12. Nonnegative matrices

- matrix norms and spectral radius
- linear dynamical systems
- Perron-Frobenius theorem

Norms

recall the three defining properties of a norm (of vectors or matrices)

- positive definiteness: $\|x\| \geq 0$ for all x, and $\|x\|=0$ only if $x=0$
- homogeneity: $\|\gamma x\|=|\gamma|\|x\|$ for all x and all scalars γ
- triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$ for all x, y

Examples of vector norms (on \mathbf{R}^{n} or \mathbf{C}^{n})

- Euclidean norm $\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)^{1 / 2}$ (denoted by $\|x\|$ in this course)
- Chebyshev norm (infinity-norm): $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$
- 1-norm: $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$

Examples of matrix norms (on $\mathbf{R}^{m \times n}$ or $\mathbf{C}^{m \times n}$)

- Frobenius norm $\|X\|_{F}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i j}\right|^{2}$
- matrix 2-norm (spectral norm) $\|X\|_{2}=\sigma_{1}(X)$ (maximum singular value)
- max-row-sum norm $\|X\|_{\infty}=\max _{i=1, \ldots, m} \sum_{j=1}^{n}\left|X_{i j}\right|$

Submultiplicative matrix norms

for matrix norms on $\mathbf{R}^{n \times n}$ or $\mathbf{C}^{n \times n}$ one often requires a fourth property:

$$
\|A B\| \leq\|A\|\|B\| \quad \text { for all } A, B
$$

- such a norm is called submultiplicative
- for a submultiplicative norm, $\left\|A^{k}\right\| \leq\|A\|^{k}$ for positive integer k

Examples: the following matrix norms are submultiplicative

- Frobenius norm
- matrix 2-norm
- max-row-sum norm

Exercise: show that the following matrix norm is not submultiplicative

$$
\|X\|=\max _{i=1, \ldots, n, n} \max _{j=1, \ldots, n}\left|X_{i j}\right|
$$

Spectral radius

the spectral radius of an $n \times n$ matrix A is defined as

$$
\rho(A)=\max _{i=1, \ldots, n}\left|\lambda_{i}(A)\right|
$$

Example

$$
A=\left[\begin{array}{rrr}
-1 & -2 & 6 \\
-2 & 1 & 5 \\
2 & -5 & -4
\end{array}\right]
$$

- eigenvalues of A :

$$
\lambda_{1}=-2.72+2.91 \mathrm{j}, \quad \lambda_{2}=-2.72-2.91 \mathrm{j}, \quad \lambda_{3}=1.45
$$

- spectral radius is $\rho(A)=\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=3.99$

Spectral radius of normal matrix

for a normal matrix,

$$
\rho(A)=\|A\|_{2}
$$

- recall definition of normal matrix on page 10.12: $A A^{H}=A^{H} A$
- normal matrices include symmetric, skew-symmetric, orthogonal matrices
- Schur decomposition of normal matrix is of the form

$$
A=U D U^{H} \quad \text { with } U \text { unitary, } D \text { diagonal }
$$

diagonal entries of D are the eigenvalues λ_{i} of A

- therefore, singular values σ_{k} are the absolute values of the eigenvalues, so

$$
\rho(A)=\max _{i=1, \ldots, n}\left|\lambda_{i}\right|=\max _{k=1, \ldots, n} \sigma_{k}=\|A\|_{2}
$$

for non-normal matrices $\rho(A)$ and $\|A\|_{2}$ can be very different: for A on page 12.4,

$$
\rho(A)=3.99, \quad\|A\|_{2}=9.41
$$

Spectral radius is not a matrix norm

the spectral radius is not a norm on $\mathbf{R}^{n \times n}$ or $\mathbf{C}^{n \times n}$

- nonzero matrix can have zero spectral radius (all eigenvalues are zero)

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

- triangle inequality does not hold for spectral radius

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
-1 & 0 \\
3 & -1
\end{array}\right], \quad A+B=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right]
$$

here, $\rho(A)=\rho(B)=1$, but

$$
\rho(A+B)=3>\rho(A)+\rho(B)
$$

Norm bound on spectral radius

for any submultiplicative matrix norm,

$$
\begin{equation*}
\rho(A) \leq\|A\| \tag{1}
\end{equation*}
$$

Proof

- choose a vector norm that is consistent with the matrix norm, i.e.,

$$
\|A x\| \leq\|A\|\|x\| \quad \text { for all } A \text { and all } x
$$

- for example, define vector norm as $\|x\|=\left\|x y^{T}\right\|$ where $y \neq 0$ is a fixed n-vector:

$$
\|A x\|=\left\|A x y^{T}\right\| \leq\|A\|\left\|x y^{T}\right\|=\|A\|\|x\|
$$

inequality follows from submultiplicative property of the matrix norm

- now, if x is eigenvector with eigenvalue λ and $|\lambda|=\rho(A)$, then (1) follows from:

$$
\rho(A)\|x\|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|
$$

Outline

- matrix norms and spectral radius
- linear dynamical systems
- Perron-Frobenius theorem

Discrete-time linear dynamical system

$$
x(t+1)=A(t) x(t), \quad t=0,1,2, \ldots
$$

- t denotes time or period
- n-vector $x(t)$ is the state at time t
- $n \times n$ matrix $A(t)$ is the dynamics matrix at time t
- current state is a linear function of the previous state
- system is time-invariant if $A(t)=A$ does not depend on time
for a time-invariant system,

$$
x(t)=A^{t} x(0), \quad t=0,1,2, \ldots
$$

- properties of matrix power A^{t} determine dynamical behavior
- in this lecture we will be interested in systems with $A_{i j} \geq 0$ for all i, j

Autoregressive model

$$
x(t+1)=A_{1} x(t)+A_{2} x(t-1)+\cdots+A_{p} x(t-p+1)
$$

- state evolution is described by a homogeneous difference equation
- current state is a linear function of the p previous states
- linear dynamical system $x(t+1)=A x(t)$ is a special case with $p=1$
- for $p>1$, can be written as a linear dynamical system $\tilde{x}(t+1)=\tilde{A} \tilde{x}(t)$:

$$
\underbrace{\left[\begin{array}{c}
x(t+1) \\
x(t) \\
x(t-1) \\
\vdots \\
x(t-p+3) \\
x(t-p+2)
\end{array}\right]}_{\tilde{x}(t+1)}=\underbrace{\left[\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{p-1} & A_{p} \\
I & 0 & \cdots & 0 & 0 \\
0 & I & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & & 0 & 0 \\
0 & 0 & \cdots & I & 0
\end{array}\right]}_{\tilde{A}} \underbrace{\left[\begin{array}{c}
x(t) \\
x(t-1) \\
x(t-2) \\
\vdots \\
x(t-p+2) \\
x(t-p+1)
\end{array}\right]}_{\tilde{x}(t)}
$$

Population dynamics

- $x(t) \in \mathbf{R}^{100}$ gives age distribution of population in year t (say, on January 1)
- $x_{i}(t)$ for $i<100$ is the number of people with age $i-1$
- $x_{100}(t)$ is the number of people aged 99 and above
- we exclude changes due to immigration

Linear dynamical model

$$
\left[\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1) \\
x_{3}(t+1) \\
\vdots \\
x_{100}(t+1)
\end{array}\right]=\left[\begin{array}{ccccc}
b_{1} & b_{2} & \cdots & b_{99} & b_{100} \\
1-d_{1} & 0 & \cdots & 0 & 0 \\
0 & 1-d_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1-d_{99} & 1-d_{100}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
x_{100}(t)
\end{array}\right]
$$

- $b_{i} \geq 0$ is number of births per person with age $i-1$
- $0<d_{i}<1$ is number of deaths per person with age $i-1$

Epidemic dynamics

4-vector $x(t)$ gives proportion of population in 4 infection states

- susceptible: can acquire the disease the next day
- infected: have the disease
- recovered: had the disease, recovered, now immune
- deceased: had the disease, and unfortunately died

Example

$$
\left[\begin{array}{c}
x_{\mathrm{s}}(t+1) \\
x_{\mathrm{i}}(t+1) \\
x_{\mathrm{r}}(t+1) \\
x_{\mathrm{d}}(t+1)
\end{array}\right]=\left[\begin{array}{cccc}
0.95 & 0.04 & 0 & 0 \\
0.05 & 0.85 & 0 & 0 \\
0 & 0.10 & 1 & 0 \\
0 & 0.01 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{\mathrm{s}}(t) \\
x_{\mathrm{i}}(t) \\
x_{\mathrm{r}}(t) \\
x_{\mathrm{d}}(t)
\end{array}\right]
$$

each day,

- 5% of susceptible population acquires the disease, 95% remains susceptible
- 4\% of infected recover without immunity, 10% with immunity, 1% die

Simulation of epidemic dynamics

- figure shows $x(t)$ starting at $x(1)=(1,0,0,0)$
- $x(t) \rightarrow(0.0,0.0,0.91,0.09)$ (an eigenvector of A with eigenvalue 1)

Finite Markov chain

- $s(t)$ is a random variable, with possible values $1,2, \ldots, n$ (the n "states")
- $x_{i}(t)$ is the probability that $s(t)=i$
- $A_{i j}$ is probability that $s(t+1)=i$, given that $s(t)=j$:

$$
x_{i}(t+1)=A_{i 1} x_{1}(t)+A_{i 2} x_{2}(t)+\cdots+A_{i n} x_{n}(t)
$$

hence, A is nonnegative, with $A_{1 j}+A_{2 j}+\cdots+A_{n j}=1$ in each column

- matrix A^{T} is called the state transition matrix

Example

$$
A=\left[\begin{array}{rrr}
0.8 & 0.4 & 0.9 \\
0.2 & 0.1 & 0 \\
0 & 0.5 & 0.1
\end{array}\right]
$$

Eigenvalues of matrix power

let A be a square matrix with Schur decomposition

$$
A=U T U^{H}
$$

diagonal elements of T are eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of A

- if k is a positive integer, then $A^{k}=U T^{k} U^{H}$
- this is a Schur decomposition: T^{k} is upper triangular with diagonal elements

$$
T_{11}^{k}, \quad T_{22}^{k}, \quad \ldots, \quad T_{n n}^{k}
$$

- eigenvalues of A^{k} are $\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{n}^{k}$
- spectral radius is $\rho\left(A^{k}\right)=\rho(A)^{k}$
- one can also show that

$$
\lim _{k \rightarrow \infty} A^{k}=0 \quad \Longleftrightarrow \quad \rho(A)<1
$$

Outline

- matrix norms and spectral radius
- linear dynamical systems
- Perron-Frobenius theorem

Perron-Frobenius theorem

suppose $A \in \mathbf{R}^{n \times n}$ is nonnegative (componentwise) and irreducible

Perron root

- $\rho(A)$ is an eigenvalue of A, called the Perron root
- $\rho(A>0$
- the eigenvalue $\rho(A)$ has algebraic (hence, geometric) multiplicity one

Perron vector

- A has a positive eigenvector with eigenvalue $\rho(A)$
- normalized to satisfy $\mathbf{1}^{T} x=1$ this vector is unique, and called the Perron vector:

$$
A x=\rho(A) x, \quad x>0, \quad \mathbf{1}^{T} x=1
$$

- A has no other nonnegative eigenvectors (except multiples of the Perron vector)

Other eigenvalues: if A is positive, eigenvalues $\lambda \neq \rho(A)$ satisfy $|\lambda|<\rho(A)$

Nonnegative matrices

some weaker results hold if A is nonnegative, but not irreducible

- $\rho(A)$ is an eigenvalue of A
- A has a nonnegative eigenvector with eigenvalue $\rho(A)$

Finite Markov chain

consider a finite Markov chain (page 12.13), and assume A is irreducible

- the state transition matrix A^{T} is also irreducible
- since $\sum_{i} A_{i j}=1$ for all j, the vector $\mathbf{1}$ is an eigenvector of A^{T} with eigenvalue 1 :

$$
A^{T} \mathbf{1}=\mathbf{1}
$$

- from the definition of $\rho(A)$ and the norm inequality on page 12.7

$$
1 \leq \rho(A)=\rho\left(A^{T}\right) \leq\left\|A^{T}\right\|_{\infty}=1
$$

hence, $\rho(A)=1$

- there is a unique positive stationary probability vector (the Perron vector of A):

$$
A x=x, \quad x>0, \quad \mathbf{1}^{T} x=1
$$

for the example on page 12.13, the stationary probability distribution is

$$
x=(0.743,0.165,0.092)
$$

