10. Schur decomposition

- eigenvalues of nonsymmetric matrix
- Schur decomposition
- Sylvester equation

Eigenvalues and eigenvectors

a nonzero vector x is an *eigenvector* of the $n \times n$ matrix A, with *eigenvalue* λ , if

 $Ax = \lambda x$

• the eigenvalues are the roots of the characteristic polynomial

 $\det(\lambda I - A) = 0$

• eigenvectors are nonzero vectors in the nullspace of $\lambda I - A$

for most of the lecture, we assume that A is a complex $n \times n$ matrix

Linear independence of eigenvectors

suppose x_1, \ldots, x_k are eigenvectors for k different eigenvalues:

$$Ax_1 = \lambda_1 x_1, \qquad \dots, \qquad Ax_k = \lambda_k x_k$$

then x_1, \ldots, x_k are linearly independent

- the result holds for k = 1 because eigenvectors are nonzero
- suppose it holds for k 1, and assume $\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$; then

$$0 = A(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k) = \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \dots + \alpha_k \lambda_k x_k$$

• subtracting
$$\lambda_1(\alpha_1 x_1 + \dots + \alpha_k x_k) = 0$$
 gives

$$\alpha_2(\lambda_2 - \lambda_1)x_2 + \dots + \alpha_k(\lambda_k - \lambda_1)x_k = 0$$

- since x_2, \ldots, x_k are linearly independent, $\alpha_2 = \cdots = \alpha_k = 0$
- $\alpha_1 x_1 = -(\alpha_2 x_2 + \dots + \alpha_k x_k) = 0$, so α_1 is also zero
- we conclude that $\alpha_1 = \cdots = \alpha_k = 0$, so x_1, \ldots, x_k are linearly independent

Multiplicity of eigenvalues

Algebraic multiplicity

- the multiplicity of the eigenvalue as a root of the characteristic polynomial
- the sum of the algebraic multiplicities of the eigenvalues of an $n \times n$ matrix is n

Geometric multiplicity

- the geometric multiplicity is the dimension of $null(\lambda I A)$
- the maximum number of linearly independent eigenvectors with eigenvalue λ
- sum is the maximum number of linearly independent eigenvectors of the matrix

Defective eigenvalue

- geometric multiplicity never exceeds algebraic multiplicity (proof on page 10.7)
- eigenvalue is *defective* if geometric muliplicity is less than algebraic multiplicity
- a matrix is *defective* if some of its eigenvalues are defective

Example

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad \det(\lambda I - A) = (\lambda - 1)^2 (\lambda - 2)^2$$

- two eigenvalues, $\lambda = 1$ and $\lambda = 2$, each with algebraic multiplicity two
- eigenvalue $\lambda = 1$ is defective and has geometric multiplicity one:

 $null(I - A) = span \{(1, 0, 0, 0)\}$

• eigenvalue $\lambda = 2$ is not defective and has geometric multiplicity two:

 $\operatorname{null}(2I - A) = \operatorname{span}\{(0, 0, 1, 0), (0, 0, 0, 1)\}$

maximum number of linearly independent eigenvectors is three; for example,

(1,0,0,0), (0,0,1,0), (0,0,0,1)

Similarity transformation

two matrices A and B are *similar* if

 $B = X^{-1}AX$

for some nonsingular matrix X

• the matrices $B = X^{-1}AX$ and A have the same characteristic polynomial:

$$\det(\lambda I - B) = \det(\lambda I - X^{-1}AX) = \det(X^{-1}(\lambda I - A)X) = \det(\lambda I - A)$$

- similarity transformation preserves eigenvalues and algebraic multiplicities
- if x is an eigenvector of A then $y = X^{-1}x$ is an eigenvector of B:

$$By = (X^{-1}AX)(X^{-1}x) = X^{-1}Ax = X^{-1}(\lambda x) = \lambda y$$

• similarity transformation preserves geometric multiplicities:

$$\dim \operatorname{null}(\lambda I - B) = \dim \operatorname{null}(\lambda I - A)$$

Geometric and algebraic multiplicities

suppose α is an eigenvalue with geometric multiplicity *r*:

 $\dim \operatorname{null}(\alpha I - A) = r$

- define an $n \times r$ matrix U with orthonormal columns that span null($\alpha I A$)
- complete U to define a unitary matrix $W = \begin{bmatrix} U & V \end{bmatrix}$ and define $B = W^H A W$:

$$B = \begin{bmatrix} U^{H}AU & U^{H}AV \\ V^{H}AU & V^{H}AV \end{bmatrix} = \begin{bmatrix} \alpha U^{H}U & U^{H}AV \\ \alpha V^{H}U & V^{H}AV \end{bmatrix} = \begin{bmatrix} \alpha I & U^{H}AV \\ 0 & V^{H}AV \end{bmatrix}$$

• the characteristic polynomial of *B* is

$$\det(\lambda I - B) = (\lambda - \alpha)^r \det(\lambda I - V^H A V)$$

this shows that the algebraic multiplicity of eigenvalue α of B is at least r

Diagonalizable matrices

the following three properties are equivalent

1. A is diagonalizable by a similarity: there exists nonsingular X, diagonal Λ s.t.

$$X^{-1}AX = \Lambda$$

2. *A* has a set of *n* linearly independent eigenvectors (for example, columns of *X*):

$$AX = X\Lambda$$

3. all eigenvalues of A are nondefective: for every eigenvalue λ ,

algebraic multiplicity = geometric multiplicity

- not all square matrices are diagonalizable
- real symmetric matrices are an important class of diagonalizable matrices

Outline

- eigenvalues of nonsymmetric matrix
- Schur decomposition
- Sylvester equation

Schur decomposition

every $A \in \mathbb{C}^{n \times n}$ can be factored as

$$A = UTU^H \tag{1}$$

- subscript ^H denotes complex conjugate transpose
- *U* is unitary: $U^H U = UU^H = I$
- *T* is upper triangular, with the eigenvalues of *A* on its diagonal
- the eigenvalues can be chosen to appear in any order on the diagonal of T
- *A* is reduced to triangular form by unitary similarity transformation:

$$U^H A U = T$$

- in general, the matrices U, T are complex, even when A is real
- complexity of computing the factorization is order n^3

Proof by induction

- the decomposition (1) obviously exists if n = 1
- suppose it exists if n = m and A is an $(m + 1) \times (m + 1)$ matrix
- let λ be any eigenvalue of A and u a corresponding eigenvector, with ||u|| = 1
- let V be an $(m + 1) \times m$ matrix that makes the matrix $\begin{bmatrix} u & V \end{bmatrix}$ unitary; then

$$\begin{bmatrix} u^{H} \\ V^{H} \end{bmatrix} A \begin{bmatrix} u & V \end{bmatrix} = \begin{bmatrix} u^{H}Au & u^{H}AV \\ V^{H}Au & V^{H}AV \end{bmatrix} = \begin{bmatrix} \lambda u^{H}u & u^{H}AV \\ \lambda V^{H}u & V^{H}AV \end{bmatrix} = \begin{bmatrix} \lambda & u^{H}AV \\ 0 & V^{H}AV \end{bmatrix}$$

• $V^H A V$ is an $m \times m$ matrix, so by the induction hypothesis,

 $V^H A V = \tilde{U} \tilde{T} \tilde{U}^H$ for some unitary \tilde{U} and upper triangular \tilde{T}

• the matrix $U = \begin{bmatrix} u & V\tilde{U} \end{bmatrix}$ is unitary and satisfies

$$U^{H}AU = \begin{bmatrix} u^{H} \\ \tilde{U}^{H}V^{H} \end{bmatrix} A \begin{bmatrix} u & V\tilde{U} \end{bmatrix} = \begin{bmatrix} \lambda & u^{H}AV\tilde{U} \\ 0 & \tilde{Q}^{H}V^{H}AV\tilde{Q} \end{bmatrix} = \begin{bmatrix} \lambda & u^{H}AV\tilde{U} \\ 0 & \tilde{T} \end{bmatrix}$$

Real Schur decomposition

if A is real, a similar factorization with real matrices exists:

 $A = UTU^T$

- *U* is orthogonal: $U^T U = U U^T = I$
- *T* is quasi-triangular:

$$T = \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1m} \\ 0 & T_{22} & \cdots & T_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & T_{mm} \end{bmatrix}$$

the diagonal blocks T_{ii} are 1×1 or 2×2

- the scalar diagonal blocks are real eigenvalues of A
- the eigenvalues of the 2×2 diagonal blocks are complex eigenvalues of A

Normal matrix

a square matrix A is normal if

$$A^H A = A A^H$$

Examples

- Hermitian (and symmetric real) matrices: $A^H = A$
- skew-Hermitian (and skew-symmetric real) matrices: $A^H = -A$
- unitary (and orthogonal real) matrices: $A^H A = A A^H = I$
- A = I + B where B is a normal matrix

Schur decomposition of normal matrix

a matrix is normal if and only if it is diagonalizable by a unitary similarity

 $A = UDU^H$, with U unitary, D diagonal

Proof

• if A satisfies (2), then it is normal:

$$A^H A = U D^H D U^H = U D D^H U^H = A A^H$$

 $D^H D = DD^H$ is the diagonal matrix with diagonal entries $|D_{ii}|^2$

• if A is normal with Schur decomposition $A = UTU^H$, then

$$A^{H}A = UT^{H}TU^{H} = UTT^{H}U^{H} = AA^{H} \implies T^{H}T = TT^{H}$$

a triangular matrix that satisfies $T^{H}T = TT^{H}$ is diagonal

Schur decomposition

(2)

Example: circulant matrix

recall from 133A the definition of a circulant matrix

$$A = \begin{bmatrix} a_1 & a_n & a_{n-1} & \cdots & a_3 & a_2 \\ a_2 & a_1 & a_n & \cdots & a_4 & a_3 \\ a_3 & a_2 & a_1 & \cdots & a_5 & a_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_1 & a_n \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & a_1 \end{bmatrix} = \frac{1}{n} W^H \operatorname{diag}(Wa) W$$

W is the DFT matrix

• A is diagonalizable by a unitary similarity transformation

$$A = UDU^{H}$$
, where $U = \frac{1}{\sqrt{n}}W^{H}$ and $D = \operatorname{diag}(Wa)$

- hence, A is normal
- eigenvalues of A are given by the DFT of a, columns of W are eigenvectors

Exercises

Exercise 1

- 1. show that the eigenvalues of a unitary matrix are on the unit circle
- 2. show that the eigenvalues of a Hermitian matrix are on the real axis
- 3. show that the eigenvalues of a skew-Hermitian matrix are on the imaginary axis

Exercise 2: consider the transfer function

$$H(s) = c^T (sI - A)^{-1} b$$

where $c, b \in \mathbf{R}^n$, $A \in \mathbf{R}^{n \times n}$, and *s* is a complex number

explain how to evaluate H(s) at $m \gg n$ points s with order mn^2 complexity

Outline

- eigenvalues of nonsymmetric matrix
- Schur decomposition
- Sylvester equation

Sylvester equation

Sylvester equation: a matrix equation

AX + XB = C

where A is $m \times m$, B is $n \times n$, C is $m \times n$

- the variable is an $m \times n$ matrix X
- a set of mn linear linear equations in mn variables X_{ij}
- standard algorithms for linear equations of this size have order m^3n^3 complexity
- we'll see that the Schur decomposition provides a much more efficient algorithm

Lyapunov equation

- special case with $B = A^T$ and symmetric C
- important in theory of linear dynamical systems

Solving Sylvester equations

AX + XB = C

Step 1: reduce to a Sylvester equation with upper triangular matrices

• compute Schur decomposition of *A*, *B*:

 $A = USU^{H}$, $B = VTV^{H}$, with U, V unitary and S, T upper triangular

- complexity is order m^3 for $m \times m$ matrix A and order n^3 for $n \times n$ matrix B
- substitute Schur decompositions in Sylvester equation:

 $USU^H X + XVTV^H = C$

• change of variables $Y = U^H X V$ gives Sylvester equation

$$SY + YT = D$$
, where $D = U^H CV$

Solving Sylvester equations

Step 2: solve triangular Sylvester equation SY + YT = D column by column

$$S\begin{bmatrix}Y_1 & Y_2 & \cdots & Y_n\end{bmatrix} + \begin{bmatrix}Y_1 & Y_2 & \cdots & Y_n\end{bmatrix}T = \begin{bmatrix}D_1 & D_2 & \cdots & D_n\end{bmatrix}$$

• a set of *n* upper triangular equations in the *m*-vectors Y_1, \ldots, Y_n :

$$(S + T_{11}I)Y_{1} = D_{1}$$

$$(S + T_{22}I)Y_{2} = D_{2} - T_{12}Y_{1}$$

$$(S + T_{33}I)Y_{3} = D_{3} - T_{13}Y_{1} - T_{23}Y_{2}$$

$$\vdots$$

$$(S + T_{nn}I)Y_{n} = D_{n} - T_{1n}Y_{1} - \dots - T_{n-1,n}Y_{n-1}$$

- solvable (by back substitution) if $S_{ii} + T_{jj} \neq 0$ for i = 1, ..., m and j = 1, ..., n
- complexity of calculating right-hand sides is order mn^2
- complexity of the *n* back substitutions is order nm^2

Solving Sylvester equations

Step 3: compute solution *X* from *Y*:

 $X = UYV^H$

two matrix–matrix products, with complexity $2m^2n + 2mn^2$

Overall complexity

- highest-order terms are cubic: m^3 , m^2n , mn^2 , n^3
- much more efficient than standard linear equation solver (m^3n^3 complexity)

this algorithm is known the Bartels-Stewart method