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Positive semidefinite matrices

recall that an 𝑛 × 𝑛 symmetric matrix 𝐴 is

• positive semidefinite if 𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥

• positive definite if 𝑥𝑇𝐴𝑥 > 0 for all 𝑥 ≠ 0

the function 𝑥𝑇𝐴𝑥 is called a quadratic form:

𝑥𝑇𝐴𝑥 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 =
𝑛∑︁
𝑖=1

𝐴𝑖𝑖𝑥
2
𝑖 + 2

∑︁
𝑖> 𝑗

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

Related terminology (for symmetric 𝐴)

• 𝐴 is negative semidefinite if −𝐴 is positive semidefinite: 𝑥𝑇𝐴𝑥 ≤ 0 for all 𝑥

• 𝐴 is negative definite if −𝐴 is positive definite: 𝑥𝑇𝐴𝑥 < 0 for all 𝑥 ≠ 0

• 𝐴 is indefinite it is not positive semidefinite or negative semidefinite
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Nullspace of positive semidefinite matrix

for a positive semidefinite matrix,

𝐴𝑥 = 0 ⇐⇒ 𝑥𝑇𝐴𝑥 = 0 (1)

to show the "⇐" direction, assume 𝑥 is nonzero and satisfies 𝑥𝑇𝐴𝑥 = 0

• since 𝐴 is positive semidefinite, the following function is nonnegative for all 𝑡:

𝑓 (𝑡) = (𝑥 − 𝑡𝐴𝑥)𝑇𝐴(𝑥 − 𝑡𝐴𝑥) = −2𝑡∥𝐴𝑥∥2 + 𝑡2𝑥𝑇𝐴3𝑥

• 𝑓 (𝑡) ≥ 0 for all 𝑡 is only possible if 𝐴𝑥 = 0

note that (1) does not hold for indefinite symmetric matrices: the matrix

𝐴 =

[
−1 0
0 1

]
is nonsingular, so 𝐴𝑥 = 0 only for 𝑥 = 0; however 𝑥𝑇𝐴𝑥 = 0 for 𝑥 = (1, 1)
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Positive semidefinite matrices in factored form

we will often encounter symmetric matrices in the product form

𝐴 = 𝐵𝐵𝑇 (2)

• every matrix of this form is positive semidefinite:

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝐵𝐵𝑇𝑥 = (𝐵𝑇𝑥)𝑇 (𝐵𝑇𝑥) = ∥𝐵𝑇𝑥∥2 ≥ 0

• on the next page, we show that

rank(𝐴) = rank(𝐵)

• later in the lecture we show that every p.s.d. matrix 𝐴 has a factorization (2)
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Rank and symmetric matrix product

we show that for any matrix 𝐵,

rank(𝐵𝐵𝑇) = rank(𝐵)

suppose 𝐵 is 𝑛 × 𝑝 and rank(𝐵) = 𝑟

• factor 𝐵 = 𝐶𝐷 where 𝐶 is 𝑛 × 𝑟, 𝐷 is 𝑟 × 𝑝, rank(𝐶) = rank(𝐷) = 𝑟 (page 1.32):

𝐵𝐵𝑇 = 𝐶 (𝐷𝐷𝑇)𝐶𝑇

• the matrix 𝐷𝐷𝑇 is positive definite because 𝐷 has full row rank

• let 𝑅 be the 𝑟 × 𝑟 Cholesky factor of 𝐷𝐷𝑇 = 𝑅𝑇𝑅 and define 𝐵̃ = 𝐶𝑅𝑇 :

𝐵𝐵𝑇 = 𝐶𝑅𝑇𝑅𝐶𝑇 = 𝐵̃𝐵̃𝑇

• the matrices 𝐶 and 𝐵̃ = 𝐶𝑅𝑇 are 𝑛 × 𝑟 and have rank 𝑟

• this implies that rank(𝐵𝐵𝑇) = rank(𝐵̃𝐵̃𝑇) = 𝑟 (see page 1.13)
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Exercises

verify the following facts (𝐴 and 𝐵 are symmetric 𝑛 × 𝑛 matrices)

1a. if 𝐴 is p.s.d. and 𝛼 ≥ 0, then 𝛼𝐴 is p.s.d

1b. if 𝐴 is p.d. and 𝛼 > 0, then 𝛼𝐴 is p.d.

2a. if 𝐴 and 𝐵 are p.s.d., then 𝐴 + 𝐵 is p.s.d.

2b. if 𝐴 is p.s.d. and 𝐵 is p.d., then 𝐴 + 𝐵 is p.d.

3a. if 𝐴 is p.s.d. and 𝐶 is an 𝑛 × 𝑚 matrix then 𝐶𝑇𝐴𝐶 is p.s.d.

3b. if 𝐴 is p.d. and 𝐶 is 𝑛 × 𝑚 with linearly independent columns, then 𝐶𝑇𝐴𝐶 is p.d.

4. if 𝐴 is p.d. then 𝐴−1 is p.d.

p.s.d. stands for positive semidefinite; p.d. stands for positive definite
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Variance and covariance of random variables

let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a random 𝑛-vector, with

𝜇𝑖 = E 𝑥𝑖, 𝜎𝑖 =

√︃
E (𝑥𝑖 − 𝜇𝑖)2, 𝜎𝑖 𝑗 = E

(
(𝑥𝑖 − 𝜇𝑖) (𝑥 𝑗 − 𝜇 𝑗)

)
for 𝑖 ≠ 𝑗

(E denotes expectation)

• 𝜇𝑖 is the mean or expected value of 𝑥𝑖

• 𝜎𝑖 is the standard deviation and 𝜎2
𝑖

is the variance of 𝑥𝑖

• 𝜎𝑖 𝑗 , for 𝑖 ≠ 𝑗 , is the covariance of 𝑥𝑖 and 𝑥 𝑗

• 𝜌𝑖 𝑗 = 𝜎𝑖 𝑗/(𝜎𝑖𝜎𝑗), for 𝑖 ≠ 𝑗 , is the correlation between 𝑥𝑖 and 𝑥 𝑗

• variables 𝑥𝑖 and 𝑥 𝑗 are uncorrelated if 𝜎𝑖 𝑗 = 0
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Second moment matrix

the second moment matrix is the symmetric 𝑛 × 𝑛 matrix with 𝑖, 𝑗 element E (𝑥𝑖𝑥 𝑗):

𝑆 =


E(𝑥2

1) E (𝑥1𝑥2) · · · E (𝑥1𝑥𝑛)
E (𝑥2𝑥1) E 𝑥2

2 · · · E (𝑥2𝑥𝑛)
... ... . . . ...

E (𝑥𝑛𝑥1) E (𝑥𝑛𝑥2) · · · E 𝑥2
𝑛

 = E (𝑥𝑥𝑇)

• on the right-hand side, expectation of a matrix applies element-wise

• the second moment matrix is positive semidefinite: for all 𝑎,

𝑎𝑇𝑆𝑎 = 𝑎𝑇 E (𝑥𝑥𝑇)𝑎 = E (𝑎𝑇𝑥𝑥𝑇𝑎) = E (𝑎𝑇𝑥)2 ≥ 0

𝑎𝑇𝑆𝑎 is the expected value of the square of the scalar random variable 𝑦 = 𝑎𝑇𝑥
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Covariance matrix

the covariance matrix (or variance-covariance matrix) is the symmetric 𝑛 × 𝑛 matrix

Σ =


𝜎2

1 𝜎12 · · · 𝜎1𝑛
𝜎21 𝜎2

2 · · · 𝜎2𝑛
... ... . . . ...

𝜎𝑛1 𝜎𝑛2 · · · 𝜎2
𝑛

 = E (


𝑥1 − 𝜇1
𝑥2 − 𝜇2

...

𝑥𝑛 − 𝜇𝑛



𝑥1 − 𝜇1
𝑥2 − 𝜇2

...

𝑥𝑛 − 𝜇𝑛


𝑇

)

= E ((𝑥 − 𝜇) (𝑥 − 𝜇)𝑇)

• 𝜇 is the vector of means:

𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑛) = (E 𝑥1,E 𝑥2, . . . ,E 𝑥𝑛)

• the covariance matrix is positive semidefinite: for all 𝑎,

𝑎𝑇Σ𝑎 = 𝑎𝑇 E ((𝑥 − 𝜇) (𝑥 − 𝜇))𝑇)𝑎 = E (𝑎𝑇 (𝑥 − 𝜇))2 ≥ 0

𝑎𝑇𝜇 is the mean and 𝑎𝑇Σ𝑎 is the variance of the random variable 𝑦 = 𝑎𝑇𝑥
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Correlation matrix

the correlation matrix has 𝑖, 𝑗 element 𝜌𝑖 𝑗 = 𝜎𝑖 𝑗/(𝜎𝑖𝜎𝑗) for 𝑖 ≠ 𝑗 and 1 for 𝑖 = 𝑗 :

𝐶 =


1 𝜌12 · · · 𝜌1𝑛
𝜌21 1 · · · 𝜌2𝑛
... ... . . . ...

𝜌𝑛1 𝜌𝑛2 · · · 1


• 𝐶 = 𝐷Σ𝐷 where Σ is the covariance matrix and 𝐷 is the diagonal matrix

𝐷 =


𝜎−1

1 0 · · · 0
0 𝜎−1

2 · · · 0
... ... . . . ...

0 0 · · · 𝜎−1
𝑛


the expression 𝐶 = 𝐷Σ𝐷 shows that 𝐶 is positive semidefinite

• 𝐶 is the covariance matrix of the standardized variables 𝑢𝑖 = (𝑥𝑖 − 𝜇𝑖)/𝜎𝑖
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Linear combinations of random vectors

Scalar multiplication

• suppose 𝑥 is a random vector with mean 𝜇 and covariance matrix Σ

• the mean and covariance matrix of the random vector 𝑦 = 𝛼𝑥 are

E 𝑦 = 𝛼𝜇, E ((𝑦 − E 𝑦) (𝑦 − E 𝑦)𝑇) = 𝛼2Σ

Sum

• 𝑥, 𝑦 are random 𝑛-vectors with means 𝜇𝑥, 𝜇𝑦, covariance matrices Σ𝑥, Σ𝑦

• the random vector 𝑧 = 𝑥 + 𝑦 has mean E 𝑧 = 𝜇𝑥 + 𝜇𝑦

• if 𝑥 and 𝑦 are uncorrelated, i.e.,

E (𝑥𝑖 − 𝜇𝑥,𝑖) (𝑦 𝑗 − 𝜇𝑦, 𝑗)) = 0, 𝑖, 𝑗 = 1, . . . , 𝑛,

then the covariance matrix of 𝑧 is

E ((𝑧 − E 𝑧) (𝑧 − E 𝑧)𝑇) = Σ𝑥 + Σ𝑦
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Affine transformation

• suppose 𝑦 is a random 𝑛-vector with mean 𝜇𝑦 and covariance matrix Σ𝑦

• define the random 𝑚-vector
𝑥 = 𝐴𝑦 + 𝑏

where 𝐴 is an 𝑚 × 𝑛 matrix, 𝑏 is an 𝑚-vector

• the mean of 𝑥 is
E 𝑥 = E (𝐴𝑦 + 𝑏) = 𝐴𝜇𝑦 + 𝑏

• the covariance matrix of 𝑥 is

Σ = E ((𝑥 − E 𝑥) (𝑥 − E 𝑥)𝑇)
= E ((𝐴𝑦 − 𝐴𝜇𝑦) (𝐴𝑦 − 𝐴𝜇𝑦)𝑇)
= 𝐴E ((𝑦 − 𝜇𝑦) (𝑦 − 𝜇𝑦)𝑇)𝐴𝑇

= 𝐴Σ𝑦𝐴
𝑇
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Example: factor model

suppose a random 𝑛-vector 𝑥 has covariance matrix

Σ = 𝐴𝐴𝑇 + 𝜎2𝐼

𝑥 can be interpreted as being generated by a model 𝑥 = 𝜇 + 𝐴𝑦 + 𝑤

• 𝜇 is the mean of 𝑥

• 𝑦 is a random variable with mean zero and covariance matrix 𝐼

• 𝑤 is random error or noise, uncorrelated with 𝑦, with E𝑤 = 0, E𝑤𝑤𝑇 = 𝜎2𝐼

in statistics, this is known as a factor model

• components of 𝑦 are common factors in 𝑥

• 𝑥 − 𝜇 is a vector 𝐴𝑦 in a subspace range(𝐴) plus noise 𝑤
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Estimate of mean

suppose the rows 𝑥𝑇
𝑖

in an 𝑚 × 𝑛 matrix 𝑋 are observations of a random 𝑛-vector 𝑥

𝑋 =


𝑥𝑇1
𝑥𝑇2
...

𝑥𝑇𝑚


• the sample estimate for the mean E 𝑥 is

𝑥 =
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 =
1
𝑚
𝑋𝑇1

• subtracting 𝑥𝑇 from each row gives the centered data matrix

𝑋c = 𝑋 − 1𝑥𝑇 = (𝐼 − 1
𝑚

11𝑇)𝑋

columns of 𝑋c are columns of 𝑋 projected on span{1}⊥
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Estimate of covariance matrix

• the (Gram) matrix of 𝑋 gives an an estimate of the second moment E (𝑥𝑥𝑇):

1
𝑚
𝑋𝑇𝑋 =

1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖𝑥
𝑇
𝑖

• the Gram matrix of 𝑋c gives an estimate of the covariance matrix:

1
𝑚
𝑋𝑇

c 𝑋c =
1
𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑥𝑖 − 𝑥)𝑇

this can also be expressed as

1
𝑚
𝑋𝑇

c 𝑋c =
1
𝑚
𝑋𝑇 (𝐼 − 1

𝑚
11𝑇)2𝑋

=
1
𝑚
𝑋𝑇 (𝐼 − 1

𝑚
11𝑇)𝑋

=
1
𝑚
𝑋𝑇𝑋 − 𝑥𝑥𝑇
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Incidence matrix

directed graph with 𝑚 vertices, 𝑛 edges, 𝑚 × 𝑛 incidence matrix 𝐴 (page 1.6)

𝐴𝑖 𝑗 =


1 edge 𝑗 ends at vertex 𝑖

−1 edge 𝑗 starts at vertex 𝑖

0 otherwise

we assume there are no self-loops and at most one edge between any two vertices

1

2 3

4

1 54

2

3

𝐴 =


−1 −1 0 1 0

1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1


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Graph Laplacian

the matrix 𝐿 = 𝐴𝐴𝑇 is called the graph Laplacian

• a symmetric 𝑚 × 𝑚 matrix with elements

𝐿𝑖 𝑗 =


#edges incident to vertex 𝑖 if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗 , and vertices 𝑖 and 𝑗 are adjacent
0 otherwise

• does not depend on the orientation of the edges

• 𝐿 is positive semidefinite with rank(𝐿) = rank(𝐴)

1

2 3

4

1 54

2

3

𝐿 = 𝐴𝐴𝑇 =


3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


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Weighted graph Laplacian

• we associate a nonnegative weight 𝑤𝑘 with edge 𝑘

• the weighted graph Laplacian is the matrix 𝐿 = 𝐴 diag(𝑤)𝐴𝑇

𝐿𝑖 𝑗 =


∑︁
𝑘∈N𝑖

𝑤𝑘 if 𝑖 = 𝑗 (where N𝑖 are the edges incident to vertex 𝑖)

−𝑤𝑘 if 𝑖 ≠ 𝑗 and edge 𝑘 is between vertices 𝑖 and 𝑗

0 otherwise

1

2 3

4

1 54

2

3

𝐿 =


𝑤1 + 𝑤2 + 𝑤4 −𝑤1 −𝑤4 −𝑤2

−𝑤1 𝑤1 + 𝑤3 −𝑤3 0
−𝑤4 −𝑤3 𝑤3 + 𝑤4 + 𝑤5 −𝑤5
−𝑤2 0 −𝑤5 𝑤2 + 𝑤5


this is the conductance matrix of a resistive circuit (𝑤𝑘 is conductance in branch 𝑘)
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Pivoted Cholesky factorization

we show that the following factorization exists for every positive semidefinite 𝐴

𝐴 = 𝑃𝑇𝑅𝑇𝑅𝑃

• 𝑃 is a permutation matrix

• 𝑅 is 𝑟 × 𝑛, leading 𝑟 × 𝑟 submatrix is upper triangular with positive diagonal:

𝑅 =


𝑅11 𝑅12 · · · 𝑅1𝑟 𝑅1,𝑟+1 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑟 𝑅2,𝑟+1 · · · 𝑅2𝑛
... ... . . . ... ... ...

0 0 · · · 𝑅𝑟𝑟 𝑅𝑟,𝑟+1 · · · 𝑅𝑟𝑛


• can be chosen to satisfy 𝑅11 ≥ 𝑅22 ≥ · · · ≥ 𝑅𝑟𝑟 > 0

• 𝑟 is the rank of 𝐴
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(Standard) Colesky factorization

the algorithm for Cholesky factorization 𝐴 = 𝑅𝑇𝑅 can be summarized as follows

• after 𝑘 steps we have completed a partial factorization

𝐴 =



𝑅11 · · · 0
... . . . ...

𝑅1𝑘 · · · 𝑅𝑘𝑘

0

𝑅1,𝑘+1 · · · 𝑅𝑘,𝑘+1
... ...

𝑅1𝑛 · · · 𝑅𝑘𝑛

𝐼


[
𝐼 0
0 𝑆𝑘

] 
𝑅11 · · · 𝑅1𝑘
... . . . ...

0 · · · 𝑅𝑘𝑘

𝑅1,𝑘+1 · · · 𝑅1𝑛
... . . . ...

𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

0 𝐼


=

[
𝑅𝑇

1:𝑘,1:𝑘 0
𝑅𝑇

1:𝑘,(𝑘+1):𝑛 𝐼

] [
𝐼 0
0 𝑆𝑘

] [
𝑅1:𝑘,1:𝑘 𝑅1:𝑘,(𝑘+1):𝑛

0 𝐼

]
• row 𝑘 + 1 of 𝑅 and the matrix 𝑆𝑘+1 are found from the equality

𝑆𝑘 =

[
𝑅𝑘+1,𝑘+1 0

𝑅𝑇
𝑘+1,(𝑘+2):𝑛 𝐼

] [
1 0
0 𝑆𝑘+1

] [
𝑅𝑘+1,𝑘+1 𝑅𝑘+1,(𝑘+2):𝑛

0 𝐼

]
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Update in standard Cholesky factorization

𝑆𝑘 =

[
𝑅𝑘+1,𝑘+1 0

𝑅𝑇
𝑘+1,(𝑘+2):𝑛 𝐼

] [
1 0
0 𝑆𝑘+1

] [
𝑅𝑘+1,𝑘+1 𝑅𝑘+1,(𝑘+2):𝑛

0 𝐼

]

• to simplify notation we partition 𝑆𝑘 as 𝑆𝑘 =

[
𝑎 𝑏𝑇

𝑏 𝐶

]
• row 𝑘 + 1 of 𝑅 follows from

𝑅𝑘+1,𝑘+1 =
√
𝑎, 𝑅𝑘+1,(𝑘+2):𝑛 =

1
𝑅𝑘+1,𝑘+1

𝑏𝑇 =
1
√
𝑎
𝑏𝑇

• new matrix 𝑆𝑘+1 is

𝑆𝑘+1 = 𝐶 − 𝑅𝑇
𝑘+1,(𝑘+2):𝑛𝑅𝑘+1,(𝑘+2):𝑛 = 𝐶 − 1

𝑎
𝑏𝑏𝑇

• the update fails when (𝑆𝑘)11 = 𝑎 ≤ 0 (indicating that 𝐴 is not positive definite)
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Pivoted Cholesky factorization algorithm

the algorithm is readily extended to compute the pivoted Cholesky factorization

𝐴 = 𝑃𝑇𝑅𝑇𝑅𝑃

• after 𝑘 steps we have computed a partial factorization

𝑃𝑘𝐴𝑃
𝑇
𝑘 =

[
𝑅𝑇

1:𝑘,1:𝑘 0
𝑅𝑇

1:𝑘,(𝑘+1):𝑛 𝐼

] [
𝐼 0
0 𝑆𝑘

] [
𝑅1:𝑘,1:𝑘 𝑅1:𝑘,(𝑘+1):𝑛

0 𝐼

]
• initially, 𝑃0 = 𝐼 and 𝑆0 = 𝐴

• if 𝑆𝑘 = 0, the algorithm terminates with 𝑟 = 𝑘

• before step 𝑘 + 1 we reorder 𝑆𝑘 to move largest diagonal element to position 1,1

• this reordering requires modifying 𝑃𝑘 and reordering the columns of 𝑅1:𝑘,(𝑘+1):𝑛
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Example

𝐴 =


𝐴11 𝐴12 𝐴13 𝐴14
𝐴21 𝐴22 𝐴23 𝐴24
𝐴31 𝐴32 𝐴33 𝐴34
𝐴41 𝐴42 𝐴43 𝐴44

 =


6 3 10 −1
3 18 15 0

10 15 25 −5
−1 0 −5 6


Step 1
• apply symmetric reordering to move 𝐴33 to the 1,1 position

• find first row of 𝑅 and 𝑆1
𝐴33 𝐴31 𝐴32 𝐴34
𝐴13 𝐴11 𝐴12 𝐴14
𝐴23 𝐴21 𝐴22 𝐴24
𝐴43 𝐴41 𝐴42 𝐴44

 =


25 10 15 −5
10 6 3 −1
15 3 18 0
−5 −1 0 6


=


5 0 0 0
2 1 0 0
3 0 1 0
−1 0 0 1




1 0 0 0
0 2 −3 1
0 −3 9 3
0 1 3 5




5 2 3 −1
0 1 0 0
0 0 1 0
0 0 0 1


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Example

Step 2

• move second diagonal element of 𝑆1 to first position

• compute second row of 𝑅 and 𝑆2
𝐴33 𝐴32 𝐴31 𝐴34
𝐴23 𝐴22 𝐴21 𝐴24
𝐴13 𝐴12 𝐴11 𝐴14
𝐴43 𝐴42 𝐴41 𝐴44


=


5 0 0 0
3 1 0 0
2 0 1 0
−1 0 0 1




1 0 0 0
0 9 −3 3
0 −3 2 1
0 3 1 5




5 3 2 −1
0 1 0 0
0 0 1 0
0 0 0 1


=


5 0 0 0
3 3 0 0
2 −1 1 0
−1 1 0 1




1 0 0 0
0 1 0 0
0 0 1 2
0 0 2 4




5 3 2 −1
0 3 −1 1
0 0 1 0
0 0 0 1


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Example

Step 3

• move second diagonal element of 𝑆2 to first position

• compute third row of 𝑅 and 𝑆3
𝐴33 𝐴32 𝐴34 𝐴31
𝐴23 𝐴22 𝐴24 𝐴21
𝐴43 𝐴42 𝐴44 𝐴41
𝐴13 𝐴12 𝐴14 𝐴11


=


5 0 0 0
3 3 0 0
−1 1 1 0
2 −1 0 1




1 0 0 0
0 1 0 0
0 0 4 2
0 0 2 1




5 3 −1 2
0 3 1 −1
0 0 1 0
0 0 0 1


=


5 0 0 0
3 3 0 0
−1 1 2 0
2 −1 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




5 3 −1 2
0 3 1 −1
0 0 2 1
0 0 0 1


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Example

Result: since 𝑆3 is zero, the algorithm terminates with the factorization


𝐴33 𝐴32 𝐴34 𝐴31
𝐴23 𝐴22 𝐴24 𝐴21
𝐴43 𝐴42 𝐴44 𝐴41
𝐴13 𝐴12 𝐴14 𝐴11

 =


25 15 −5 10
15 18 0 3
−5 0 6 −1
10 3 −1 6


=


5 0 0
3 3 0
−1 1 2
2 −1 1




5 3 −1 2
0 3 1 −1
0 0 2 1


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Factorization theorem for positive semidefinite matrices

a positive semidefinite 𝑛 × 𝑛 matrix 𝐴 has rank 𝑟 if and only it can be factored as

𝐴 = 𝐵𝐵𝑇

where 𝐵 is 𝑛 × 𝑟 with linearly independent columns

• “if” statement follows from page 2.5

• the pivoted Cholesky factorization proves the “only if” part

• other algorithms (symmetric eigendecomposition) will be discussed later
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Exercises

Exercise 1: explain why the pivoted Cholesky factorization returns a matrix 𝑅 with

𝑅11 ≥ 𝑅22 ≥ · · · ≥ 𝑅𝑟𝑟

Exercise 2: suppose 𝐴 is a symmetric 𝑛 × 𝑛 matrix that satisfies

𝐴2 = 𝐴

1. show that 𝐴 is positive semidefinite

2. since 𝐴 is positive semidefinite, it can be factored as

𝐴 = 𝐵𝐵𝑇

where 𝐵 of size 𝑛 × 𝑟 and 𝑟 = rank(𝐴); show that 𝐵 has orthonormal columns

hence, 𝐴 is an orthogonal projection matrix (see p.1.17 and 133A page 5.17)
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Exercises

Exercise 3

we use ◦ to denote the component-wise product of matrices: if 𝐴, 𝐵 are 𝑛 × 𝑛, then

(𝐴 ◦ 𝐵)𝑖 𝑗 = 𝐴𝑖 𝑗𝐵𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛

1. suppose 𝐷 is 𝑛 × 𝑟 with columns 𝑑𝑘 ; show that

(𝐷𝐷𝑇) ◦ 𝐵 =
𝑟∑︁

𝑘=1
diag(𝑑𝑘)𝐵 diag(𝑑𝑘)

2. show that 𝐴 ◦ 𝐵 is positive semidefinite if 𝐴 and 𝐵 are positive semidefinite

3. show that 𝐴 ◦ 𝐵 is positive definite if 𝐴 and 𝐵 are positive definite
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Exercises

Exercise 4

as an application of exercise 3, let

𝑓 (𝑥) = 𝑐0 + 𝑐1𝑥 + · · · + 𝑐𝑑𝑥
𝑑

be a polynomial with nonnegative coefficients 𝑐0, . . . , 𝑐𝑑

suppose 𝑋 is 𝑛 × 𝑛 and p.s.d., and define 𝑌 = 𝑓 (𝑋) as the 𝑛 × 𝑛 matrix with

𝑌𝑖 𝑗 = 𝑓 (𝑋𝑖 𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛

show that 𝑌 is positive semidefinite

an example is the polynomial kernel function 𝑓 (𝑥) = (1 + 𝑥)𝑑 (133A lecture 12)
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