
L. Vandenberghe ECE133B (Spring 2023)

1. Matrix rank

• subspaces, dimension, rank

• QR factorization with pivoting

• properties of matrix rank

• low-rank matrices

• pseudo-inverse

1.1

Subspace

a nonempty subset V of R𝑚 is a subspace if

𝛼𝑥 + 𝛽𝑦 ∈ V

for all vectors 𝑥, 𝑦 ∈ V and scalars 𝛼, 𝛽

• all linear combinations of elements of V are in V
• V is nonempty and closed under scalar multiplication and vector addition

Examples

• {0}, R𝑚

• the span of a set S ⊆ R𝑚: all linear combinations of elements of S

span(S) = {𝛽1𝑎1 + · · · + 𝛽𝑘𝑎𝑘 | 𝑎1, . . . , 𝑎𝑘 ∈ S, 𝛽1, . . . , 𝛽𝑘 ∈ R}

if S = {𝑎1, . . . , 𝑎𝑛} is a finite set, we write span(S) = span(𝑎1, . . . , 𝑎𝑛)
(the span of the empty set is defined as {0})

Matrix rank 1.2

Operations on subspaces

three common operations on subspaces (V and W are subspaces)

• intersection:
V ∩W = {𝑥 | 𝑥 ∈ V, 𝑥 ∈ W}

• sum:
V +W = {𝑥 + 𝑦 | 𝑥 ∈ V, 𝑦 ∈ W}

if V ∩W = {0} this is called the direct sum and written as V ⊕ W

• orthogonal complement:

V⊥ = {𝑥 | 𝑦𝑇𝑥 = 0 for all 𝑦 ∈ V}

the result of each of the three operations is a subspace

Matrix rank 1.3

Range of a matrix

suppose 𝐴 is an 𝑚 × 𝑛 matrix with columns 𝑎1, . . . , 𝑎𝑛 and rows 𝑏𝑇1 , . . . , 𝑏
𝑇
𝑚:

𝐴 =
[
𝑎1 · · · 𝑎𝑛

]
=

𝑏𝑇1...
𝑏𝑇𝑚

Range (column space): the span of the column vectors (a subspace of R𝑚)

range(𝐴) = span(𝑎1, . . . , 𝑎𝑛)
= {𝑥1𝑎1 + · · · + 𝑥𝑛𝑎𝑛 | 𝑥 ∈ R𝑛}
= {𝐴𝑥 | 𝑥 ∈ R𝑛}

the range of 𝐴𝑇 is called the row space of 𝐴 (a subspace of R𝑛):

range(𝐴𝑇) = span(𝑏1, . . . , 𝑏𝑚)
= {𝑦1𝑏1 + · · · + 𝑦𝑚𝑏𝑚 | 𝑦 ∈ R𝑚}
= {𝐴𝑇 𝑦 | 𝑦 ∈ R𝑚}

Matrix rank 1.4

Nullspace of a matrix

suppose 𝐴 is an 𝑚 × 𝑛 matrix with columns 𝑎1, . . . , 𝑎𝑛 and rows 𝑏𝑇1 , . . . , 𝑏
𝑇
𝑚:

𝐴 =
[
𝑎1 · · · 𝑎𝑛

]
=

𝑏𝑇1...
𝑏𝑇𝑚

Nullspace: the orthogonal complement of the row space (a subspace of R𝑛)

null(𝐴) = range(𝐴𝑇)⊥
= {𝑥 ∈ R𝑛 | 𝑏𝑇1𝑥 = · · · = 𝑏𝑇𝑚𝑥 = 0}
= {𝑥 ∈ R𝑛 | 𝐴𝑥 = 0}

the nullspace of 𝐴𝑇 is the orthogonal complement of range(𝐴) (a subspace of R𝑚)

null(𝐴𝑇) = range(𝐴)⊥
= {𝑦 ∈ R𝑚 | 𝑎𝑇1 𝑦 = · · · = 𝑎𝑇𝑛 𝑦 = 0}
= {𝑦 ∈ R𝑚 | 𝐴𝑇 𝑦 = 0}

Matrix rank 1.5

Exercise

• directed graph with 𝑚 vertices, 𝑛 arcs (directed edges)

• node–arc incidence matrix is 𝑚 × 𝑛 matrix 𝐴 with

𝐴𝑖 𝑗 =

1 if arc 𝑗 enters node 𝑖
−1 if arc 𝑗 leaves node 𝑖
0 otherwise

1

2 3

4

1 54

2

3

𝐴 =

−1 −1 0 1 0

1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1

describe in words the subspaces null(𝐴) and range(𝐴𝑇)
Matrix rank 1.6

Linearly independent vectors

vectors 𝑎1, . . . , 𝑎𝑛 are linearly independent if

𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 = 0 =⇒ 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 = 0

• the zero vector cannot be written as a nontrivial linear combination of 𝑎1, . . . , 𝑎𝑛
• no vector 𝑎𝑖 is a linear combination of the other vectors

• in matrix–vector notation: 𝐴𝑥 = 0 holds only if 𝑥 = 0, where

𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]
• linear (in)dependence is a property of the set of vectors {𝑎1, . . . , 𝑎𝑛}

(by convention, the empty set is linearly independent)

Dimension inequality

• if 𝑎1, . . . , 𝑎𝑛 are linearly independent 𝑚-vectors then 𝑛 ≤ 𝑚 (see 133A)

• if 𝐴 is a wide matrix (𝑚 × 𝑛 with 𝑛 > 𝑚), then there exist 𝑥 ≠ 0 such that 𝐴𝑥 = 0

Matrix rank 1.7

Basis of a subspace

{𝑣1, . . . , 𝑣𝑘} is a basis for the subspace V if two conditions are satisfied

1. V = span(𝑣1, . . . , 𝑣𝑘)
2. 𝑣1, . . . , 𝑣𝑘 are linearly independent

• condition 1 means that every 𝑥 ∈ V can be expressed as

𝑥 = 𝛽1𝑣1 + · · · + 𝛽𝑘𝑣𝑘

• condition 2 means that the coefficients 𝛽1, . . . , 𝛽𝑘 are unique:

𝑥 = 𝛽1𝑣1 + · · · + 𝛽𝑘𝑣𝑘
𝑥 = 𝛾1𝑣1 + · · · + 𝛾𝑘𝑣𝑘

}
=⇒ (𝛽1 − 𝛾1)𝑣1 + · · · + (𝛽𝑘 − 𝛾𝑘)𝑣𝑘 = 0

=⇒ 𝛽1 = 𝛾1, . . . , 𝛽𝑘 = 𝛾𝑘

Matrix rank 1.8

Extension of dimension inequality

• let {𝑣1, . . . , 𝑣𝑘} be a basis for a subspace V ⊆ R𝑚

• if 𝑎1, . . . , 𝑎𝑛 are linearly independent vectors in V, then 𝑛 ≤ 𝑘

• this improves the dimension inequality (𝑛 ≤ 𝑚) on page 1.7

Proof
• each 𝑎𝑖 can be expressed as a linear combination of the basis vectors:

𝑎1 = 𝐵𝑥1, 𝑎2 = 𝐵𝑥2, . . . , 𝑎𝑛 = 𝐵𝑥𝑛,

for some 𝑘-vectors 𝑥1, . . . , 𝑥𝑛, where 𝐵 is the 𝑚 × 𝑘 matrix 𝐵 =
[
𝑣1 · · · 𝑣𝑘

]
• the 𝑘-vectors 𝑥1, . . . , 𝑥𝑛 are linearly independent:

𝛽1𝑥1 + · · · + 𝛽𝑙𝑥𝑛 = 0 =⇒ 𝐵(𝛽1𝑥1 + · · · + 𝛽𝑙𝑥𝑛) = 𝛽1𝑎1 + · · · + 𝛽𝑙𝑎𝑛 = 0

=⇒ 𝛽1 = · · · = 𝛽𝑛 = 0

• by the dimension inequality of page 1.7, this implies 𝑛 ≤ 𝑘

Matrix rank 1.9

Dimension of a subspace

• every basis of a subspace V contains the same number of vectors

• this number is called the dimension of V (notation: dim(V))

Proof: consider two bases of V

{𝑣1, . . . , 𝑣𝑘}, {𝑤1, . . . , 𝑤𝑙}

from previous page,

• 𝑙 ≤ 𝑘 , because 𝑤1, . . . , 𝑤𝑙 are linearly independent and {𝑣1, . . . , 𝑣𝑘} is a basis

• 𝑘 ≤ 𝑙 because 𝑣1, . . . , 𝑣𝑘 are linearly independent and {𝑤1, . . . , 𝑤𝑙} is a basis

therefore 𝑘 = 𝑙

Matrix rank 1.10

Completing a basis

let V be a subspace in R𝑚

• suppose {𝑣1, . . . , 𝑣 𝑗} ⊂ V is a linearly independent set (possibly empty)

• then there exists a basis of V of the form {𝑣1, . . . , 𝑣 𝑗 , 𝑣 𝑗+1, . . . , 𝑣𝑘}
• we complete the basis by adding the vectors 𝑣 𝑗+1, . . . , 𝑣𝑘

Proof

• if {𝑣1, . . . , 𝑣 𝑗} is not already a basis, its span is not V
• then there exist vectors in V that are not linear combinations of 𝑣1, . . . , 𝑣 𝑗

• choose one of those vectors, call it 𝑣 𝑗+1, and add it to the set

• the set {𝑣1, . . . , 𝑣 𝑗+1} is a linearly independent subset of V with 𝑗 + 1 elements

• repeat this process until it terminates

• it terminates because a linearly independent set in R𝑚 has at most 𝑚 elements

Consequence: every subspace of R𝑚 has a basis
Matrix rank 1.11

Rank of a matrix

Rank: the rank of a matrix is the dimension of its range

rank(𝐴) = dim(range(𝐴))

this is also the maximal number of linearly independent columns

Example: a 4 × 4 matrix with rank 3

𝐴 =
[
𝑎1 𝑎2 𝑎3 𝑎4

]
=

1 −1 3 1

−1 2 0 0
1 −1 3 0

−1 2 0 1

• {𝑎1} is linearly independent (𝑎1 is not zero)

• {𝑎1, 𝑎2} is linearly independent

• {𝑎1, 𝑎2, 𝑎3} is linearly dependent: 𝑎3 = 6𝑎1 + 3𝑎2

• {𝑎1, 𝑎2, 𝑎4} is a basis for range(𝐴): linearly independent and spans range(𝐴)

Matrix rank 1.12

Rank-𝑟 matrices in factored form

we will often encounter matrices in the product form 𝐴 = 𝐵𝐶, where

• 𝐵 is 𝑚 × 𝑟 with linearly independent columns

• 𝐶 is 𝑟 × 𝑛 with linearly independent rows

the matrix 𝐴 has rank 𝑟

• range(𝐴) ⊆ range(𝐵): each column of 𝐴 is a linear combination of columns of 𝐵

• range(𝐵) ⊆ range(𝐴):

𝑦 = 𝐵𝑥 =⇒ 𝑦 = 𝐵(𝐶𝐷)𝑥 = 𝐴(𝐷𝑥)

where 𝐷 is a right inverse of 𝐶 (for example, 𝐷 = 𝐶†)

• therefore range(𝐴) = range(𝐵) and rank(𝐴) = rank(𝐵)
• since the columns of 𝐵 are linearly independent, rank(𝐵) = 𝑟

Matrix rank 1.13

Exercises

Exercise 1

V and W are subspaces in R𝑚; show that

dim(V +W) + dim(V ∩W) = dim(V) + dim(W)

Exercise 2

• 𝐴 and 𝐵 are matrices with the same number of rows; find a matrix 𝐶 with

range(𝐶) = range(𝐴) + range(𝐵)

• 𝐴 and 𝐵 are matrices with the same number of columns; find a matrix 𝐶 with

null(𝐶) = null(𝐴) ∩ null(𝐵)

Matrix rank 1.14

Outline

• subspaces, dimension, rank

• QR factorization with pivoting

• properties of matrix rank

• pseudo-inverse

Projection on subspace

• the projection of 𝑥 ∈ R𝑚 on a subspace V ⊆ R𝑚 is the point in V closest to 𝑥

• notation: ΠV (𝑥)
• orthogonal decomposition: every 𝑥 ∈ R𝑚 can be decomposed as

𝑥 = 𝑦 + 𝑧, 𝑦 = ΠV (𝑥), 𝑧 = ΠV⊥(𝑥)

V

V⊥

𝑥

𝑦 = ΠV (𝑥)

𝑧 = ΠV⊥ (𝑥)

0

Matrix rank 1.15

Projection via least squares

• suppose the columns of the 𝑚 × 𝑛 matrix 𝐴 are a basis for V
• columns of 𝐴 are linearly independent and span V = range(𝐴)

Projection on V = range(𝐴)
• projection is ΠV (𝑥) = 𝐴𝑢 where 𝑢 minimizes ∥𝐴𝑢 − 𝑥∥
• from least squares theory:

ΠV (𝑥) = 𝐴𝐴†𝑥, where 𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇 is pseudo-inverse of 𝐴

Projection on V⊥ = range(𝐴)⊥

• projection is ΠV⊥(𝑥) = 𝑧 where 𝑧 minimizes ∥𝑧 − 𝑥∥ subject to 𝐴𝑇 𝑧 = 0

• from least squares theory:

ΠV⊥(𝑥) = (𝐼 − 𝐴𝐴†)𝑥 = 𝑥 − ΠV (𝑥)

Matrix rank 1.16

Projection using orthonormal basis

• formulas simplify if we use an orthonormal basis {𝑞1, . . . , 𝑞𝑛} for V
• basis vectors 𝑞1, . . . , 𝑞𝑛 have unit norm and are mutually orthogonal

• the matrix 𝑄 =
[
𝑞1 𝑞2 · · · 𝑞𝑛

]
satisfies 𝑄𝑇𝑄 = 𝐼

Projection on V = range(𝑄)

ΠV (𝑥) = 𝑄𝑄𝑇𝑥

= 𝑞1(𝑞𝑇1𝑥) + · · · + 𝑞𝑛(𝑞𝑇𝑛𝑥)

Projection on V⊥ = range(𝑄)⊥

ΠV⊥(𝑥) = 𝑥 −𝑄𝑄𝑇𝑥

= 𝑥 − 𝑞1(𝑞𝑇1𝑥) − · · · − 𝑞𝑛(𝑞𝑇𝑛𝑥)

note the equivalent expression

ΠV⊥(𝑥) = (𝐼 − 𝑞𝑛𝑞
𝑇
𝑛) · · · (𝐼 − 𝑞2𝑞

𝑇
2) (𝐼 − 𝑞1𝑞

𝑇
1)𝑥

Matrix rank 1.17

QR factorization

𝐴 is an 𝑚 × 𝑛 matrix with linearly independent columns (hence, 𝑚 ≥ 𝑛)

QR factorization
𝐴 = 𝑄𝑅

• 𝑅 is 𝑛 × 𝑛, upper triangular, with positive diagonal elements

• 𝑄 is 𝑚 × 𝑛 with orthonormal columns (𝑄𝑇𝑄 = 𝐼)

• several algorithms, including Gram–Schmidt algorithm

Full QR factorization (QR decomposition)

𝐴 =
[
𝑄 �̃�

] [𝑅
0

]
• 𝑅 is 𝑛 × 𝑛, upper triangular, with positive diagonal elements

• [
𝑄 �̃�

]
is orthogonal: square with orthonormal columns

• several algorithms, including Householder triangularization

Matrix rank 1.18

Exercise

consider the QR factorization of an 𝑚 × 𝑛 matrix with linearly independent columns

[
𝑎1 𝑎2 𝑎3 · · · 𝑎𝑛

]
=
[
𝑞1 𝑞2 𝑞3 · · · 𝑞𝑛

]
𝑅11 𝑅12 𝑅13 · · · 𝑅1𝑛
0 𝑅22 𝑅23 · · · 𝑅2𝑛
0 0 𝑅33 · · · 𝑅2𝑛
...
0 0 0 · · · 𝑅𝑛𝑛

define V𝑘 = span(𝑎1, . . . , 𝑎𝑘) = span(𝑞1, . . . , 𝑞𝑘)

1. verify that for 𝑗 > 𝑘 ,

ΠV𝑘
(𝑎 𝑗) = 𝑅1 𝑗𝑞1 + · · · + 𝑅𝑘 𝑗𝑞𝑘 , ∥ΠV𝑘

(𝑎 𝑗)∥2 = 𝑅2
1 𝑗 + · · · + 𝑅2

𝑘 𝑗

and

ΠV⊥
𝑘
(𝑎 𝑗) = 𝑅𝑘+1, 𝑗𝑞𝑘+1 + · · · + 𝑅 𝑗 𝑗𝑞 𝑗 , ∥ΠV⊥

𝑘
(𝑎 𝑗)∥2 = 𝑅2

𝑘+1, 𝑗 + · · · + 𝑅2
𝑗 𝑗

2. in particular,
𝑅𝑘+1,𝑘+1 = ∥ΠV⊥

𝑘
(𝑎𝑘+1)∥

Matrix rank 1.19

QR factorization with column pivoting

𝐴 is an 𝑚 × 𝑛 matrix (may be wide or have linearly dependent columns)

QR factorization with column pivoting (column reordering)

𝐴 = 𝑄𝑅𝑃

• 𝑄 is 𝑚 × 𝑟 with orthonormal columns

• 𝑅 is 𝑟 × 𝑛, leading 𝑟 × 𝑟 submatrix is upper triangular with positive diagonal:

𝑅 =

𝑅11 𝑅12 · · · 𝑅1𝑟 𝑅1,𝑟+1 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑟 𝑅2,𝑟+1 · · · 𝑅2𝑛
...
0 0 · · · 𝑅𝑟𝑟 𝑅𝑟,𝑟+1 · · · 𝑅𝑟𝑛

• can be chosen to satisfy 𝑅11 ≥ 𝑅22 ≥ · · · ≥ 𝑅𝑟𝑟 > 0

• 𝑃 is an 𝑛 × 𝑛 permutation matrix

• 𝑟 is the rank of 𝐴: apply the result on page 1.13 with 𝐵 = 𝑄, 𝐶 = 𝑅𝑃

Matrix rank 1.20

Interpretation

• columns of 𝐴𝑃𝑇 = 𝑄𝑅 are the columns of 𝐴 in a different order

• the columns are divided in two groups:

𝐴𝑃𝑇 =
[
�̂�1 �̂�2

]
= 𝑄

[
𝑅1 𝑅2

]
�̂�1 is 𝑚 × 𝑟, 𝑅1 is 𝑟 × 𝑟

• �̂�1 = 𝑄𝑅1 is 𝑚 × 𝑟 with linearly independent columns:

�̂�1𝑥 = 𝑄𝑅1𝑥 = 0 =⇒ 𝑅−1
1 𝑄𝑇 �̂�1𝑥 = 𝑥 = 0

• �̂�2 = 𝑄𝑅2 is 𝑚 × (𝑛 − 𝑟): columns are linear combinations of columns of �̂�1

�̂�2 = 𝑄𝑅2 = �̂�1𝑅
−1
1 𝑅2

the factorization provides two useful bases for range(𝐴)
• columns of 𝑄 are an orthonormal basis

• columns of �̂�1 are a basis selected from the columns of 𝐴
Matrix rank 1.21

Computing the pivoted QR factorization

we first describe the modified Gram–Schmidt algorithm

• a variation of the classical Gram–Schmidt algorithm for QR factorization

[
𝑎1 𝑎2 · · · 𝑎𝑛

]
=
[
𝑞1 𝑞2 · · · 𝑞𝑛

]
𝑅11 𝑅12 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅2𝑛
...
0 0 · · · 𝑅𝑛𝑛

of a matrix with linearly independent columns

• has better numerical properties than classical Gram–Schmidt algorithm

• compute 𝑄 column by column, 𝑅 row by row

we then extend the modified GS method to the pivoted QR factorization

Matrix rank 1.22

Modified Gram–Schmidt algorithm

after 𝑘 steps (𝑘 = 1, . . . , 𝑛), the algorithm has computed a partial QR factorization

𝐴 =
[
𝑎1 · · · 𝑎𝑘 𝑎𝑘+1 · · · 𝑎𝑛

]
=

[
𝑞1 · · · 𝑞𝑘 𝐵𝑘

]
𝑅11 · · · 𝑅1𝑘
...
0 · · · 𝑅𝑘𝑘

𝑅1,𝑘+1 · · · 𝑅1𝑛
... ...

𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

0 𝐼

• 𝑞1, . . . , 𝑞𝑘 are orthonormal vectors; 𝑅11, . . . , 𝑅𝑘𝑘 are positive

• columns of 𝐵𝑘 are 𝑎𝑘+1, . . . , 𝑎𝑛 projected on span(𝑞1, . . . , 𝑞𝑘)⊥

• the factorization starts with 𝐵0 = 𝐴 and is complete when 𝑘 = 𝑛

• in step 𝑘 , we compute 𝑞𝑘 , 𝑅𝑘𝑘 , 𝑅𝑘,𝑘+1, . . . , 𝑅𝑘𝑛, and 𝐵𝑘

Matrix rank 1.23

Modified Gram–Schmidt update

at step 𝑘 we compute 𝑞𝑘 , 𝑅𝑘𝑘 , 𝑅𝑘,(𝑘+1):𝑛, and 𝐵𝑘 from

𝐵𝑘−1 =
[
𝑞𝑘 𝐵𝑘

] [𝑅𝑘𝑘 𝑅𝑘,(𝑘+1):𝑛
0 𝐼

]
partition 𝐵𝑘−1 as 𝐵𝑘−1 =

[
𝑏 �̂�

]
with 𝑏 the first column and �̂� of size 𝑚 × (𝑛 − 𝑘):

𝑏 = 𝑞𝑘𝑅𝑘𝑘 , �̂� = 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛 + 𝐵𝑘

• from the first equation, and the required properties ∥𝑞𝑘 ∥ = 1 and 𝑅𝑘𝑘 > 0:

𝑅𝑘𝑘 = ∥𝑏∥, 𝑞𝑘 =
1
𝑅𝑘𝑘

𝑏

• from the second equation, and the requirement that 𝑞𝑇𝑘𝐵𝑘 = 0:

𝑅𝑘,(𝑘+1):𝑛 = 𝑞𝑇𝑘 �̂�, 𝐵𝑘 = �̂� − 𝑞𝑘𝑅𝑘,(𝑘+1):𝑛

Matrix rank 1.24

Summary: modified Gram–Schmidt algorithm

Algorithm (𝐴 is 𝑚 × 𝑛 with linearly independent columns)

define 𝐵0 = 𝐴; for 𝑘 = 1 to 𝑛,

• compute 𝑅𝑘𝑘 = ∥𝑏∥ and 𝑞𝑘 = (1/𝑅𝑘𝑘)𝑏 where 𝑏 is the first column of 𝐵𝑘−1

• compute [
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
= 𝑞𝑇𝑘 �̂�, 𝐵𝑘 = �̂� − 𝑞𝑘

[
𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

]
where �̂� is 𝐵𝑘−1 with the first column removed

MATLAB code
Q = A; R = zeros(n,n);
for k = 1:n

R(k,k) = norm(Q(:,k));
Q(:,k) = Q(:,k) / R(k,k);
R(k,k+1:n) = Q(:,k)’ * Q(:,k+1:n);
Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);

end;

Matrix rank 1.25

Modified Gram–Schmidt algorithm with pivoting

with minor changes the modified GS algorithm computes the pivoted factorization

𝐴𝑃𝑇 =
[
𝑞1 𝑞2 · · · 𝑞𝑟

]
𝑅11 𝑅12 · · · 𝑅1𝑟 𝑅1,𝑟+1 · · · 𝑅1𝑛
0 𝑅22 · · · 𝑅1𝑟 𝑅1,𝑟+1 · · · 𝑅1𝑛
...
0 0 · · · 𝑅𝑟𝑟 𝑅𝑟,𝑟+1 · · · 𝑅𝑟𝑛

• partial factorization after 𝑘 steps

𝐴𝑃𝑇𝑘 =
[
𝑞1 · · · 𝑞𝑘 𝐵𝑘

]
𝑅11 · · · 𝑅1𝑘
...
0 · · · 𝑅𝑘𝑘

𝑅1,𝑘+1 · · · 𝑅1𝑛
...

𝑅𝑘,𝑘+1 · · · 𝑅𝑘𝑛

0 𝐼

• if 𝐵𝑘 = 0, the factorization is complete (𝑟 = 𝑘 , 𝑃 = 𝑃𝑘)

• algorithm starts with 𝑃0 = 𝐼 and 𝐵0 = 𝐴

• before step 𝑘 , we reorder columns of 𝐵𝑘−1 to place its largest column first

• this requires reordering columns 𝑘, . . . , 𝑛 of 𝑅, and modifying 𝑃𝑘−1

Matrix rank 1.26

Example

𝐴 =
[
𝑎1 𝑎2 𝑎3 𝑎4

]
=

1 1 0 1
0 1 1 −1
1 1 0 1
0 1 −1 −1

Step 1

• 𝑎2 and 𝑎4 have the largest norms; we move 𝑎2 to the first position

• find first column of 𝑄, first row of 𝑅

[
𝑎2 𝑎1 𝑎3 𝑎4

]
=

1/2 1/2 0 1
1/2 −1/2 1 −1
1/2 1/2 0 1
1/2 −1/2 −1 −1

2 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=

[
𝑞1 𝐵1

] [𝑅11 𝑅1,2:4
0 𝐼

]

Matrix rank 1.27

Example

Step 2

• move column 3 of 𝐵1 to first position in 𝐵1

[
𝑎2 𝑎4 𝑎1 𝑎3

]
=

1/2 1 1/2 0
1/2 −1 −1/2 1
1/2 1 1/2 0
1/2 −1 −1/2 −1

2 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

• find second column of 𝑄, second row or 𝑅

[
𝑎2 𝑎4 𝑎1 𝑎3

]
=

1/2 1/2 0 0
1/2 −1/2 0 1
1/2 1/2 0 0
1/2 −1/2 0 −1

2 0 1 0
0 2 1 0
0 0 1 0
0 0 0 1

=

[
𝑞1 𝑞2 𝐵2

]
𝑅11 𝑅12 𝑅1,3:4
0 𝑅22 𝑅2,3:4
0 0 𝐼

Matrix rank 1.28

Example

Step 3

• move column 2 of 𝐵2 to first position in 𝐵2

[
𝑎2 𝑎4 𝑎3 𝑎1

]
=

1/2 1/2 0 0
1/2 −1/2 1 0
1/2 1/2 0 0
1/2 −1/2 −1 0

2 0 0 1
0 2 0 1
0 0 1 0
0 0 0 1

• find third column of 𝑄, third row of 𝑅

[
𝑎2 𝑎4 𝑎3 𝑎1

]
=

1/2 1/2 0 0
1/2 −1/2 1/

√
2 0

1/2 1/2 0 0
1/2 −1/2 −1/

√
2 0

2 0 0 1
0 2 0 1
0 0

√
2 0

0 0 0 1

=

[
𝑞1 𝑞2 𝑞3 𝐵3

]
𝑅11 𝑅12 𝑅13 𝑅14
0 𝑅22 𝑅23 𝑅24
0 0 𝑅33 𝑅34
0 0 0 1

Matrix rank 1.29

Example

Result: since 𝐵3 is zero, the algorithm terminates with the factorization

[
𝑎2 𝑎4 𝑎3 𝑎1

]
=

1 1 0 1
1 −1 1 0
1 1 0 1
1 −1 −1 0

=

1/2 1/2 0
1/2 −1/2 1/

√
2

1/2 1/2 0
1/2 −1/2 −1/

√
2

2 0 0 1
0 2 0 1
0 0

√
2 0

Matrix rank 1.30

Exercise

consider the modified Gram–Schmidt update on p.1.24 and p.1.25

𝐵𝑘−1 =
[
𝑏 �̂�

]
=
[
𝑞𝑘 𝐵𝑘

] [𝑅𝑘𝑘 𝑅𝑘,(𝑘+1):𝑛
0 𝐼

]
1. verify that 𝐵𝑘 computed on p.1.24 and p.1.25 is

𝐵𝑘 = (𝐼 − 𝑞𝑘𝑞
𝑇
𝑘)�̂�

2. denote column 𝑖 of 𝐵𝑘 by 𝑏𝑖, and column 𝑖 of �̂� by �̂�𝑖; show that

∥𝑏𝑖∥2 = ∥�̂�𝑖∥2 − 𝑅2
𝑘,𝑘+𝑖, 𝑖 = 1, . . . , 𝑛 − 𝑘

3. in the pivoting algorithm, ∥𝑏∥ ≥ ∥�̂�𝑖∥ for 𝑖 = 1, . . . , 𝑛 − 𝑘 ; show that therefore

𝑅𝑘𝑘 ≥ 𝑅𝑘+1,𝑘+1

Matrix rank 1.31

Outline

• subspaces, dimension, rank

• QR factorization with pivoting

• properties of matrix rank

• pseudo-inverse

Factorization theorem

an 𝑚 × 𝑛 matrix 𝐴 has rank 𝑟 if and only if it can be factored as

𝐴 = 𝐵𝐶

• 𝐵 is 𝑚 × 𝑟 with linearly independent columns

• 𝐶 is 𝑟 × 𝑛 with linearly independent rows

this is called a full-rank factorization of 𝐴

• “if” statement was shown on page 1.13

• the pivoted QR factorization proves the “only if” statement

• other algorithms will be discussed later

Matrix rank 1.32

Rank of transpose

an immediate and important consequence of the factorization theorem:

rank(𝐴𝑇) = rank(𝐴)

the column space (range) of a matrix has the same dimension as its row space:

dim(range(𝐴𝑇)) = dim(range(𝐴))

Matrix rank 1.33

Full-rank matrices

for any 𝑚 × 𝑛 matrix
rank(𝐴) ≤ min{𝑚, 𝑛}

Full rank: 𝐴 has full rank if rank(𝐴) = min{𝑚, 𝑛}
• rank(𝐴) = 𝑛 < 𝑚: tall and left-invertible (has linearly independent columns)

• rank(𝐴) = 𝑚 < 𝑛: wide and right-invertible (had linearly independent rows)

• rank(𝐴) = 𝑚 = 𝑛: square and invertible (nonsingular)

Full column rank: 𝐴 has full column rank if rank(𝐴) = 𝑛

• 𝐴 has linearly independent columns (is left-invertible)

• must be tall or square

Full row rank: 𝐴 has full row rank if rank(𝐴) = 𝑚

• 𝐴 has linearly independent rows (is right-invertible)

• must be wide or square

Matrix rank 1.34

Dimension of nullspace

if 𝐴 is 𝑚 × 𝑛 then
dim(null(𝐴)) = 𝑛 − rank(𝐴)

• dim(null(𝐴)) is known as the nullity of the matrix

• we show this by constructing a basis containing 𝑛 − rank(𝐴) vectors

Basis for nullspace: a basis for the nullspace of 𝐴 is given by the columns of

𝑃𝑇
[−𝑅−1

1 𝑅2
𝐼

]
where 𝑃, 𝑅1, 𝑅2 are the matrices in the pivoted QR factorization

𝐴𝑃𝑇 = 𝑄
[
𝑅1 𝑅2

]
• 𝑃 is a 𝑛 × 𝑛 permutation matrix

• 𝑄 is 𝑚 × 𝑟 with orthonormal columns, where 𝑟 = rank(𝐴)
• 𝑅1 is 𝑟 × 𝑟 upper triangular and nonsingular, 𝑅2 is 𝑟 × (𝑛 − 𝑟)

Matrix rank 1.35

Proof

• 𝑥 is in the nullspace of 𝐴 if and only if 𝑦 = 𝑃𝑥 is in the nullspace of 𝐴𝑃𝑇

• 𝑦 = (𝑦1, 𝑦2) is in the nullspace of 𝐴𝑃𝑇 if and only if

𝐴𝑃𝑇 𝑦 = 0 ⇐⇒ 𝑄
[
𝑅1 𝑅2

] [𝑦1
𝑦2

]
= 0

⇐⇒ [
𝑅1 𝑅2

] [𝑦1
𝑦2

]
= 0 (𝑄 has orthonormal columns)

⇐⇒
[
𝑦1
𝑦2

]
=

[−𝑅−1
1 𝑅2
𝐼

]
𝑦2 (𝑅1 is nonsingular)

• therefore, 𝑥 is in the nullspace of 𝐴 if and only if it is in the range of

𝑃𝑇
[−𝑅−1

1 𝑅2
𝐼

]
• the columns of this matrix are linearly independent, so they are a basis for

range(𝑃𝑇
[−𝑅−1

1 𝑅2
𝐼

]
) = null(𝐴)

Matrix rank 1.36

Low-rank matrix

an 𝑚 × 𝑛 matrix has low rank if

rank(𝐴) ≪ min{𝑚, 𝑛}

if 𝑟 = rank(𝐴) ≪ min{𝑚, 𝑛}, a factorization

𝐴 = 𝐵𝐶 (with 𝐵 ∈ R𝑚×𝑟 and 𝐶 ∈ R𝑟×𝑛)

gives an efficient representation of 𝐴

• memory: 𝐵 and 𝐶 have 𝑟 (𝑚 + 𝑛) entries, compared with 𝑚𝑛 for 𝐴

• fast matrix–vector product: 2𝑟 (𝑚 + 𝑛) flops if we compute 𝑦 = 𝐴𝑥 as

𝑦 = 𝐵(𝐶𝑥)

compare with 2𝑚𝑛 for general product 𝑦 = 𝐴𝑥

Matrix rank 1.37

Low-rank approximation

(approximate) low-rank representations

𝐴 ≈ 𝐵𝐶

are useful in many applications

Singular value decomposition (SVD)

finds the best approximation (in Frobenius norm or 2-norm) of a given rank

Heuristic algorithms

• less expensive than SVD but not guaranteed to find a best approximation

• e.g., in the pivoted QR factorization, terminate at step 𝑘 when 𝑅𝑘𝑘 is small

Optimization algorithms

can handle certain constraints on 𝐵, 𝐶 (for example, entries must be nonnegative)

Matrix rank 1.38

Outline

• subspaces, dimension, rank

• QR factorization with pivoting

• properties of matrix rank

• pseudo-inverse

Pseudo-inverse

suppose 𝐴 is 𝑚 × 𝑛 with rank 𝑟 and full-rank factorization

𝐴 = 𝐵𝐶

• 𝐵 is 𝑚 × 𝑟 with linearly independent columns; its pseudo-inverse is defined as

𝐵† = (𝐵𝑇𝐵)−1𝐵𝑇

• 𝐶 is 𝑟 × 𝑛 with linearly independent rows; its pseudo-inverse is defined as

𝐶† = 𝐶𝑇 (𝐶𝐶𝑇)−1

we define the pseudo-inverse of 𝐴 as

𝐴† = 𝐶†𝐵†

• this extends the definition of pseudo-inverse to matrices that are not full rank

• 𝐴† is also known as the Moore–Penrose (generalized) inverse

Matrix rank 1.39

Uniqueness

𝐴† = 𝐶†𝐵† does not depend on the particular factorization 𝐴 = 𝐵𝐶 used

• suppose 𝐴 = �̃��̃� is another rank factorization

• the columns of 𝐵 and �̃� are two bases for range(𝐴); therefore

�̃� = 𝐵𝑀 for some nonsingular 𝑟 × 𝑟 matrix 𝑀

• hence 𝐵𝐶 = �̃��̃� = 𝐵𝑀�̃�; multiplying with 𝐵† on the left shows that 𝐶 = 𝑀�̃�

• the pseudo-inverses of �̃� = 𝐵𝑀 and �̃� = 𝑀−1𝐶 are

�̃�† = (�̃�𝑇 �̃�)−1�̃�𝑇 = 𝑀−1(𝐵𝑇𝐵)−1𝐵𝑇 = 𝑀−1𝐵†

and
�̃�† = �̃�𝑇 (�̃��̃�𝑇)−1 = 𝐶𝑇 (𝐶𝐶𝑇)−1𝑀 = 𝐶†𝑀

• we conclude that �̃�†�̃�† = 𝐶†𝑀𝑀−1𝐵† = 𝐶†𝐵†

Matrix rank 1.40

Example: pseudo-inverse of diagonal matrix

• the rank of a diagonal matrix 𝐴 is the number of nonzero diagonal elements

• pseudo-inverse 𝐴† is the diagonal matrix with

(𝐴†)𝑖𝑖 =
{

1/𝐴𝑖𝑖 if 𝐴𝑖𝑖 ≠ 0
0 if 𝐴𝑖𝑖 = 0

Example

𝐴 =

−1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 −3

 , 𝐴† =

−1 0 0 0
0 1/2 0 0
0 0 0 0
0 0 0 −1/3

this follows, for example, from the factorization 𝐴 = 𝐵𝐶 with

𝐵 =

1 0 0
0 1 0
0 0 0
0 0 1

 , 𝐶 =

−1 0 0 0
0 2 0 0
0 0 0 −3

Matrix rank 1.41

Rank-deficient least squares

least squares problem with 𝑚 × 𝑛 matrix 𝐴 and rank(𝐴) = 𝑟 (possibly 𝑟 < 𝑛)

minimize ∥𝐴𝑥 − 𝑏∥2 (1)

• substitute rank factorization 𝐴 = 𝐵𝐶:

minimize ∥𝐵𝐶𝑥 − 𝑏∥2

• �̂� = 𝐵†𝑏 = (𝐵𝑇𝐵)−1𝐵𝑇𝑏 is the solution of the full-rank least squares problem

minimize ∥𝐵𝑦 − 𝑏∥2

• every 𝑥 that satisfies 𝐶𝑥 = �̂� is a solution of the least squares problem (1)

• 𝑥 = 𝐶†�̂� = 𝐶𝑇 (𝐶𝐶𝑇)−1�̂� is the least norm solution of the equation 𝐶𝑥 = �̂�

therefore the solution of (1) with the smallest norm is

𝑥 = 𝐴†𝑏 = 𝐶†𝐵†𝑏

other solutions of (1) are the vectors 𝑥 + 𝑣, for nonzero 𝑣 ∈ null(𝐴)
Matrix rank 1.42

Meaning of 𝐴𝐴† and 𝐴†𝐴

if 𝐴 does not have full rank, 𝐴† is not a left or a right inverse of 𝐴

Interpretation of 𝐴𝐴†

𝐴𝐴† = 𝐵𝐶𝐶†𝐵† = 𝐵𝐵† = 𝐵(𝐵𝑇𝐵)−1𝐵𝑇

• 𝐵𝐵†𝑥 is the orthogonal projection of 𝑥 on range(𝐵) (see 133A, slide 6.12)

• hence, 𝐴𝐴†𝑥 is the orthogonal projection of 𝑥 on range(𝐴) = range(𝐵)

Interpretation of 𝐴†𝐴

𝐴†𝐴 = 𝐶†𝐵†𝐵𝐶 = 𝐶†𝐶 = 𝐶𝑇 (𝐶𝐶𝑇)−1𝐶

• 𝐶†𝐶𝑥 is the orthogonal projection of 𝑥 on range(𝐶𝑇)
• hence, 𝐴†𝐴𝑥 is orthogonal projection on row space range(𝐴𝑇) = range(𝐶𝑇)

Matrix rank 1.43

Exercise

show that 𝐴† satisfies the following properties

• 𝐴𝐴†𝐴 = 𝐴

• 𝐴†𝐴𝐴† = 𝐴†

• 𝐴𝐴† is a symmetric matrix

• 𝐴†𝐴 is a symmetric matrix

Matrix rank 1.44

