- basic QR algorithm
- QR iteration with tridiagonal matrices
- reduction to tridiagonal form
- QR algorithm with shifts

QR algorithm

- the standard method for computing eigenvalues and eigenvectors
- we discuss the algorithm for symmetric eigendecomposition

$$A = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$

there are two stages

1. reduction of A to tridiagonal form by an orthogonal similarity transformation

 $Q_1^T A Q_1 = T$, *T* tridiagonal, Q_1 orthogonal

2. a fast iterative algorithm to compute eigendecomposition of a tridiagonal matrix

$$T = Q_2 \Lambda Q_2^T$$

the product $Q = Q_1Q_2$ is the matrix of eigenvectors of A

the purpose of stage 1 is to reduce the complexity of stage 2

Necessity of iterative methods

algorithms for computing eigenvalues of matrices of order $n \ge 5$ must be iterative

• roots of polynomial $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0$ are eigenvalues of $n \times n$ matrix

$$A = \begin{bmatrix} -a_{n-1} & -a_{n-2} & -a_{n-3} & \cdots & -a_1 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

- no algebraic formula exists for the roots of a general polynomial of degree $n \ge 5$ ("algebraic" means involving the four basic arithmetic operations and *k*th roots)
- hence, no finite algorithm exists for eigenvalues of general matrix of order $n \ge 5$

Outline

• basic QR algorithm

- QR iteration with tridiagonal matrices
- reduction to tridiagonal form
- QR algorithm with shifts

QR algorithm

suppose *A* is a symmetric $n \times n$ matrix

Basic QR iteration: start at $A_1 = A$ and repeat for k = 1, 2, ...,

- compute QR factorization $A_k = Q_k R_k$
- compute $A_{k+1} = R_k Q_k$

QR algorithm and QR factorization

- algorithm is called *QR algorithm*, because it is based on QR factorization
- singular A_k (in step 1) are handled by allowing zeros on diagonal of R_k

Convergence: for most matrices,

- A_k converges to a diagonal matrix of eigenvalues of A
- $U_k = Q_1 Q_2 \cdots Q_k$ converges to matrix of eigenvectors

Some immediate properties

$$A_1 = A, \qquad A_k = Q_k R_k, \quad A_{k+1} = R_k Q_k \quad (\text{for } k \ge 1)$$

• the matrices A_k are symmetric: the first matrix $A_1 = A$ is symmetric and

$$A_{k+1} = R_k Q_k = Q_k^T A_k Q_k$$

• continuing recursively, we see that an orthogonal similarity relates A_k and A:

$$A_{k+1} = (Q_1 Q_2 \cdots Q_k)^T A(Q_1 Q_2 \cdots Q_k)$$
$$= U_k^T A U_k$$

therefore the matrices A_k all have the same eigenvalues as A

• the orthogonal matrices $U_k = Q_1 Q_2 \cdots Q_k$ and the upper triangular R_k satisfy

$$AU_{k-1} = U_{k-1}A_k = U_{k-1}Q_kR_k = U_kR_k$$

Simultaneous iteration

a related algorithm generates the matrices U_k , R_k from last property on page 9.5:

$$AU_{k-1} = U_k R_k$$

note that the right-hand side is a QR factorization

Simultaneous iteration: start at $U_0 = I$ and repeat for k = 1, 2, ...,

- multiply with *A*: compute $V_k = AU_{k-1}$
- compute QR factorization $V_k = U_k R_k$

if the matrices U_k converge to U, then R_k converges to a diagonal matrix, since

$$R_k = U_k^T V_k = U_k^T A U_{k-1}$$

so the limit of R_k is both symmetric ($U^T A U$) and triangular, hence diagonal

Power iteration

simultaneous iteration is a matrix extension of the power iteration

Power iteration: start at *n*-vector u_0 with $||u_0|| = 1$, and repeat for k = 1, 2, ...,

- multiply with *A*: compute $v_k = Au_{k-1}$
- normalize: $u_k = v_k / ||v_k||$

this is a simple iteration for computing an eigenvector with the largest eigenvalue

- suppose the eigenvalues of A satisfy $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$
- expand u_0 as $u_0 = \alpha_1 q_1 + \cdots + \alpha_n q_n$ where q_i is a normalized eigenvector for λ_i
- after k power iterations, u_k is a normalized scalar multiple of the vector

$$A^{k}u_{0} = \lambda_{1}^{k} \left(\alpha_{1}q_{1} + \alpha_{2}(\lambda_{2}/\lambda_{1})^{k}q_{2} + \dots + \alpha_{n}(\lambda_{n}/\lambda_{1})^{k}q_{n} \right)$$

• if $\alpha_1 \neq 0$, the vector $\pm u_k$ converges to q_1 , and $u_k^T A u_k$ converges to λ_1

Simultaneous iteration as matrix power iteration

Simultaneous iteration:

$$U_0 = I$$
, $AU_{k-1} = U_k R_k$ (for $k \ge 1$)

with U_k orthogonal, R_k upper triangular

Interpretation as QR factorization of powers of A: after k steps,

$$A^k = U_k S_k$$
 where $S_k = R_k R_{k-1} \cdots R_1$

- the product $S_k = R_k R_{k-1} \cdots R_1$ is upper triangular
- follows from repeated substitution:

$$A = U_1 R_1,$$
 $A^2 = A U_1 R_1 = U_2 R_2 R_1,$ $A^3 = A U_2 R_2 R_1 = U_3 R_3 R_2 R_1,$...

Convergence of simultaneous iteration

eigendecomposition of A

$$A = \sum_{i} \lambda_{i} q_{i} q_{i}^{T} = Q \Lambda Q^{T}$$

Assumptions

- $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_{n-1}| > |\lambda_n|$ with strict inequalities
- the $j \times j$ leading principal submatrices of Q are nonsingular for j = 1, ..., n:

$$\begin{bmatrix} Q_{11} & \cdots & Q_{1j} \\ \vdots & & \vdots \\ Q_{j1} & \cdots & Q_{jj} \end{bmatrix} = \begin{bmatrix} e_1^T q_1 & \cdots & e_1^T q_j \\ \vdots & & \vdots \\ e_j^T q_1 & \cdots & e_j^T q_j \end{bmatrix}$$
 is nonsingular

Convergence: in simultaneous iteration (and QR iteration),

$$U_k^T A U_k \longrightarrow \Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

(Outline of) proof

- eigendecomposition of A^k is $A^k = \sum_{i=1}^n \lambda_i^k q_i q_i^T$
- first *j* columns of factor U_k in the QR factorization $A^k = U_k S_k$ span the range of

$$A^{k} \begin{bmatrix} e_{1} \cdots e_{j} \end{bmatrix} = \begin{bmatrix} q_{1} \cdots q_{j} \end{bmatrix} \begin{bmatrix} \lambda_{1}^{k} \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{j}^{k} \end{bmatrix} \begin{bmatrix} q_{1}^{T} e_{1} \cdots & q_{1}^{T} e_{j} \\ \vdots & & \vdots \\ q_{j}^{T} e_{1} \cdots & q_{j}^{T} e_{j} \end{bmatrix}$$
$$+ \begin{bmatrix} q_{j+1} \cdots & q_{n} \end{bmatrix} \begin{bmatrix} \lambda_{j+1}^{k} \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}^{k} \end{bmatrix} \begin{bmatrix} q_{j+1}^{T} e_{1} \cdots & q_{j+1}^{T} e_{j} \\ \vdots & & \vdots \\ q_{n}^{T} e_{1} \cdots & q_{n}^{T} e_{j} \end{bmatrix}$$

• if the two assumptions on the previous page hold,

$$\operatorname{range}(\left[U_k e_1 \cdots U_k e_j\right]) = \operatorname{range}(\left[A^k e_1 \cdots A^k e_j\right]) \longrightarrow \operatorname{range}(\left[q_1 \cdots q_j\right])$$

• the fact that this holds for every j = 1, ..., n implies that $U_k^T A U_k \longrightarrow \Lambda$

Outline

- basic QR algorithm
- QR iteration with tridiagonal matrices
- reduction to tridiagonal form
- QR algorithm with shifts

Complexity of QR iteration

QR iteration: start at $A_1 = A$ and repeat for k = 1, 2, ...,

- compute QR factorization $A_k = Q_k R_k$
- compute $A_k = R_k Q_k$

Complexity

- for general symmetric A, cost per iteration is order n^3
- we'll see that for tridiagonal A, cost per iteration is only order n
- this motivates stage 1 (page 9.2): first reduce A to tridiagonal form (at cost n^3)

QR factorization of tridiagonal matrix

suppose A is $n \times n$ and tridiagonal, with QR factorization

A = QR

then *Q* and *R* have a special structure:

(dots indicate possibly nonzero elements)

- *Q* is zero below the first subdiagonal (*Q_{ij}* = 0 if *i* > *j* + 1)
 column *k* is column *k* of *A* orthogonalized with respect to previous columns
- *R* is zero above second superdiagonal ($R_{ij} = 0$ if j > i + 2) follows from considering $R = Q^T A$ and the property of Q

QR iteration with tridiagonal *A*

now suppose A in the basic QR iteration on page 9.4 is tridiagonal and symmetric

• we already noted that matrices A_k are symmetric if A is symmetric (page 9.5):

$$A_{k+1} = R_k Q_k = Q_k^T A_k Q_k$$

- Q-factor of a tridiagonal matrix is zero below the first subdiagonal (page 9.12)
- this implies that the product $R_kQ_k = A_{k+1}$ is zero below the first subdiagonal:

• since A_{k+1} is also symmetric, it is tridiagonal

hence, symmetric tridiagonal structure of A is preserved in A_k during QR iteration

Computing tridiagonal QR factorization

QR factorization of $n \times n$ tridiagonal A takes order n operations

$$Q^T A = R$$

for example, in the Householder algorithm (133A lecture 6)

• Q^T is a product of reflectors $H_k = I - v_k v_k^T$ that make A upper triangular

$$H_{n-1}\cdots H_{1} \begin{bmatrix} A_{11} & A_{12} & 0 & \cdots & 0 & 0 \\ A_{21} & A_{22} & A_{23} & \cdots & 0 & 0 \\ 0 & A_{32} & A_{33} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{n-1,n-1} & A_{n-1,n} \\ 0 & 0 & 0 & \cdots & A_{n,n-1} & A_{nn} \end{bmatrix} = R$$

if A is tridiagonal, each vector v_k has only two nonzero elements

- Q is stored in factored form (the reflectors v_k are stored)
- we can allow zeros on diagonal of R, to extend QR factorization to singular A

Outline

- basic QR algorithm
- QR iteration with tridiagonal matrices
- reduction to tridiagonal form
- QR algorithm with shifts

Reflector

$$Q = I - vv^T$$
 with $||v|| = \sqrt{2}$

- Qx is reflection of x through the hyperplane $\{z \mid v^T z = 0\}$
- *Q* is symmetric and orthogonal
- for *m*-vectors x, v, matrix–vector product Qx can be computed in 4m flops, as

$$Qx = x - (v^T x)v$$

Reflection to multiple of first unit vector

- an easily constructed reflector maps a given y to a multiple of e_1
- if $y \neq 0$, choose the reflector defined by

$$v = \frac{\sqrt{2}}{\|w\|}w, \qquad w = y + \operatorname{sign}(y_1)\|y\|e_1 = \begin{bmatrix} y_1 + \operatorname{sign}(y_1)\|y\| \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

(we define sign(0) = 1)

• this reflector maps y to

$$Qy = -\operatorname{sign}(y_1) ||y|| e_1 = \begin{bmatrix} -\operatorname{sign}(y_1) ||y|| \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

the reflection through the hyperplane $\{x \mid w^T x = 0\}$ with normal vector

 $w = y + \operatorname{sign}(y_1) \|y\| e_1$

maps y to the vector $-sign(y_1) ||y|| e_1$

Reduction to tridiagonal form

given an $n \times n$ symmetric matrix A, find orthogonal Q such that

$$Q^{T}AQ = \begin{bmatrix} a_{1} & b_{1} & 0 & \cdots & 0 & 0 & 0 \\ b_{1} & a_{2} & b_{2} & \cdots & 0 & 0 & 0 \\ 0 & b_{2} & a_{3} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-2} & b_{n-2} & 0 \\ 0 & 0 & 0 & \cdots & b_{n-2} & a_{n-1} & b_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & b_{n-1} & a_{n} \end{bmatrix}$$

• this can be achieved by a product of n - 2 reflectors

$$Q = Q_1 Q_2 \cdots Q_{n-2}$$

• complexity is order n^3

First step

partition A as

$$A = \begin{bmatrix} a_1 & c_1^T \\ c_1 & B_1 \end{bmatrix} \qquad c_1 \text{ is an } (n-1) \text{-vector, } B_1 \text{ is } (n-1) \times (n-1)$$

• find $(n-1) \times (n-1)$ reflector $I - v_1 v_1^T$ that maps c_1 to $b_1 e_1$ and define

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & I - v_1 v_1^T \end{bmatrix}$$

• multiply A with Q_1 to introduce zeros in positions $3, \ldots, n$ of 1st column and row

$$Q_{1}AQ_{1} = \begin{bmatrix} a_{1} & c_{1}^{T}(I - v_{1}v_{1}^{T}) \\ (I - v_{1}v_{1}^{T})c_{1} & (I - v_{1}v_{1}^{T})B_{1}(I - v_{1}v_{1}^{T}) \end{bmatrix}$$
$$= \begin{bmatrix} a_{1} & b_{1}e_{1}^{T} \\ b_{1}e_{1} & B_{1} - v_{1}w_{1}^{T} - w_{1}v_{1}^{T} \end{bmatrix} \text{ where } w_{1} = B_{1}v_{1} - \frac{v_{1}^{T}B_{1}v_{1}}{2}v_{1}$$

• computation of 2, 2 block requires order $4n^2$ flops

General step

after k - 1 steps,

$$Q_{k-1}\cdots Q_1 A Q_1 \cdots Q_{k-1} = \begin{bmatrix} a_1 & b_1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\ b_1 & a_2 & b_2 & \cdots & 0 & 0 & 0 & 0 & 0 \\ 0 & b_2 & a_3 & \cdots & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{k-2} & b_{k-2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & b_{k-2} & a_{k-1} & b_{k-1} & 0 & 0 \\ \hline 0 & 0 & 0 & \cdots & 0 & b_{k-1} & a_k & c_k^T \\ 0 & 0 & 0 & \cdots & 0 & 0 & c_k & B_k \end{bmatrix}$$

• find a reflector $I - v_k v_k^T$ that maps the (n - k)-vector c_k to $b_k e_1$ and define

$$Q_{k} = \begin{bmatrix} I_{k-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I - v_{k}v_{k}^{T} \end{bmatrix}, \qquad (I - v_{k}v_{k}^{T})B_{k}(I - v_{k}v_{k}^{T}) = \begin{bmatrix} a_{k+1} & c_{k+1}^{T} \\ c_{k+1} & B_{k+1} \end{bmatrix}$$

• complexity of step k is $4(n-k)^2$ plus lower order terms

Summary for 5×5 matrix

Complexity

• complexity for complete algorithm is dominated by

$$\sum_{k=1}^{n-2} 4(n-k)^2 \approx \frac{4}{3}n^3$$

- Q is stored in factored form (the vectors v_k are stored)
- if needed, assembling the matrix Q adds another order n^3 term

Outline

- basic QR algorithm
- QR iteration with tridiagonal matrices
- reduction to tridiagonal form
- QR algorithm with shifts

QR algorithm with shifts

in practice, a multiple of the identity is subtracted from A_k before factoring

QR iteration with shifts: start at $A_1 = A$ and repeat for k = 1, 2, ...,

- choose a shift μ_k
- compute QR factorization $A_k \mu_k I = Q_k R_k$
- define $A_{k+1} = R_k Q_k + \mu_k I$

- iteration still preserves symmetry and tridiagonal structure in A_k
- with properly chosen shifts, the iteration always converges
- with properly chosen shifts, convergence is fast (usually cubic)

Complexity

overall complexity of QR method for symmetric eigendecomposition $A = Q\Lambda Q^T$

Eigenvalues: if eigenvectors are not needed, we can leave Q in factored form

- reduction of A to tridiagonal form costs $(4/3)n^3$
- for tridiagonal matrix, complexity of one QR iteration is linear in *n*
- on average, number of QR iterations is a small multiple of *n*

hence, cost is dominated by $(4/3)n^3$ for initial reduction to tridiagonal form

Eigenvalues and eigenvectors: if *Q* is needed, order n^3 terms are added

- reduction to tridiagonal form and accumulating orthogonal matrix costs $(8/3)n^3$
- finding eigenvalues and eigenvectors of tridiagonal matrix costs $6n^3$ hence, total cost is $(26/3)n^3$ plus lower order terms

References

- Lloyd N. Trefethen and David Bau, III, *Numerical Linear Algebra* (1997).
 lectures 26–29 in this book discuss the QR iteration
- James W. Demmel, *Applied Numerical Linear Algebra* (1997).

page 213 of this book gives details for the complexity figures on page 9.24