
L. Vandenberghe ECE133B (Spring 2023)

9. QR algorithm

• basic QR algorithm

• QR iteration with tridiagonal matrices

• reduction to tridiagonal form

• QR algorithm with shifts

9.1

QR algorithm

• the standard method for computing eigenvalues and eigenvectors

• we discuss the algorithm for symmetric eigendecomposition

𝐴 = 𝑄Λ𝑄𝑇 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖

there are two stages

1. reduction of 𝐴 to tridiagonal form by an orthogonal similarity transformation

𝑄𝑇
1 𝐴𝑄1 = 𝑇, 𝑇 tridiagonal, 𝑄1 orthogonal

2. a fast iterative algorithm to compute eigendecomposition of a tridiagonal matrix

𝑇 = 𝑄2Λ𝑄
𝑇
2

the product 𝑄 = 𝑄1𝑄2 is the matrix of eigenvectors of 𝐴

the purpose of stage 1 is to reduce the complexity of stage 2
QR algorithm 9.2

Necessity of iterative methods

algorithms for computing eigenvalues of matrices of order 𝑛 ≥ 5 must be iterative

• roots of polynomial 𝜆𝑛 + 𝑎𝑛−1𝜆
𝑛−1 + · · · + 𝑎1𝜆 + 𝑎0 are eigenvalues of 𝑛× 𝑛 matrix

𝐴 =

−𝑎𝑛−1 −𝑎𝑛−2 −𝑎𝑛−3 · · · −𝑎1 −𝑎0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
0 0 0 · · · 0 0
0 0 0 · · · 1 0

• no algebraic formula exists for the roots of a general polynomial of degree 𝑛 ≥ 5

(“algebraic” means involving the four basic arithmetic operations and 𝑘 th roots)

• hence, no finite algorithm exists for eigenvalues of general matrix of order 𝑛 ≥ 5

QR algorithm 9.3

Outline

• basic QR algorithm

• QR iteration with tridiagonal matrices

• reduction to tridiagonal form

• QR algorithm with shifts

QR algorithm

suppose 𝐴 is a symmetric 𝑛 × 𝑛 matrix

Basic QR iteration: start at 𝐴1 = 𝐴 and repeat for 𝑘 = 1, 2, . . .,

• compute QR factorization 𝐴𝑘 = 𝑄𝑘𝑅𝑘

• compute 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘

QR algorithm and QR factorization

• algorithm is called QR algorithm, because it is based on QR factorization

• singular 𝐴𝑘 (in step 1) are handled by allowing zeros on diagonal of 𝑅𝑘

Convergence: for most matrices,

• 𝐴𝑘 converges to a diagonal matrix of eigenvalues of 𝐴

• 𝑈𝑘 = 𝑄1𝑄2 · · ·𝑄𝑘 converges to matrix of eigenvectors

QR algorithm 9.4

Some immediate properties

𝐴1 = 𝐴, 𝐴𝑘 = 𝑄𝑘𝑅𝑘 , 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 (for 𝑘 ≥ 1)

• the matrices 𝐴𝑘 are symmetric: the first matrix 𝐴1 = 𝐴 is symmetric and

𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 = 𝑄𝑇
𝑘 𝐴𝑘𝑄𝑘

• continuing recursively, we see that an orthogonal similarity relates 𝐴𝑘 and 𝐴:

𝐴𝑘+1 = (𝑄1𝑄2 · · ·𝑄𝑘)𝑇𝐴(𝑄1𝑄2 · · ·𝑄𝑘)
= 𝑈𝑇

𝑘 𝐴𝑈𝑘

therefore the matrices 𝐴𝑘 all have the same eigenvalues as 𝐴

• the orthogonal matrices 𝑈𝑘 = 𝑄1𝑄2 · · ·𝑄𝑘 and the upper triangular 𝑅𝑘 satisfy

𝐴𝑈𝑘−1 = 𝑈𝑘−1𝐴𝑘 = 𝑈𝑘−1𝑄𝑘𝑅𝑘 = 𝑈𝑘𝑅𝑘

QR algorithm 9.5

Simultaneous iteration

a related algorithm generates the matrices 𝑈𝑘 , 𝑅𝑘 from last property on page 9.5:

𝐴𝑈𝑘−1 = 𝑈𝑘𝑅𝑘

note that the right-hand side is a QR factorization

Simultaneous iteration: start at 𝑈0 = 𝐼 and repeat for 𝑘 = 1, 2, . . .,

• multiply with 𝐴: compute 𝑉𝑘 = 𝐴𝑈𝑘−1

• compute QR factorization 𝑉𝑘 = 𝑈𝑘𝑅𝑘

if the matrices 𝑈𝑘 converge to 𝑈, then 𝑅𝑘 converges to a diagonal matrix, since

𝑅𝑘 = 𝑈𝑇
𝑘𝑉𝑘 = 𝑈𝑇

𝑘 𝐴𝑈𝑘−1

so the limit of 𝑅𝑘 is both symmetric (𝑈𝑇𝐴𝑈) and triangular, hence diagonal

QR algorithm 9.6

Power iteration

simultaneous iteration is a matrix extension of the power iteration

Power iteration: start at 𝑛-vector 𝑢0 with ∥𝑢0∥ = 1, and repeat for 𝑘 = 1, 2, . . .,

• multiply with 𝐴: compute 𝑣𝑘 = 𝐴𝑢𝑘−1

• normalize: 𝑢𝑘 = 𝑣𝑘/∥𝑣𝑘 ∥

this is a simple iteration for computing an eigenvector with the largest eigenvalue

• suppose the eigenvalues of 𝐴 satisfy |𝜆1 | > |𝜆2 | ≥ · · · ≥ |𝜆𝑛 |
• expand 𝑢0 as 𝑢0 = 𝛼1𝑞1 + · · · + 𝛼𝑛𝑞𝑛 where 𝑞𝑖 is a normalized eigenvector for 𝜆𝑖

• after 𝑘 power iterations, 𝑢𝑘 is a normalized scalar multiple of the vector

𝐴𝑘𝑢0 = 𝜆𝑘1

(
𝛼1𝑞1 + 𝛼2(𝜆2/𝜆1)𝑘𝑞2 + · · · + 𝛼𝑛(𝜆𝑛/𝜆1)𝑘𝑞𝑛

)
• if 𝛼1 ≠ 0, the vector ±𝑢𝑘 converges to 𝑞1, and 𝑢𝑇𝑘 𝐴𝑢𝑘 converges to 𝜆1

QR algorithm 9.7

Simultaneous iteration as matrix power iteration

Simultaneous iteration:

𝑈0 = 𝐼, 𝐴𝑈𝑘−1 = 𝑈𝑘𝑅𝑘 (for 𝑘 ≥ 1)

with 𝑈𝑘 orthogonal, 𝑅𝑘 upper triangular

Interpretation as QR factorization of powers of 𝐴: after 𝑘 steps,

𝐴𝑘 = 𝑈𝑘𝑆𝑘 where 𝑆𝑘 = 𝑅𝑘𝑅𝑘−1 · · · 𝑅1

• the product 𝑆𝑘 = 𝑅𝑘𝑅𝑘−1 · · · 𝑅1 is upper triangular

• follows from repeated substitution:

𝐴 = 𝑈1𝑅1, 𝐴2 = 𝐴𝑈1𝑅1 = 𝑈2𝑅2𝑅1, 𝐴3 = 𝐴𝑈2𝑅2𝑅1 = 𝑈3𝑅3𝑅2𝑅1, . . .

QR algorithm 9.8

Convergence of simultaneous iteration

eigendecomposition of 𝐴

𝐴 =
∑︁
𝑖

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 = 𝑄Λ𝑄𝑇

Assumptions

• |𝜆1 | > |𝜆2 | > · · · > |𝜆𝑛−1 | > |𝜆𝑛 | with strict inequalities

• the 𝑗 × 𝑗 leading principal submatrices of 𝑄 are nonsingular for 𝑗 = 1, . . . , 𝑛:
𝑄11 · · · 𝑄1 𝑗
... ...

𝑄 𝑗1 · · · 𝑄 𝑗 𝑗

 =

𝑒𝑇1𝑞1 · · · 𝑒𝑇1𝑞 𝑗
... ...

𝑒𝑇𝑗 𝑞1 · · · 𝑒𝑇𝑗 𝑞 𝑗

 is nonsingular

Convergence: in simultaneous iteration (and QR iteration),

𝑈𝑇
𝑘 𝐴𝑈𝑘 −→ Λ =

𝜆1 · · · 0
...
0 · · · 𝜆𝑛

QR algorithm 9.9

(Outline of) proof

• eigendecomposition of 𝐴𝑘 is 𝐴𝑘 =
∑𝑛

𝑖=1 𝜆
𝑘
𝑖 𝑞𝑖𝑞

𝑇
𝑖

• first 𝑗 columns of factor 𝑈𝑘 in the QR factorization 𝐴𝑘 = 𝑈𝑘𝑆𝑘 span the range of

𝐴𝑘
[
𝑒1 · · · 𝑒 𝑗

]
=

[
𝑞1 · · · 𝑞 𝑗

]
𝜆𝑘1 · · · 0
...
0 · · · 𝜆𝑘𝑗

𝑞𝑇1𝑒1 · · · 𝑞𝑇1𝑒 𝑗... ...
𝑞𝑇𝑗 𝑒1 · · · 𝑞𝑇𝑗 𝑒 𝑗

+ [

𝑞 𝑗+1 · · · 𝑞𝑛
]

𝜆𝑘
𝑗+1 · · · 0
...
0 · · · 𝜆𝑘𝑛

𝑞𝑇𝑗+1𝑒1 · · · 𝑞𝑇𝑗+1𝑒 𝑗

... ...
𝑞𝑇𝑛𝑒1 · · · 𝑞𝑇𝑛𝑒 𝑗

• if the two assumptions on the previous page hold,

range([𝑈𝑘𝑒1 · · · 𝑈𝑘𝑒 𝑗
]) = range([𝐴𝑘𝑒1 · · · 𝐴𝑘𝑒 𝑗

]) −→ range([𝑞1 · · · 𝑞 𝑗
])

• the fact that this holds for every 𝑗 = 1, . . . , 𝑛 implies that 𝑈𝑇
𝑘 𝐴𝑈𝑘 −→ Λ

QR algorithm 9.10

Outline

• basic QR algorithm

• QR iteration with tridiagonal matrices

• reduction to tridiagonal form

• QR algorithm with shifts

Complexity of QR iteration

QR iteration: start at 𝐴1 = 𝐴 and repeat for 𝑘 = 1, 2, . . .,

• compute QR factorization 𝐴𝑘 = 𝑄𝑘𝑅𝑘

• compute 𝐴𝑘 = 𝑅𝑘𝑄𝑘

Complexity

• for general symmetric 𝐴, cost per iteration is order 𝑛3

• we’ll see that for tridiagonal 𝐴, cost per iteration is only order 𝑛

• this motivates stage 1 (page 9.2): first reduce 𝐴 to tridiagonal form (at cost 𝑛3)

QR algorithm 9.11

QR factorization of tridiagonal matrix

suppose 𝐴 is 𝑛 × 𝑛 and tridiagonal, with QR factorization

𝐴 = 𝑄𝑅

then 𝑄 and 𝑅 have a special structure:

• •
• • •

• • •
• • •

• • •
• •

=

• • • • • •
• • • • • •

• • • • •
• • • •

• • •
• •

• • •
• • •

• • •
• • •

• •
•

(dots indicate possibly nonzero elements)

• 𝑄 is zero below the first subdiagonal (𝑄𝑖 𝑗 = 0 if 𝑖 > 𝑗 + 1)

column 𝑘 is column 𝑘 of 𝐴 orthogonalized with respect to previous columns

• 𝑅 is zero above second superdiagonal (𝑅𝑖 𝑗 = 0 if 𝑗 > 𝑖 + 2)

follows from considering 𝑅 = 𝑄𝑇𝐴 and the property of 𝑄

QR algorithm 9.12

QR iteration with tridiagonal 𝐴

now suppose 𝐴 in the basic QR iteration on page 9.4 is tridiagonal and symmetric

• we already noted that matrices 𝐴𝑘 are symmetric if 𝐴 is symmetric (page 9.5):

𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 = 𝑄𝑇
𝑘 𝐴𝑘𝑄𝑘

• Q-factor of a tridiagonal matrix is zero below the first subdiagonal (page 9.12)

• this implies that the product 𝑅𝑘𝑄𝑘 = 𝐴𝑘+1 is zero below the first subdiagonal:

• • •
• • •

• • •
• • •

• •
•

• • • • • •
• • • • • •

• • • • •
• • • •

• • •
• •

=

• • • • • •
• • • • • •

• • • • •
• • • •

• • •
• •

• since 𝐴𝑘+1 is also symmetric, it is tridiagonal

hence, symmetric tridiagonal structure of 𝐴 is preserved in 𝐴𝑘 during QR iteration
QR algorithm 9.13

Computing tridiagonal QR factorization

QR factorization of 𝑛 × 𝑛 tridiagonal 𝐴 takes order 𝑛 operations

𝑄𝑇𝐴 = 𝑅

for example, in the Householder algorithm (133A lecture 6)

• 𝑄𝑇 is a product of reflectors 𝐻𝑘 = 𝐼 − 𝑣𝑘𝑣
𝑇
𝑘 that make 𝐴 upper triangular

𝐻𝑛−1 · · ·𝐻1

𝐴11 𝐴12 0 · · · 0 0
𝐴21 𝐴22 𝐴23 · · · 0 0
0 𝐴32 𝐴33 · · · 0 0
...
0 0 0 · · · 𝐴𝑛−1,𝑛−1 𝐴𝑛−1,𝑛
0 0 0 · · · 𝐴𝑛,𝑛−1 𝐴𝑛𝑛

= 𝑅

if 𝐴 is tridiagonal, each vector 𝑣𝑘 has only two nonzero elements

• 𝑄 is stored in factored form (the reflectors 𝑣𝑘 are stored)

• we can allow zeros on diagonal of 𝑅, to extend QR factorization to singular 𝐴
QR algorithm 9.14

Outline

• basic QR algorithm

• QR iteration with tridiagonal matrices

• reduction to tridiagonal form

• QR algorithm with shifts

Reflector

𝑄 = 𝐼 − 𝑣𝑣𝑇 with ∥𝑣∥ =
√

2

• 𝑄𝑥 is reflection of 𝑥 through the hyperplane {𝑧 | 𝑣𝑇 𝑧 = 0}

• 𝑄 is symmetric and orthogonal

• for 𝑚-vectors 𝑥, 𝑣, matrix–vector product 𝑄𝑥 can be computed in 4𝑚 flops, as

𝑄𝑥 = 𝑥 − (𝑣𝑇𝑥)𝑣

QR algorithm 9.15

Reflection to multiple of first unit vector

• an easily constructed reflector maps a given 𝑦 to a multiple of 𝑒1

• if 𝑦 ≠ 0, choose the reflector defined by

𝑣 =

√
2

∥𝑤∥𝑤, 𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1 =

𝑦1 + sign(𝑦1)∥𝑦∥

𝑦2
...
𝑦𝑚

(we define sign(0) = 1)

• this reflector maps 𝑦 to

𝑄𝑦 = −sign(𝑦1)∥𝑦∥𝑒1 =

−sign(𝑦1)∥𝑦∥

0
...
0

QR algorithm 9.16

Geometry

first coordinate axis

𝑦

−sign(𝑦1)∥𝑦∥𝑒1

𝑤

hyperplane {𝑥 | 𝑤𝑇𝑥 = 0}

the reflection through the hyperplane {𝑥 | 𝑤𝑇𝑥 = 0} with normal vector

𝑤 = 𝑦 + sign(𝑦1)∥𝑦∥𝑒1

maps 𝑦 to the vector −sign(𝑦1)∥𝑦∥𝑒1

QR algorithm 9.17

Reduction to tridiagonal form

given an 𝑛 × 𝑛 symmetric matrix 𝐴, find orthogonal 𝑄 such that

𝑄𝑇𝐴𝑄 =

𝑎1 𝑏1 0 · · · 0 0 0
𝑏1 𝑎2 𝑏2 · · · 0 0 0
0 𝑏2 𝑎3 · · · 0 0 0
...
0 0 0 · · · 𝑎𝑛−2 𝑏𝑛−2 0
0 0 0 · · · 𝑏𝑛−2 𝑎𝑛−1 𝑏𝑛−1
0 0 0 · · · 0 𝑏𝑛−1 𝑎𝑛

• this can be achieved by a product of 𝑛 − 2 reflectors

𝑄 = 𝑄1𝑄2 · · ·𝑄𝑛−2

• complexity is order 𝑛3

QR algorithm 9.18

First step

partition 𝐴 as

𝐴 =

[
𝑎1 𝑐𝑇1
𝑐1 𝐵1

]
𝑐1 is an (𝑛 − 1)-vector, 𝐵1 is (𝑛 − 1) × (𝑛 − 1)

• find (𝑛 − 1) × (𝑛 − 1) reflector 𝐼 − 𝑣1𝑣
𝑇
1 that maps 𝑐1 to 𝑏1𝑒1 and define

𝑄1 =

[
1 0
0 𝐼 − 𝑣1𝑣

𝑇
1

]
• multiply 𝐴 with 𝑄1 to introduce zeros in positions 3, . . . , 𝑛 of 1st column and row

𝑄1𝐴𝑄1 =

[
𝑎1 𝑐𝑇1 (𝐼 − 𝑣1𝑣

𝑇
1)

(𝐼 − 𝑣1𝑣
𝑇
1)𝑐1 (𝐼 − 𝑣1𝑣

𝑇
1)𝐵1(𝐼 − 𝑣1𝑣

𝑇
1)

]
=

[
𝑎1 𝑏1𝑒

𝑇
1

𝑏1𝑒1 𝐵1 − 𝑣1𝑤
𝑇
1 − 𝑤1𝑣

𝑇
1

]
where 𝑤1 = 𝐵1𝑣1 −

𝑣𝑇1𝐵1𝑣1

2
𝑣1

• computation of 2, 2 block requires order 4𝑛2 flops

QR algorithm 9.19

General step

after 𝑘 − 1 steps,

𝑄𝑘−1 · · ·𝑄1𝐴𝑄1 · · ·𝑄𝑘−1 =

𝑎1 𝑏1 0 · · · 0 0 0 0
𝑏1 𝑎2 𝑏2 · · · 0 0 0 0
0 𝑏2 𝑎3 · · · 0 0 0 0
...
0 0 0 · · · 𝑎𝑘−2 𝑏𝑘−2 0 0
0 0 0 · · · 𝑏𝑘−2 𝑎𝑘−1 𝑏𝑘−1 0
0 0 0 · · · 0 𝑏𝑘−1 𝑎𝑘 𝑐𝑇𝑘
0 0 0 · · · 0 0 𝑐𝑘 𝐵𝑘

• find a reflector 𝐼 − 𝑣𝑘𝑣

𝑇
𝑘 that maps the (𝑛 − 𝑘)-vector 𝑐𝑘 to 𝑏𝑘𝑒1 and define

𝑄𝑘 =

𝐼𝑘−1 0 0

0 1 0
0 0 𝐼 − 𝑣𝑘𝑣

𝑇
𝑘

 , (𝐼 − 𝑣𝑘𝑣
𝑇
𝑘)𝐵𝑘 (𝐼 − 𝑣𝑘𝑣

𝑇
𝑘) =

[
𝑎𝑘+1 𝑐𝑇𝑘+1
𝑐𝑘+1 𝐵𝑘+1

]
• complexity of step 𝑘 is 4(𝑛 − 𝑘)2 plus lower order terms

QR algorithm 9.20

Summary for 5 × 5 matrix

𝑄𝑇
3𝑄

𝑇
2𝑄

𝑇
1

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

𝑄1𝑄2𝑄3 = 𝑄𝑇

3𝑄
𝑇
2

• •
• • • • •

• • • •
• • • •
• • • •

𝑄2𝑄3

= 𝑄𝑇
3

• •
• • •

• • • •
• • •
• • •

𝑄3

=

• •
• • •

• • •
• • •

• •

QR algorithm 9.21

Complexity

• complexity for complete algorithm is dominated by

𝑛−2∑︁
𝑘=1

4(𝑛 − 𝑘)2 ≈ 4
3
𝑛3

• 𝑄 is stored in factored form (the vectors 𝑣𝑘 are stored)

• if needed, assembling the matrix 𝑄 adds another order 𝑛3 term

QR algorithm 9.22

Outline

• basic QR algorithm

• QR iteration with tridiagonal matrices

• reduction to tridiagonal form

• QR algorithm with shifts

QR algorithm with shifts

in practice, a multiple of the identity is subtracted from 𝐴𝑘 before factoring

QR iteration with shifts: start at 𝐴1 = 𝐴 and repeat for 𝑘 = 1, 2, . . .,

• choose a shift 𝜇𝑘

• compute QR factorization 𝐴𝑘 − 𝜇𝑘 𝐼 = 𝑄𝑘𝑅𝑘

• define 𝐴𝑘+1 = 𝑅𝑘𝑄𝑘 + 𝜇𝑘 𝐼

• iteration still preserves symmetry and tridiagonal structure in 𝐴𝑘

• with properly chosen shifts, the iteration always converges

• with properly chosen shifts, convergence is fast (usually cubic)

QR algorithm 9.23

Complexity

overall complexity of QR method for symmetric eigendecomposition 𝐴 = 𝑄Λ𝑄𝑇

Eigenvalues: if eigenvectors are not needed, we can leave 𝑄 in factored form

• reduction of 𝐴 to tridiagonal form costs (4/3)𝑛3

• for tridiagonal matrix, complexity of one QR iteration is linear in 𝑛

• on average, number of QR iterations is a small multiple of 𝑛

hence, cost is dominated by (4/3)𝑛3 for initial reduction to tridiagonal form

Eigenvalues and eigenvectors: if 𝑄 is needed, order 𝑛3 terms are added

• reduction to tridiagonal form and accumulating orthogonal matrix costs (8/3)𝑛3

• finding eigenvalues and eigenvectors of tridiagonal matrix costs 6𝑛3

hence, total cost is (26/3)𝑛3 plus lower order terms

QR algorithm 9.24

References

• Lloyd N. Trefethen and David Bau, III, Numerical Linear Algebra (1997).

lectures 26–29 in this book discuss the QR iteration

• James W. Demmel, Applied Numerical Linear Algebra (1997).

page 213 of this book gives details for the complexity figures on page 9.24

QR algorithm 9.25

https://doi.org/10.1137/1.9781611971446

