L. Vandenberghe ECE133B (Spring 2023)

1. Matrix rank

e subspaces, dimension, rank
e QR factorization with pivoting
e properties of matrix rank

e low-rank matrices

e pseudo-inverse
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Subspace

a nonempty subset V of R" is a subspace if
ax+ By eV

for all vectors x, y € V and scalars a, 8

e all linear combinations of elements of V are in V

e V is nonempty and closed under scalar multiplication and vector addition

Examples
e {0}, R”

e the span of a set S C R™: all linear combinations of elements of S

span(S):{,Bla1+---+,8kak|a1,...,ak€S, ﬁl,...,ﬁkER}

ifS ={ay,...,a,} is afinite set, we write span(S) = span(ay,...,a,)
(the span of the empty set is defined as {0})
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Operations on subspaces

three common operations on subspaces (V and ‘W are subspaces)

e jntersection:
VNnW=4{x|xeV,xe W}

e Sum.
V+W={x+y|lxeV,ye W}

if V. nW = {0} this is called the direct sum and written as V & W

e orthogonal complement:

Vt={x|y'x=0forally eV}

the result of each of the three operations is a subspace
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Range of a matrix

suppose A is an m x n matrix with columns aj, ..., a, and rows b',..., b}
- T
b}
A= [ ai Ay ] = :
T
| bm

Range (column space): the span of the column vectors (a subspace of R™)

range(A) = span(ai,...,an)
= {xjay1+---+xua, | x € R"}
= {Ax|x eR"}

the range of A’ is called the row space of A (a subspace of R"):

range(A") = span(by,..., by
= {yib1+---+ymbn |y € R"}
= {Aly|yeR™
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Nullspace of a matrix

suppose A is an m x n matrix with columns aj, ..., a, and rows b1, ..., b}
T
| by,

Nullspace: the orthogonal complement of the row space (a subspace of R")

range(AT)t
= {xeR"|blx=--=blx=0}
= {xeR"| Ax =0}

null(A)

the nullspace of A’ is the orthogonal complement of range(A) (a subspace of R”)

null(AT) range(A)*
{yeR"|ajy="-=a,y=0}

= {yeR"|A"y=0}
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Exercise

e directed graph with m vertices, n arcs (directed edges)
e node—arc incidence matrix is m X n matrix A with
1 ifarc j enters node i

A;jj =4 —1 ifarc jleaves node i
0  otherwise

Y
2O
describe in words the subspaces null(A) and range(A”)
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Linearly independent vectors

vectors ay, ..., a, are linearly independent if
xiay+xoar+---+xua, =0 — X1=Xxp=---=x,=0
e the zero vector cannot be written as a nontrivial linear combination of ay, ..., a;,

e NO vector q; is a linear combination of the other vectors

e in matrix—vector notation: Ax = 0 holds only if x = 0, where

A

(a1 ay -~ ay |

e linear (in)dependence is a property of the set of vectors {ay,...,a,}

(by convention, the empty set is linearly independent)

Dimension inequality
e ifay,...,a, arelinearly independent m-vectors then n < m (see 133A)

e if A is a wide matrix (m X n with n > m), then there exist x # 0 such that Ax =0
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Basis of a subspace

{vi,...,vr} is a basis for the subspace V if two conditions are satisfied

1. V =span(vy,...,vg)
2. v, ..., v are linearly independent
e condition 1 means that every x € V can be expressed as

x =i+ + Brvi

e condition 2 means that the coefficients 8y, ..., B; are unique:
x=p1vi+-+ Brvk

X=Y1vi+ - +YiVk
— ﬁlzyl’ ceey ﬂkzyk

Matrix rank
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Extension of dimension inequality

e let {vy,...,v} be abasis for a subspace V C R"
e ifay,...,a, are linearly independent vectors in V,thenn < k

e this improves the dimension inequality (n < m) on page 1.7

Proof

e ecach a; can be expressed as a linear combination of the basis vectors:

ap = BXl, ar = sz, ey a, = Bx,,
for some k-vectors xi, . .., x,, where B is the m X k matrix B = [vy --- v|
e the k-vectors xy, ..., x, are linearly independent:

Bixi+-+Pxn=0 = B(Bxi+---+Pxn) =prar+---+prap=0

e by the dimension inequality of page 1.7, this implies n < k

Matrix rank
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Dimension of a subspace

e every basis of a subspace V contains the same number of vectors

e this number is called the dimension of V (notation: dim(V))

Proof: consider two bases of V

{vi,...,vi}, {wi,...,w;}
from previous page,
e | < k,because wy,...,w; are linearly independent and {vq, ..., v} is a basis
e k <[becausevy,...,v; are linearly independent and {wy,...,w;} is a basis

therefore k = |
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Completing a basis

let V be a subspace in R

e suppose {vi,...,v;} C Vis alinearly independent set (possibly empty)
e then there exists a basis of V of the form {vy,...,v;,vii1, ..., vi}

e we complete the basis by adding the vectors vy, ..., v

Proof

e if {vy,...,v;} is not already a basis, its span is not V

e then there exist vectors in V' that are not linear combinations of vy, ..., v;

e choose one of those vectors, call it v;,1, and add it to the set
e the set {vy,...,v 41} is alinearly independent subset of V with j + 1 elements
e repeat this process until it terminates

e it terminates because a linearly independent set in R has at most m elements

Consequence: every subspace of R” has a basis
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Rank of a matrix

Rank: the rank of a matrix is the dimension of its range
rank(A) = dim(range(A))

this is also the maximal number of linearly independent columns

Example: a 4 x 4 matrix with rank 3

1 -1 3 1

—1 2 0 0

A:[a1 ar as a4]: 1 -1 3 0
_—1 2 0 1

e {a,} is linearly independent (a; is not zero)
e {ai,ay} is linearly independent
e {aj,as, as} is linearly dependent: a3 = 6a; + 3a,

e {aj,ap, a4} is a basis for range(A): linearly independent and spans range(A)
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Rank-r matrices in factored form

we will often encounter matrices in the product form A = BC, where

e B is m X r with linearly independent columns

e (Cisr xn with linearly independent rows

the matrix A has rank r

e range(A) C range(B): each column of A is a linear combination of columns of B

e range(B) C range(A):
y = Bx — y=B(CD)x = A(Dx)

where D is a right inverse of C (for example, D = C")
e therefore range(A) = range(B) and rank(A) = rank(B)

e since the columns of B are linearly independent, rank(B) = r
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Exercises

Exercise 1

V and W are subspaces in R"*; show that

dim(V + W) +dim(V N W) = dim(V) + dim(W)

Exercise 2

e A and B are matrices with the same number of rows; find a matrix C with

range(C) = range(A) + range(B)

e A and B are matrices with the same number of columns; find a matrix C with

null(C) = null(A) N null(B)
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Projection on subspace

e the projection of x € R™ on a subspace V C R is the point in V closest to x
e notation: Il (x)

e orthogonal decomposition: every x € R can be decomposed as
X=y+z, y =y (x), z = Iy (x)
(VJ_

z =y (x)

y =Ily(x)
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Projection via least squares

e suppose the columns of the m X n matrix A are a basis for V

e columns of A are linearly independent and span V = range(A)

Projection on V = range(A)
e projection is Ilq/(x) = Au where u minimizes ||Au — x||

e from least squares theory:

My (x) = AA'x,  where AT = (ATA)~1 AT is pseudo-inverse of A

Projection on V- = range(A)*
e projection is ITq,.(x) = z where z minimizes ||z — x|| subjectto ATz =0

e from least squares theory:

My:(x) = (I — AA")x = x = g (x)
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Projection using orthonormal basis

e formulas simplify if we use an orthonormal basis {q1,...,q,} for V
e basis vectors ¢y, ..., g, have unit norm and are mutually orthogonal

e the matrix O = [q1 g2 - - gn| satisfies Q' Q =1
Projection on V = range(Q)

My(x) = 00'x
= qi1(glx) + -+ qu(glx)

Projection on V+ = range(Q)*

My:(x) = x-00'x
= x—qi1(g1%) = — qul(gpx)
note the equivalent expression
Moy (x) = (I = quqy) -+ (I — q2g3) (I — q147)x
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QR factorization

A is an m X n matrix with linearly independent columns (hence, m > n)

QR factorization
A =0R

e R is n X n, upper triangular, with positive diagonal elements
e O is m x n with orthonormal columns (Q1Q =1

e several algorithms, including Gram—-Schmidt algorithm

Full QR factorization (QR decomposition)
~ R
a=le 01| g

e R is n X n, upper triangular, with positive diagonal elements
o [Q Q] is orthogonal: square with orthonormal columns

e several algorithms, including Householder triangularization
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Exercise
consider the QR factorization of an m X n matrix with linearly independent columns

Ry Ri2 Ri3 -+ Ry,
0 Ry Ry3 -+ Ry,
la1 a2 a3 -+ an|=[q1 g2 g3 -~ qu| | O O Rsz --- Ry

0 0 0 - Rpy

define V), = span(ay,...,ar) =span(qy,...,qk)
1. verify that for j > k,
M (a;) = Rijq1+ -+ Rijqr, T (a)|* = R%j Foeet Rij
and
Moys(aj) = Rist jqit +- -+ Rjjqp,  IMe(apll> = Rpyy +---+ R,

2. in particular,
Ricet k1 = [y (aks1) ||
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A is an m X n matrix (may be wide or have linearly dependent columns)

QR factorization with column pivoting

QR factorization with column pivoting (column reordering)

A =QRP

e () is m X r with orthonormal columns

R is r X n, leading r X r submatrix is upper triangular with positive diagonal:

' Ry1 Ry -+ Ry Riyy1 -+ Rup |
0 Ry Ry Rory1 -+ Ry
0 0 oo Ry Rr,r+1 o Ry |

can be chosen to satisfy Rj; > Ryp > --- > R, >0

P is an n X n permutation matrix

r is the rank of A: apply the result on page 1.13 with B =Q, C = RP

Matrix rank
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Interpretation

e columns of APT = QR are the columns of A in a different order

e the columns are divided in two groups:

APT = Ay Ay |=0[ R Ry| Ajismxr,Riisrxr

e A; = QR is m X r with linearly independent columns:
Ax = ORix=0 — RI_IQTApc =x=0
e A =QR;ism X (n —r): columns are linear combinations of columns of Ay

Ay=QR; = A1R1_1R2

the factorization provides two useful bases for range(A)
e columns of Q are an orthonormal basis

e columns of A; are a basis selected from the columns of A
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Computing the pivoted QR factorization

we first describe the modified Gram—Schmidt algorithm

e a variation of the classical Gram—-Schmidt algorithm for QR factorization

| a1 a

of a matrix with linearly independent columns

an | = a1 a2

qn |

Ry Rz -+ Ry, |
0O Ry -+ Ry
0 0 -+ Run |

e has better numerical properties than classical Gram—-Schmidt algorithm

e compute Q column by column, R row by row

we then extend the modified GS method to the pivoted QR factorization

Matrix rank
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Modified Gram-Schmidt algorithm

after k steps (k =1, ..., n), the algorithm has computed a partial QR factorization

A = [Cll"'ak |Clk+1"'an]

Ri1- Rik | Rik+1 - Rin

[ @ an [Be ]| 0 oo Reg | Rigws -+ Reo

0 I
® ¢g1,...,q) are orthonormal vectors; Ry, ..., Ry are positive
e columns of By are ay,1,...,ay, projected on span(qy,...,qi)*"

e the factorization starts with By = A and is complete when k = n

e in step k, we compute gy, Rk, Rk k+1> - - - » Rkn, and By
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Modified Gram-Schmidt update

at step k we compute gy, Rik, R, (k+1):n, @Nd By from

Rik  Ri (k+1)n

Bi-1=| gx B | 0 ;

partition Bx_; as Bx—1 = [b B] with b the first column and B of size m x (n — k):

b = qrRik, B = qiRi (k+1):n + Bi

e from the first equation, and the required properties ||gx|| = 1 and Ry > O:

1
Rir = D]l qr = —>b
Rjk

e from the second equation, and the requirement that q{Bk = 0:

ol

Ri,(k+1):n = Q£B, Bi = B = qiRi (k+1)n
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Summary: modified Gram-Schmidt algorithm

Algorithm (A is m x n with linearly independent columns)
define By = A; for k =1 to n,
e compute Ry = ||b|| and g = (1/Ry;)b where b is the first column of B;_;

e compute
|Ricks1 -+ Rin| = Q?;B, Bi =B — qi [Rik+1 -+ Rin]
where B is B;_; with the first column removed

MATLAB code
Q =A; R = zeros(n,n);
for k = 1:n
R(k,k) = norm(Q(:,k));
QC:,k) = Q(:,k) / R(k,k);
R(k,k+1:n) = Q(:,k)’ * Q(:,k+1:n);
Q(C:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);
end;
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Modified Gram-Schmidt algorithm with pivoting

with minor changes the modified GS algorithm computes the pivoted factorization

AP

[ Ryi
0
|l a1 92 - g ||

0

e partial factorization after k steps

AP, = g1 qx | By |

R17
R7>

0

Riy Rir41
Riy Rir41

Rrr Rr,r+1

Rik+1 -+ Rip

Ri k+1 -+ Rin

I

e if B; =0, the factorization is complete (r = k, P = Py)

e algorithm starts with Pp =T and By = A

e before step k, we reorder columns of Bj_; to place its largest column first

e this requires reordering columns k, ..., n of R, and modifying P;_

Matrix rank
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Example

(1 1 0 1]
0 1 | |
A:[a1 ar as Cl4]: 11 0 |
0 1 -1 -1

Step 1
e a, and a4 have the largest norms; we move a, to the first position

e find first column of Q, first row of R

12 172 0 1][2]1 0 O
[aaaa]_1/2—1/21—10100
2 S S = b2 12 0 1{lolo 1 0
1/2|-1/2 -1 -1 ][0|0 O 1

Ryl | R12:4

RIS
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Example

Step 2

e move column 3 of B to first position in By

(121 1 1/2 0][2]0 1 0]
[aaaa]_1/2—1—1/210100

2 8 ST 2001 12 oflolo 10

o 1/2|-1 -1/2 -1 [[0|0 O 1

e find second column of Q, second row or R

[ 1/2 1210 O0][2 0|1 0]
[aaaa]_1/2—1/2010210

2 % 2 S = Ly 1210 o0 01 0

' 1/2 -1/2{0 -1 ]| 0 0[O0 1|

[ Ri1 Rz | Riza |
| 91 2| B2 || 0 Rxn| R34

Matrix rank 1.28



Example

Step 3

e move column 2 of B, to first position in B,

[ 1/2 1/2] 0 O0][2 O[]0 1]
| | = 12 =12 1 0|0 2]0 1
@2 4 @ A= 9n 120 0 ofl|0 o1 0
1/2 -1/2]-1 0|0 0[]0 1
e find third column of Q, third row of R
12 12 0 |o1[2 0 o0 ]1
| | = 1/2 -1/2 1/N2 |0 ||0 2 0 |1
@ de @ ar = 1y 12 0 |ollo oo V2o
| 1/2 -1/2 -1/¥2|0 ] 0 0 0 |1
' Ri1 Rz Riz|Ru
_ 0 Ry Ry | Ry
= |91 92 ¢3|B3 | 0 0 Rul|Ru
0 0 0 | 1
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Example

Result: since B3 is zero, the algorithm terminates with the factorization

(1 1 0 1
1 -1 1 0
[@2 @ as ar | = 1y
1 -1 -1 0
172 1/2 0 ]
2 0 0 1
172 1/2 0 00 V3 0
12 -1/2 -1/\2 :
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Exercise

consider the modified Gram—Schmidt update on p.1.24 and p.1.25

Bioi=|b B|=|4qr Bx]

Rk Ri (k+1):n
0 Il

1. verify that B, computed on p.1.24 and p.1.25 is
Bi = (I - qrq;)B
2. denote column i of By by b;, and column i of B by b;; show that

2 ™ n2 2 .
16all? = 1Bl = RZ o i= 1. —k

3. in the pivoting algorithm, ||b|| > ||b;|| fori = 1,...,n — k; show that therefore
Rik 2 Ri+1,k+1
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Factorization theorem

an m X n matrix A has rank r if and only if it can be factored as

A =BC

e Bis m X r with linearly independent columns

e (C isr x n with linearly independent rows

this is called a full-rank factorization of A

e “if” statement was shown on page 1.13
e the pivoted QR factorization proves the “only if” statement

e other algorithms will be discussed later
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Rank of transpose

an immediate and important consequence of the factorization theorem:

rank(A”) = rank(A)

the column space (range) of a matrix has the same dimension as its row space:

dim(range(AT)) = dim(range(A))
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Full-rank matrices

for any m x n matrix
rank(A) < min{m, n}

Full rank: A has full rank if rank(A) = min{m, n}

e rank(A) = n < m: tall and left-invertible (has linearly independent columns)
e rank(A) = m < n: wide and right-invertible (had linearly independent rows)

e rank(A) = m = n: square and invertible (nonsingular)

Full column rank: A has full column rank if rank(A) = n
e A has linearly independent columns (is left-invertible)

e must be tall or square

Full row rank: A has full row rank if rank(A) = m

e A has linearly independent rows (is right-invertible)

e must be wide or square
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Dimension of nullspace

if Aism X nthen
dim(null(A)) = n — rank(A)

e dim(null(A)) is known as the nullity of the matrix

e we show this by constructing a basis containing n — rank(A) vectors

Basis for nullspace: a basis for the nullspace of A is given by the columns of

~R7IR
T 1 2
A

where P, Ry, R, are the matrices in the pivoted QR factorization
AP =Q[| R Ry ]

e P is an X n permutation matrix
e (O is m X r with orthonormal columns, where r = rank(A)

e R;isr X r upper triangular and nonsingular, Ry isr X (n —r)
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Proof

e x isin the nullspace of A if and only if y = Px is in the nullspace of AP

e y =(y1,y2) is in the nullspace of AP’ if and only if

APTy=0 < Q| R Rz][”]:o

y2
— | R R | [ il ] =0 (O has orthonormal columns)
: 2
~R7'R . .
— il ] = 11 2 ]yz (R; is nonsingular)
2

e therefore, x is in the nullspace of A if and only if it is in the range of

-1
T _R1 R2
P

e the columns of this matrix are linearly independent, so they are a basis for

_p-1
range( P! [ Rll R ]) = null(A)
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Low-rank matrix

an m X n matrix has low rank if

rank(A) < min{m, n}

if r = rank(A) < min{m, n}, a factorization
A =BC (with B € R™ and C € R™")

gives an efficient representation of A

e memory: B and C have r(m + n) entries, compared with mn for A

e fast matrix—vector product: 2r(m + n) flops if we compute y = Ax as
y = B(Cx)

compare with 2mn for general product y = Ax

Matrix rank
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Low-rank approximation

(approximate) low-rank representations
A =~ BC

are useful in many applications

Singular value decomposition (SVD)

finds the best approximation (in Frobenius norm or 2-norm) of a given rank

Heuristic algorithms

e less expensive than SVD but not guaranteed to find a best approximation

e e.g., in the pivoted QR factorization, terminate at step k when Ry is small

Optimization algorithms

can handle certain constraints on B, C (for example, entries must be nonnegative)
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Pseudo-inverse
suppose A is m X n with rank r and full-rank factorization
A =BC
e Bis m X r with linearly independent columns; its pseudo-inverse is defined as

B"'=(B"B)"'BT

e (Cisr x n with linearly independent rows; its pseudo-inverse is defined as
ct=ctcchH™
we define the pseudo-inverse of A as
AT =C'B!

e this extends the definition of pseudo-inverse to matrices that are not full rank

e A'is also known as the Moore—Penrose (generalized) inverse
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Uniqueness

AT = CTB" does not depend on the particular factorization A = BC used

e suppose A = BC is another rank factorization

e the columns of B and B are two bases for range(A); therefore

B = BM for some nonsingular r X r matrix M

e hence BC = BC = BMC; multiplying with B on the left shows that C = MC

e the pseudo-inverses of B = BM and C = M~!C are
B =B"B)'B" =M~ (B"B)'BT = M~ 'B"

and
Ct=c(ccH'=cTcchh ' mMm=c'm

e we conclude that C'B" = CTMM~1B" = C"BT
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Example: pseudo-inverse of diagonal matrix

e the rank of a diagonal matrix A is the number of nonzero diagonal elements

e pseudo-inverse AT is the diagonal matrix with

1/A; if Aj 20
TN, 2] I
(A)”‘{o if Ajj =0
Example
-1 0 0 0 -1 0 0 O
1o 20 0 . 10 120 0
A= 0O 0 0 0 [’ A= O 0 0 O
0 0 0 -3 0O 0 0 -1/3

this follows, for example, from the factorization A = BC with

[ -1
0
0

S N O
o O O
o O

— o O O

oS O~ O

SO O =
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Rank-deficient least squares

least squares problem with m x n matrix A and rank(A) = r (possibly r < n)
minimize ||Ax - b||? (1)
e substitute rank factorization A = BC:
minimize ||BCx — b||?
e § = B'b = (BT B)~! BT b is the solution of the full-rank least squares problem
minimize ||By — b||?

e every x that satisfies Cx = j is a solution of the least squares problem (1)

e £=C"y =CT(Ccc”)~ 1§ is the least norm solution of the equation Cx = §
therefore the solution of (1) with the smallest norm is
£=A"b=C"B'b

other solutions of (1) are the vectors X + v, for nonzero v € null(A)
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Meaning of AA" and ATA

if A does not have full rank, AT is not a left or a right inverse of A

Interpretation of AAT
AAT=BCC'B" = BB" = B(B'B)" !B

e BB'x is the orthogonal projection of x on range(B) (see 133A, slide 6.12)

e hence, AATx is the orthogonal projection of x on range(A) = range(B)
Interpretation of A™A
ATA=c'B'Bc=c’c=cTcch~!c

e C'Cx is the orthogonal projection of x on range(CT)

e hence, A" Ax is orthogonal projection on row space range(A”) = range(CT)
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Exercise

show that AT satisfies the following properties

e AATA=A
o ATAAT = AT
e AA" is a symmetric matrix

e A'"A is a symmetric matrix
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