L. Vandenberghe ECE133B (Spring 2023)

9. QR algorithm

e basic QR algorithm
e QR iteration with tridiagonal matrices
e reduction to tridiagonal form

e QR algorithm with shifts
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QR algorithm

e the standard method for computing eigenvalues and eigenvectors

e we discuss the algorithm for symmetric eigendecomposition
T_~ T
A =QAQ" = > Aiqiq;
i=1

there are two stages

1. reduction of A to tridiagonal form by an orthogonal similarity transformation

Q{AQl =T, T tridiagonal, (Q; orthogonal

2. a fast iterative algorithm to compute eigendecomposition of a tridiagonal matrix

T = 0,AQ;

the product Q = Q0> is the matrix of eigenvectors of A

the purpose of stage 1 is to reduce the complexity of stage 2
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Necessity of iterative methods

algorithms for computing eigenvalues of matrices of order n > 5 must be iterative

e roots of polynomial A% + a,_1 A"~ +- - - + a1 A + ag are eigenvalues of n x n matrix

[ —a,-1 —ap-2 —ap-3 -+ -—a; —ag |
1 0 0 - 0 0
0o
0 0 0 - 0 0
0 0 0 1 0

e no algebraic formula exists for the roots of a general polynomial of degree n > 5

(“algebraic” means involving the four basic arithmetic operations and kth roots)

e hence, no finite algorithm exists for eigenvalues of general matrix of ordern > 5
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QR algorithm

suppose A is a symmetric n X n matrix

Basic QR iteration: startat A; = A and repeatfork =1,2,...,

e compute QR factorization A, = Qi Ry

e compute Ayy1 = ROy

QR algorithm and QR factorization

e algorithm is called QR algorithm, because it is based on QR factorization

e singular A (in step 1) are handled by allowing zeros on diagonal of Ry

Convergence: for most matrices,

e A, converges to a diagonal matrix of eigenvalues of A

e U, =0105---0Qj converges to matrix of eigenvectors
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Some immediate properties

A1 =A, Ay =0iRi, Ags1=RiQp (fork > 1)
e the matrices A, are symmetric: the first matrix A; = A is symmetric and
Ak+1 = RiQk = QL ArQOx

e continuing recursively, we see that an orthogonal similarity relates A; and A:

Arr1 = (Q102---00)"A(Q102-+- Q%)
= U, AU,

therefore the matrices A, all have the same eigenvalues as A

e the orthogonal matrices U, = 010> - - - O and the upper triangular R; satisfy

AU = U 1A = U 1Qk R = Uk Ry,
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Simultaneous iteration

a related algorithm generates the matrices Uy, R from last property on page 9.5:
AUj-1 = UrRg
note that the right-hand side is a QR factorization

Simultaneous iteration: start at Uy = I and repeat fork =1,2, .. .,

o multiply with A: compute Vi = AU

e compute QR factorization V, = U, Ry,

if the matrices U; converge to U, then R; converges to a diagonal matrix, since
Ry = U]];Vk = U/];AUk—l

so the limit of Ry, is both symmetric (U’ AU) and triangular, hence diagonal
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Power iteration

simultaneous iteration is a matrix extension of the power iteration

Power iteration: start at n-vector ugy with ||ug|| = 1, and repeatfor k = 1,2, .. .,
e multiply with A: compute v = Auyg_g

e normalize: uy = vi/||vill

this is a simple iteration for computing an eigenvector with the largest eigenvalue

e suppose the eigenvalues of A satisfy [1{| > |42 = -+ > |4,]
e expand ug as ug = a1q91 + - - - + @yq, Where g; is a normalized eigenvector for 4;

e after k power iterations, u; is a normalized scalar multiple of the vector

Akuo = /llf (alql + az(/lz//h)k@ + -+ (In(/ln//ll)k%)

e if a; # 0, the vector +u; converges to ¢, and ugAuk converges to 4;
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Simultaneous iteration as matrix power iteration

Simultaneous iteration:

Ug =1, AUj_1 = UrRy, (fork > 1)

with U; orthogonal, R; upper triangular
Interpretation as QR factorization of powers of A: after k steps,
Ak = UrSi where Sy, = RyR;_1--- R

e the product Sy = Ry Rj_1 - -+ Ry is upper triangular

e follows from repeated substitution:

A=UR;, A?=AUR|=U>RyR;, A= AURyR|=U3R3R R,
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Convergence of simultaneous iteration

eigendecomposition of A

Assumptions

A =>"Aiqiqg] = QAQ"
I

o || > |A2] > - > |A,-1| > |Ax| With strict inequalities

e the j X j leading principal submatrices of Q are nonsingular for j =1,...

- 011

BYi

01
Qjj |

- T
€141

T
e .
€91

€1

qj -

T

e

4]

is nonsingular

Convergence: in simultaneous iteration (and QR iteration),

Ul AUy
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(Outline of) proof
e eigendecomposition of A* is AK = 3" A¥qiq]

e first j columns of factor Uy, in the QR factorization A* = U,.S; span the range of

k /‘l]fooo O —q{el... q{ej-
Atlev-oej] = ar g 2] ;
0 A ;€1 q;e,
[k 11,1 T .
/lj+1 0 q41€1 q]+1 J
[C]j+1’ C]n] :
0 /15 qgel qg@]

e if the two assumptions on the previous page hold,

range([Ukel ‘e Ukej]) = range([Akel e Akej]) — rang@([éh e Qj])

e the fact that this holds for every j =1, ..., n implies that U,{AUk — A
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Complexity of QR iteration

QR iteration: startat A| = A andrepeatfork =1,2,...,

e compute QR factorization Ay = Qi Ry

e compute Ay, = ROy

Complexity
e for general symmetric A, cost per iteration is order n>
e we'll see that for tridiagonal A, cost per iteration is only order n

e this motivates stage 1 (page 9.2): first reduce A to tridiagonal form (at cost n>)
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QR factorization of tridiagonal matrix

suppose A is n X n and tridiagonal, with QR factorization
A=0R

then O and R have a special structure:

(dots indicate possibly honzero elements)

e () is zero below the first subdiagonal (Q;; =0ifi > j +1)

column k is column k of A orthogonalized with respect to previous columns

e R is zero above second superdiagonal (R;; = 0if j > i +2)

follows from considering R = Q' A and the property of Q
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QR iteration with tridiagonal A

now suppose A in the basic QR iteration on page 9.4 is tridiagonal and symmetric
e we already noted that matrices A, are symmetric if A is symmetric (page 9.5):
A1 = RiQ = QgAka

e Q-factor of a tridiagonal matrix is zero below the first subdiagonal (page 9.12)

e this implies that the product R;Q; = Ay, is zero below the first subdiagonal:

e since Ay, is also symmetric, it is tridiagonal

hence, symmetric tridiagonal structure of A is preserved in A, during QR iteration
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Computing tridiagonal QR factorization
QR factorization of n x n tridiagonal A takes order n operations
o'A=R

for example, in the Householder algorithm (133A lecture 6)

e O'isaproduct of reflectors Hy = I — vv; that make A upper triangular

[ A Ap 0 .- 0 0
Az A Az 0 0
Hy_1---Hy O A:32 A:% O O =R
0 0 0 An—l,n—l An—l,n
0 0 0 An,n—l Ann

if A is tridiagonal, each vector v; has only two nonzero elements

e () is stored in factored form (the reflectors v, are stored)

e we can allow zeros on diagonal of R, to extend QR factorization to singular A
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Reflector

O=I1-w! with|v||=V2

e QOx is reflection of x through the hyperplane {z | vz = 0}
e () is symmetric and orthogonal

e for m-vectors x, v, matrix—vector product Qx can be computed in 4m flops, as

Ox =x— (vix)
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Reflection to multiple of first unit vector

e an easily constructed reflector maps a given y to a multiple of e¢;

e if y # 0, choose the reflector defined by

“ [ y1 +sign(yp)|ly]l
2 . 2
v, w=y+signy)lyller = Y
i =
VYm

(we define sign(0) = 1)
e this reflector maps y to

[ —sign(y)|lyll ]
. 0
Qy = —sign(yy)|lylle; = .

0
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Geometry

first coordinate axis

<
—sign(y1)|lylle
hyperplane {x | w'x = 0}

the reflection through the hyperplane {x | w/x = 0} with normal vector

w =y +sign(yn)llylle;

maps y to the vector —sign(y)||y||eq
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9.17



Reduction to tridiagonal form

given an n X n symmetric matrix A, find orthogonal Q such that

a; by O -+ 0 0 0
b1 aj b2 s 0) 0) 0
O by a3 --- 0 0 0
QTAQ = : Pt : : :
o o0 O --- ay,n b, 0)
0 0 0 - byo ay1 by
0 0 0 -- 0 b,—1 apn

e this can be achieved by a product of n — 2 reflectors

Q=0102-0n2
e complexity is order n’
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First step

partition A as

T
A= [ il ;1 ] ciisan (n—1)-vector, Bjis (n—1) x (n—1)
1 bj

e find (n—1) X (n—1) reflector I — vlv{ that maps c; to bje; and define

1 0
Q1= [O [ - vlv{]

e multiply A with O to introduce zeros in positions 3, ..., n of 1st column and row
T T
aj c;(—vivy) ]
1AQ1 =
Q140 (1 - vlv{)cl (I - vlv{)Bl(l — vlv{)
T I'p
a blel VD1Vl
— where =B —
I blel Bl — vlw{ — lef ] e e 2 v

e computation of 2,2 block requires order 4n? flops

QR algorithm 9.19



General step

after k — 1 steps,

a; by O - 0 0 0O 0 |
b1 aj bz 0 0 0) 0

0 b2 asj

)

0 0 0

Qk-1-01A01 - Qk-1 = ak.—z bk.—z 0 0

b ap-1|br-1 O
0 br_1| ar c
0) 0 cr Byp

T
k

O OO O
S OO O

e find a reflector I — vkvg that maps the (n — k)-vector ¢ to bie; and define

[ Ik_l O O a CT
Q) = 0 1 0 ; (I — vkvg)Bk(l — vkvz) = [ e+l i ]
0 0 J-— VkV?; Ck+1 Bk+1

e complexity of step k is 4(n — k)? plus lower order terms

QR algorithm 9.20



Summary for 5 X 5 matrix

Q10504 o o o o o 010,05 = Q105 o o o o |020;
o Qg [ ] ( ] [ J [ J Q3
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Complexity
e complexity for complete algorithm is dominated by
n—2
4
Z 4(n-k)? ~ =n’
k=1 3

e () is stored in factored form (the vectors v are stored)

e if needed, assembling the matrix QO adds another order n> term
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QR algorithm with shifts

in practice, a multiple of the identity is subtracted from A; before factoring

QR iteration with shifts: startat A; = A andrepeatfork =1,2, ...,
e choose a shift uy
e compute QR factorization Ay — uil = Qi Ry

o define Ay 1 = RO + uil

e iteration still preserves symmetry and tridiagonal structure in Ay
e with properly chosen shifts, the iteration always converges

e with properly chosen shifts, convergence is fast (usually cubic)
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Complexity

overall complexity of QR method for symmetric eigendecomposition A = QAQ!

Eigenvalues: if eigenvectors are not needed, we can leave Q in factored form
e reduction of A to tridiagonal form costs (4/3)n>
e for tridiagonal matrix, complexity of one QR iteration is linear in n

e on average, number of QR iterations is a small multiple of n

hence, cost is dominated by (4/3)n> for initial reduction to tridiagonal form

Eigenvalues and eigenvectors: if Q is needed, order »n> terms are added

e reduction to tridiagonal form and accumulating orthogonal matrix costs (8/3)n°

e finding eigenvalues and eigenvectors of tridiagonal matrix costs 6n°

hence, total cost is (26/3)n> plus lower order terms
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