L. Vandenberghe ECE133B (Spring 2023)

2. Positive semidefinite matrices

e definitions
e covariance matrix
e graph Laplacian

e pivoted Cholesky factorization
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Positive semidefinite matrices

recall that an n X n symmetric matrix A is

e positive semidefinite if x! Ax > 0 for all x

e positive definite if x! Ax > 0forallx £0

the function x! Ax is called a quadratic form:

xlAx = ZZA,]x,x] = ZA,,x +2ZA,]xlx]

i=1 j=1 i>]

Related terminology (for symmetric A)

e A is negative semidefinite if —A is positive semidefinite: x’ Ax < 0 for all x
e A is negative definite if —A is positive definite: x/ Ax < 0 for all x # 0

e A is indefinite it is not positive semidefinite or negative semidefinite
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Nullspace of positive semidefinite matrix

for a positive semidefinite matrix,
Ax =0 — xTAx =0 (1)

to show the "<" direction, assume x is nonzero and satisfies x’ Ax = 0

e since A is positive semidefinite, the following function is nonnegative for all «:
(1) = (x = tAX)TA(x — tAx) = =2t||Ax||> + 2xT A’x
e f(t) > 0foralltis only possible if Ax =0
note that (1) does not hold for indefinite symmetric matrices: the matrix
S
is nonsingular, so Ax = 0 only for x = 0; however xI'Ax =0forx = (1,1)
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Positive semidefinite matrices in factored form

we will often encounter symmetric matrices in the product form
A = BB! (2)
e every matrix of this form is positive semidefinite:

xTAx =x"BBTx = (BTx)T(BTx) = |BTx|> > 0

e on the next page, we show that

rank(A) = rank(B)

e later in the lecture we show that every p.s.d. matrix A has a factorization (2)
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Rank and symmetric matrix product

we show that for any matrix B,
rank(BB!) = rank(B)

suppose Bisn x p and rank(B) =r

e factor B=CD where Cisnxr, D isr X p, rank(C) = rank(D) = r (page 1.32):
BB =c(pDp") !

e the matrix DD is positive definite because D has full row rank

e let R be the r x r Cholesky factor of DD’ = R'R and define B = CR':
BB! = CR'RC! = BB!

e the matrices C and B = CR! are n x r and have rank r

e this implies that rank(BB') = rank(BB') = r (see page 1.13)
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Exercises

verify the following facts (A and B are symmetric n X n matrices)

la. if Ais p.s.d. and a > 0, then aA is p.s.d
1b. if Ais p.d. and @ > 0O, then aA is p.d.

2a. if A and B are p.s.d., then A + B is p.s.d.
2b. if Ais p.s.d. and B is p.d., then A + B is p.d.

3a. if Ais p.s.d. and C is an n x m matrix then C'AC is p.s.d.

3b. if A is p.d. and C is n x m with linearly independent columns, then CT AC is p.d.

4. if Ais p.d.then A=l is p.d.

p.s.d. stands for positive semidefinite; p.d. stands for positive definite
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Variance and covariance of random variables

let x = (x1,x2,...,x,) be a random n-vector, with

ui = Ex;, (Ti=\/E(xi—,Ui)2, ojj =E ((x; — i) (x; —pj)) fori#j
(E denotes expectation)
e u; is the mean or expected value of x;
e 0; is the standard deviation and 0'1'2 is the variance of x;
e 0y, fori # j, is the covariance of x; and x;
o pij =0;j/(0i0;), fori # j,is the correlation between x; and x;

e variables x; and x; are uncorrelated if o;; = 0
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Second moment matrix

the second moment matrix is the symmetric n X n matrix with i, j element E (x;x;):

Ex}) E (r1x2) -+ E(xx)
S = E (.X.QX]) Ex2 ) E (X.Z-xl’l) - E (XXT)
| E (xpx1) E(xpx2) - Ex,%

e on the right-hand side, expectation of a matrix applies element-wise
e the second moment matrix is positive semidefinite: for all a,
a'Sa=a'E(xxDa=E (a’xxTa) =E (a'x)? > 0

al Sa is the expected value of the square of the scalar random variable y = a’ x
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Covariance matrix

the covariance matrix (or variance-covariance matrix) is the symmetric n X n matrix

- 2 - - - -.T
01 0'122 "t Oln X1 — M1 X1 — M1
g g, g Xy — Xy —
Yy — .21 .2 | 2n _ E( 2 ./'t2 2 .,le )
| Ol On2 *e O-,% ] _xl’l_ul’l ] _xn_ﬂn ]

= E((x-pwx-pm")
e u is the vector of means:

,U — (/’tla /l27 A 7/11’1) — (Exl,Ex2, s e ’Exl’l)

e the covariance matrix is positive semidefinite: for all a,

a'Ya=a"E((x-p)(x-p)a=E @ (x-w)*>0

a’ 11 is the mean and a! Za is the variance of the random variable y = a’x
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Correlation matrix

the correlation matrix has i, j element p;; = 0y;/(oj07;) fori # jand 1 fori = j:

1 p12 -+ pin |
o I
| Pnl P2 1

e C = DXD where X is the covariance matrix and D is the diagonal matrix

ot 0 0
-1
D= 0 o, 0
0 0 o !

the expression C = DXD shows that C is positive semidefinite

e (C is the covariance matrix of the standardized variables u; = (x; — u;) /o
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Linear combinations of random vectors

Scalar multiplication
e suppose x is a random vector with mean u and covariance matrix X

e the mean and covariance matrix of the random vector y = ax are
T 2
Ey=au, E((y-Ey)(y-Ey))=aX

Sum
e x, y are random n-vectors with means uy, uy, covariance matrices Xy, X,
e the random vector z = x +y has mean Ez = uy + u,

e if x and y are uncorrelated, i.e.,

E(xi_:ux,i)(yj_:uy,j))zo’ i’jzl’”"n’
then the covariance matrix of z is

E((z-E2)(z-E2)") =%, +3,
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Affine transformation

e suppose y is a random n-vector with mean ., and covariance matrix X,

e define the random m-vector
x=Ay+b

where A is an m X n matrix, b is an m-vector

e the mean of x is
Ex=E(Ay+b)=Au,+b

e the covariance matrix of x is
> = E(x-Ex)(x—Ex))
= E((Ay - Auy)(Ay — Auy)")

= AE((y—py)(y—py)HA"
= Ax,A"
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Example: factor model

suppose a random n-vector x has covariance matrix
> = AAT + 0?1

x can be interpreted as being generated by a model x = u+ Ay +w

e u isthe mean of x
e y is a random variable with mean zero and covariance matrix /

e w is random error or noise, uncorrelated with y, with Ew =0, Eww! = 021

in statistics, this is known as a factor model

e components of y are common factors in x

e x — uis avector Ay in a subspace range(A) plus noise w
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Estimate of mean

T

suppose the rows x; in an m X n matrix X are observations of a random n-vector x

- T A
X

T

2

X

T
| Xm

e the sample estimate for the mean Ex is

e subtracting x! from each row gives the centered data matrix
_T 1.7
Xe=X-1x =(-—11")X
m

columns of X, are columns of X projected on span{1}~+
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Estimate of covariance matrix

e the (Gram) matrix of X gives an an estimate of the second moment E (xx’):

Lyry = L$h T
_ L N
m mi

e the Gram matrix of X gives an estimate of the covariance matrix:
1 T 1 n _ _ T
—Xe Xe=— > (xi =) (x; — %)
m m =1

this can also be expressed as

1 1 1
—xI'x., = —xT(a-—11")%x
m m m
1 T 1 T
= —xTu-—=-11")x
m m
1
= —x'x -zt
m
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Incidence matrix

directed graph with m vertices, n edges, m X n incidence matrix A (page 1.6)

1 edge j ends at vertex i
A;jj =9 —1 edge j starts at vertex i
0  otherwise

we assume there are no self-loops and at most one edge between any two vertices

-1 -1 0 1 O

1 0 -1 0

A= o o0 1 -1 -1
0 1 0 1
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Graph Laplacian

the matrix L = AA! is called the graph Laplacian

e a symmetric m X m matrix with elements

#edges incident to vertexi ifi =
Lij =4 -1 if i # j, and vertices i and j are adjacent
0 otherwise

e does not depend on the orientation of the edges

e L is positive semidefinite with rank(L) = rank(A)

3 -1 -1 —1]
-1 2 -1 0

— T _
L=Ad=1 1 1 3 4
-1 0 -1 2
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Weighted graph Laplacian

e We associate a nonnegative weight w; with edge k

e the weighted graph Laplacian is the matrix L = A diag(w)A”

Z wyr ifi=j (where N; are the edges incident to vertex i)
_ keN;
Lij=y —y, if i # j and edge k is between vertices i and
0 otherwise

A
—Wl +Wor+wyqg —Wjq —W4q —Wn
1 [ —W1 w1+ ws —W3 0
B —W4 —W3 W3+ WwWyqg+Wws —Ws
—W2 0 —Ws5 wo + W5

fF——@

this is the conductance matrix of a resistive circuit (wy is conductance in branch k)

Positive semidefinite matrices 2.18



definitions
covariance matrix
graph Laplacian

pivoted Cholesky factorization

Outline



Pivoted Cholesky factorization

we show that the following factorization exists for every positive semidefinite A
A =PI'RT'RP

e P is a permutation matrix

e Risr X n,leading r X r submatrix is upper triangular with positive diagonal:

Ry Rz -+ Ry Riyq1 -+ Rin |
R O Ry --- Ry Ry -+ Ry
0 0 e Ry Rr,r+1 o Rpp ]

e can be chosento satisfy Rijj > Ry >:---> R, >0

e ristherankof A
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(Standard) Colesky factorization

the algorithm for Cholesky factorization A = R’ R can be summarized as follows

e after k steps we have completed a partial factorization

R 0 _ |
: 0 Ri1 -+ Rix | Riks1 -+ Rin
A Rix Riex ll 0 ] Pt PO
- 0 -+ Rix | Rivey -~ R
R1 k+1 R k+1 0 Sk kk k,k+1 kn
: : Il _ 0 ]
Rln Rkn
T
_ fl:k,l:k 0 l I O ] l Rl:k,l:k Rl:k,(k+1):n ]
_ Rk ernyn ! 0 Sk 0 I

e row k + 1 of R and the matrix S, are found from the equality

S, = [ ¥k+1,k+1 0 ] [ 0 ] [ Ris1 k1 R, (k+2)mn ]
Rk+1,(k+2):n 1 0 Sk 0 1
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Update in standard Cholesky factorization

R L[]0 Sk 0 I

S = [ Ric+1,k+1 0 ] [ 1 0 ] [ Ri+1,k+1  Ris1,(k+2)n ]
k+1,(k+2):n

T
e to simplify notation we partition S, as S; = [ Z 12 ]
e row k + 1 of R follows from
1 r_ 1.7
Risik+1 =Va,  Risl (k+2)n = b* =—b

Rk+1,k+1 \/5

e new matrix Sy41 is

1
_ T _ T
Sie1 = C = Ry o1 (ke2)nBicw1,(k+2)n = € = be

e the update fails when (S;);; = a < 0 (indicating that A is not positive definite)
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Pivoted Cholesky factorization algorithm

the algorithm is readily extended to compute the pivoted Cholesky factorization
A=PI'RIRP

e after k steps we have computed a partial factorization

T
PkAPT = 513k713k 0 I 0 Ri:k,1:k Rl:k,(k+1):n
Ry enym T |10 Sk 0 1

e initially, Pp=7and So= A

o if S =0, the algorithm terminates with r = &k

e before step k + 1 we reorder §; to move largest diagonal element to position 1,1
e this reordering requires modifying P and reordering the columns of Ry.x (x+1):n
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Step 1

e find first row of R and S

Asz3
A3
A3
| Ag3

Al Al Az Ap 6 3 10 -1 |
A21 A22 A23 A24 _ 3 18 15 0
A31 A32 A33 A34 B 10 15 25 -5

| A4 Agp Agz Ay -1 0 -5 6

e apply symmetric reordering to move As3 to the 1,1 position

Azl Az Ax 25 10 15 -5 ]

A11 A12 A14 _ 10 6 3 -1

A21 A22 A24 B 15 3 18 0)

A41 A42 A44 ] I -5 -1 0 6 |

5|10 0 O]J[1]0 O Of[5|2 3 -1]
2 |1 0 O O 2 -3 1 O(1 0 O
310 1 O 0|-3 9 3 0(0 1 O
-1{0 0 1 ){oj1 3 5100 0 1 |
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Example

Step 2
e move second diagonal element of S to first position

e compute second row of R and S,

A3z Az A3zl Az
Ay Ay Ayl Ay
A1z A Al A

| A4z Ay A4 Ay |

510 0 0][1]0 0 0][5]3 2 -1]
3T oo0f|[0][9 3 3||0[1T 0 0
“ 201 o0fl0]|-3 2 1]||l0]0 1 O

110 0 1[|0]3 1 5][[o|lo 0 1

5 01]0 0][1 0[]0 0][5 3|2 -1
13 3jooflo1]oo]|]o 3|-1 1
~ |72 [t ofloofr 2|0 o0[1T o0

-1 1|0 1|0 0[2 4|0 0|0 1
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Example

Step 3
e move second diagonal element of S, to first position

e compute third row of R and S3

[ Asz Ay Asg Az

5 010 1 0[0 0][5 3|-1 2
3 3joo0f{o 1|joo|]0 3|1 -I
~ | =1t 1t [T ofloo0[4 2||0o0[1 O
2 -1]0 1 ][0 ofl2 1][0 0]0 1
5.0 0[0][1 0 0[l0][5 3 -1]2
|3 3 olof|lo 1 o0l0|]0O 3 1 |-
~ | -1 1 2]ofloo 1|o]|{0o o0 21
2 -1 1|1 ||0 0 0f0][0 0 O
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Example

Result: since Sj is zero, the algorithm terminates with the factorization

[ A3z Az Azg Aszg | (25 15 -5 10 |

Arxz Axy Aos Arg _ 15 18 O 3

Az A A Ayy | | -5 0 6 -1

_A13 App Al Aqq | i 10 3 -1 6
> 00 (5 3 -1 2
3 3 0

= 1 1 92 0O 3 1 -1

1 1 _O 0O 2 1
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Factorization theorem for positive semidefinite matrices

a positive semidefinite n X n matrix A has rank r if and only it can be factored as
A = BB

where B is n X r with linearly independent columns

e “if” statement follows from page 2.5
e the pivoted Cholesky factorization proves the “only if” part

e other algorithms (symmetric eigendecomposition) will be discussed later
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Exercises

Exercise 1: explain why the pivoted Cholesky factorization returns a matrix R with

Ri1 2 Ry =2 - 2 Ry

Exercise 2: suppose A is a symmetric n X n matrix that satisfies
AZ=A

1. show that A is positive semidefinite

2. since A is positive semidefinite, it can be factored as
A =BB!
where B of size n X r and r = rank(A); show that B has orthonormal columns

hence, A is an orthogonal projection matrix (see p.1.17 and 133A page 5.17)
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Exercises
Exercise 3
we use o to denote the component-wise product of matrices: if A, B are n X n, then
(A o B)ij = AijBij, i, j = 1, oo N

1. suppose D is n X r with columns d;; show that

r
(DD") o B = > diag(dy)B diag(dy)
k=1

2. show that A o B is positive semidefinite if A and B are positive semidefinite

3. show that A o B is positive definite if A and B are positive definite
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Exercises

Exercise 4

as an application of exercise 3, let
_ d
f(x)=co+cix+---+cgx

be a polynomial with nonnegative coefficients cg, ..., cg4

suppose X isn X n and p.s.d., and define Y = f(X) as the n x n matrix with
Yij If(Xij), i,j = 1,...,n

show that Y is positive semidefinite

an example is the polynomial kernel function f(x) = (1 +x)¢ (133A lecture 12)
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