴𝑛 𝑗 = 1 in each column

• matrix 𝐴𝑇 is called the state transition matrix

Example

𝐴 =


0.8 0.4 0.9
0.2 0.1 0

0 0.5 0.1


1

23

0.8

0.10.1

0.2
0.4

0.5

0.9
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Eigenvalues of matrix power

let 𝐴 be a square matrix with Schur decomposition

𝐴 = 𝑈𝑇𝑈𝐻

diagonal elements of 𝑇 are eigenvalues 𝜆1, . . . , 𝜆𝑛 of 𝐴

• if 𝑘 is a positive integer, then 𝐴𝑘 = 𝑈𝑇 𝑘𝑈𝐻

• this is a Schur decomposition: 𝑇 𝑘 is upper triangular with diagonal elements

𝑇 𝑘
11, 𝑇 𝑘

22, . . . , 𝑇 𝑘
𝑛𝑛

• eigenvalues of 𝐴𝑘 are 𝜆𝑘1, 𝜆
𝑘
2, . . . , 𝜆

𝑘
𝑛

• spectral radius is 𝜌(𝐴𝑘) = 𝜌(𝐴)𝑘

• one can also show that

lim
𝑘→∞

𝐴𝑘 = 0 ⇐⇒ 𝜌(𝐴) < 1
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Perron–Frobenius theorem

suppose 𝐴 ∈ R𝑛×𝑛 is nonnegative (componentwise) and irreducible

Perron root

• 𝜌(𝐴) is an eigenvalue of 𝐴, called the Perron root

• 𝜌(𝐴 > 0

• the eigenvalue 𝜌(𝐴) has algebraic (hence, geometric) multiplicity one

Perron vector

• 𝐴 has a positive eigenvector with eigenvalue 𝜌(𝐴)
• normalized to satisfy 1𝑇𝑥 = 1 this vector is unique, and called the Perron vector:

𝐴𝑥 = 𝜌(𝐴)𝑥, 𝑥 > 0, 1𝑇𝑥 = 1

• 𝐴 has no other nonnegative eigenvectors (except multiples of the Perron vector)

Other eigenvalues: if 𝐴 is positive, eigenvalues 𝜆 ≠ 𝜌(𝐴) satisfy |𝜆 | < 𝜌(𝐴)
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Nonnegative matrices

some weaker results hold if 𝐴 is nonnegative, but not irreducible

• 𝜌(𝐴) is an eigenvalue of 𝐴

• 𝐴 has a nonnegative eigenvector with eigenvalue 𝜌(𝐴)
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Finite Markov chain

consider a finite Markov chain (page 12.13), and assume 𝐴 is irreducible

• the state transition matrix 𝐴𝑇 is also irreducible

• since ∑
𝑖 𝐴𝑖 𝑗 = 1 for all 𝑗 , the vector 1 is an eigenvector of 𝐴𝑇 with eigenvalue 1:

𝐴𝑇1 = 1

• from the definition of 𝜌(𝐴) and the norm inequality on page 12.7

1 ≤ 𝜌(𝐴) = 𝜌(𝐴𝑇) ≤ ∥𝐴𝑇 ∥∞ = 1

hence, 𝜌(𝐴) = 1

• there is a unique positive stationary probability vector (the Perron vector of 𝐴):

𝐴𝑥 = 𝑥, 𝑥 > 0, 1𝑇𝑥 = 1

for the example on page 12.13, the stationary probability distribution is

𝑥 = (0.743, 0.165, 0.092)
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