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10. Schur decomposition

• eigenvalues of nonsymmetric matrix

• Schur decomposition

• Sylvester equation
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Eigenvalues and eigenvectors

a nonzero vector 𝑥 is an eigenvector of the 𝑛 × 𝑛 matrix 𝐴, with eigenvalue 𝜆, if

𝐴𝑥 = 𝜆𝑥

• the eigenvalues are the roots of the characteristic polynomial

det(𝜆𝐼 − 𝐴) = 0

• eigenvectors are nonzero vectors in the nullspace of 𝜆𝐼 − 𝐴

for most of the lecture, we assume that 𝐴 is a complex 𝑛 × 𝑛 matrix
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Linear independence of eigenvectors

suppose 𝑥1, . . . , 𝑥𝑘 are eigenvectors for 𝑘 different eigenvalues:

𝐴𝑥1 = 𝜆1𝑥1, . . . , 𝐴𝑥𝑘 = 𝜆𝑘𝑥𝑘

then 𝑥1, . . . , 𝑥𝑘 are linearly independent

• the result holds for 𝑘 = 1 because eigenvectors are nonzero

• suppose it holds for 𝑘 − 1, and assume 𝛼1𝑥1 + · · · + 𝛼𝑘𝑥𝑘 = 0; then

0 = 𝐴(𝛼1𝑥1 + 𝛼2𝑥2 + · · · + 𝛼𝑘𝑥𝑘) = 𝛼1𝜆1𝑥1 + 𝛼2𝜆2𝑥2 + · · · + 𝛼𝑘𝜆𝑘𝑥𝑘

• subtracting 𝜆1(𝛼1𝑥1 + · · · + 𝛼𝑘𝑥𝑘) = 0 gives

𝛼2(𝜆2 − 𝜆1)𝑥2 + · · · + 𝛼𝑘 (𝜆𝑘 − 𝜆1)𝑥𝑘 = 0

• since 𝑥2, . . . , 𝑥𝑘 are linearly independent, 𝛼2 = · · · = 𝛼𝑘 = 0

• 𝛼1𝑥1 = −(𝛼2𝑥2 + · · · + 𝛼𝑘𝑥𝑘) = 0, so 𝛼1 is also zero

• we conclude that 𝛼1 = · · · = 𝛼𝑘 = 0, so 𝑥1, . . . , 𝑥𝑘 are linearly independent
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Multiplicity of eigenvalues

Algebraic multiplicity

• the multiplicity of the eigenvalue as a root of the characteristic polynomial

• the sum of the algebraic multiplicities of the eigenvalues of an 𝑛 × 𝑛 matrix is 𝑛

Geometric multiplicity

• the geometric multiplicity is the dimension of null(𝜆𝐼 − 𝐴)

• the maximum number of linearly independent eigenvectors with eigenvalue 𝜆

• sum is the maximum number of linearly independent eigenvectors of the matrix

Defective eigenvalue

• geometric multipicity never exceeds algebraic multiplicity (proof on page 10.7)

• eigenvalue is defective if geometric muliplicity is less than algebraic multiplicity

• a matrix is defective if some of its eigenvalues are defective
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Example

𝐴 =


1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 , det(𝜆𝐼 − 𝐴) = (𝜆 − 1)2(𝜆 − 2)2

• two eigenvalues, 𝜆 = 1 and 𝜆 = 2, each with algebraic multiplicity two

• eigenvalue 𝜆 = 1 is defective and has geometric multiplicity one:

null(𝐼 − 𝐴) = span {(1, 0, 0, 0)}

• eigenvalue 𝜆 = 2 is not defective and has geometric multiplicity two:

null(2𝐼 − 𝐴) = span{(0, 0, 1, 0), (0, 0, 0, 1)}

• maximum number of linearly independent eigenvectors is three; for example,

(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)
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Similarity transformation

two matrices 𝐴 and 𝐵 are similar if

𝐵 = 𝑋−1𝐴𝑋

for some nonsingular matrix 𝑋

• the matrices 𝐵 = 𝑋−1𝐴𝑋 and 𝐴 have the same characteristic polynomial:

det(𝜆𝐼 − 𝐵) = det(𝜆𝐼 − 𝑋−1𝐴𝑋) = det(𝑋−1(𝜆𝐼 − 𝐴)𝑋) = det(𝜆𝐼 − 𝐴)

• similarity transformation preserves eigenvalues and algebraic multiplicities

• if 𝑥 is an eigenvector of 𝐴 then 𝑦 = 𝑋−1𝑥 is an eigenvector of 𝐵:

𝐵𝑦 = (𝑋−1𝐴𝑋) (𝑋−1𝑥) = 𝑋−1𝐴𝑥 = 𝑋−1(𝜆𝑥) = 𝜆𝑦

• similarity transformation preserves geometric multiplicities:

dim null(𝜆𝐼 − 𝐵) = dim null(𝜆𝐼 − 𝐴)
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Geometric and algebraic multiplicities

suppose 𝛼 is an eigenvalue with geometric multiplicity 𝑟:

dim null(𝛼𝐼 − 𝐴) = 𝑟

• define an 𝑛 × 𝑟 matrix 𝑈 with orthonormal columns that span null(𝛼𝐼 − 𝐴)

• complete 𝑈 to define a unitary matrix 𝑊 =
[
𝑈 𝑉

]
and define 𝐵 = 𝑊𝐻𝐴𝑊 :

𝐵 =

[
𝑈𝐻𝐴𝑈 𝑈𝐻𝐴𝑉

𝑉𝐻𝐴𝑈 𝑉𝐻𝐴𝑉

]
=

[
𝛼𝑈𝐻𝑈 𝑈𝐻𝐴𝑉

𝛼𝑉𝐻𝑈 𝑉𝐻𝐴𝑉

]
=

[
𝛼𝐼 𝑈𝐻𝐴𝑉

0 𝑉𝐻𝐴𝑉

]
• the characteristic polynomial of 𝐵 is

det(𝜆𝐼 − 𝐵) = (𝜆 − 𝛼)𝑟 det(𝜆𝐼 −𝑉𝐻𝐴𝑉)

this shows that the algebraic multiplicity of eigenvalue 𝛼 of 𝐵 is at least 𝑟
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Diagonalizable matrices

the following three properties are equivalent

1. 𝐴 is diagonalizable by a similarity: there exists nonsingular 𝑋 , diagonal Λ s.t.

𝑋−1𝐴𝑋 = Λ

2. 𝐴 has a set of 𝑛 linearly independent eigenvectors (for example, columns of 𝑋):

𝐴𝑋 = 𝑋Λ

3. all eigenvalues of 𝐴 are nondefective: for every eigenvalue 𝜆,

algebraic multiplicity = geometric multiplicity

• not all square matrices are diagonalizable

• real symmetric matrices are an important class of diagonalizable matrices
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Schur decomposition

every 𝐴 ∈ C𝑛×𝑛 can be factored as

𝐴 = 𝑈𝑇𝑈𝐻 (1)

• subscript 𝐻 denotes complex conjugate transpose

• 𝑈 is unitary: 𝑈𝐻𝑈 = 𝑈𝑈𝐻 = 𝐼

• 𝑇 is upper triangular, with the eigenvalues of 𝐴 on its diagonal

• the eigenvalues can be chosen to appear in any order on the diagonal of 𝑇

• 𝐴 is reduced to triangular form by unitary similarity transformation:

𝑈𝐻𝐴𝑈 = 𝑇

• in general, the matrices 𝑈,𝑇 are complex, even when 𝐴 is real

• complexity of computing the factorization is order 𝑛3

Schur decomposition 10.9



Proof by induction

• the decomposition (1) obviously exists if 𝑛 = 1

• suppose it exists if 𝑛 = 𝑚 and 𝐴 is an (𝑚 + 1) × (𝑚 + 1) matrix

• let 𝜆 be any eigenvalue of 𝐴 and 𝑢 a corresponding eigenvector, with ∥𝑢∥ = 1

• let 𝑉 be an (𝑚 + 1) × 𝑚 matrix that makes the matrix
[
𝑢 𝑉

]
unitary; then[

𝑢𝐻

𝑉𝐻

]
𝐴
[
𝑢 𝑉

]
=

[
𝑢𝐻𝐴𝑢 𝑢𝐻𝐴𝑉

𝑉𝐻𝐴𝑢 𝑉𝐻𝐴𝑉

]
=

[
𝜆𝑢𝐻𝑢 𝑢𝐻𝐴𝑉

𝜆𝑉𝐻𝑢 𝑉𝐻𝐴𝑉

]
=

[
𝜆 𝑢𝐻𝐴𝑉

0 𝑉𝐻𝐴𝑉

]
• 𝑉𝐻𝐴𝑉 is an 𝑚 × 𝑚 matrix, so by the induction hypothesis,

𝑉𝐻𝐴𝑉 = �̃�𝑇�̃�𝐻 for some unitary �̃� and upper triangular 𝑇

• the matrix 𝑈 =
[
𝑢 𝑉�̃�

]
is unitary and satisfies

𝑈𝐻𝐴𝑈 =

[
𝑢𝐻

�̃�𝐻𝑉𝐻

]
𝐴
[
𝑢 𝑉�̃�

]
=

[
𝜆 𝑢𝐻𝐴𝑉�̃�

0 �̃�𝐻𝑉𝐻𝐴𝑉�̃�

]
=

[
𝜆 𝑢𝐻𝐴𝑉�̃�

0 𝑇

]
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Real Schur decomposition

if 𝐴 is real, a similar factorization with real matrices exists:

𝐴 = 𝑈𝑇𝑈𝑇

• 𝑈 is orthogonal: 𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼

• 𝑇 is quasi-triangular:

𝑇 =


𝑇11 𝑇12 · · · 𝑇1𝑚
0 𝑇22 · · · 𝑇1𝑚
... ... . . . ...

0 0 · · · 𝑇𝑚𝑚


the diagonal blocks 𝑇𝑖𝑖 are 1 × 1 or 2 × 2

• the scalar diagonal blocks are real eigenvalues of 𝐴

• the eigenvalues of the 2 × 2 diagonal blocks are complex eigenvalues of 𝐴

Schur decomposition 10.11



Normal matrix

a square matrix 𝐴 is normal if
𝐴𝐻𝐴 = 𝐴𝐴𝐻

Examples

• Hermitian (and symmetric real) matrices: 𝐴𝐻 = 𝐴

• skew-Hermitian (and skew-symmetric real) matrices: 𝐴𝐻 = −𝐴

• unitary (and orthogonal real) matrices: 𝐴𝐻𝐴 = 𝐴𝐴𝐻 = 𝐼

• 𝐴 = 𝐼 + 𝐵 where 𝐵 is a normal matrix
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Schur decomposition of normal matrix

a matrix is normal if and only if it is diagonalizable by a unitary similarity

𝐴 = 𝑈𝐷𝑈𝐻, with 𝑈 unitary, 𝐷 diagonal (2)

Proof

• if 𝐴 satisfies (2), then it is normal:

𝐴𝐻𝐴 = 𝑈𝐷𝐻𝐷𝑈𝐻 = 𝑈𝐷𝐷𝐻𝑈𝐻 = 𝐴𝐴𝐻

𝐷𝐻𝐷 = 𝐷𝐷𝐻 is the diagonal matrix with diagonal entries |𝐷𝑖𝑖 |2

• if 𝐴 is normal with Schur decomposition 𝐴 = 𝑈𝑇𝑈𝐻, then

𝐴𝐻𝐴 = 𝑈𝑇𝐻𝑇𝑈𝐻 = 𝑈𝑇𝑇𝐻𝑈𝐻 = 𝐴𝐴𝐻 =⇒ 𝑇𝐻𝑇 = 𝑇𝑇𝐻

a triangular matrix that satisfies 𝑇𝐻𝑇 = 𝑇𝑇𝐻 is diagonal
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Example: circulant matrix

recall from 133A the definition of a circulant matrix

𝐴 =



𝑎1 𝑎𝑛 𝑎𝑛−1 · · · 𝑎3 𝑎2
𝑎2 𝑎1 𝑎𝑛 · · · 𝑎4 𝑎3
𝑎3 𝑎2 𝑎1 · · · 𝑎5 𝑎4
... ... ... . . . ... ...

𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 · · · 𝑎1 𝑎𝑛
𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 · · · 𝑎2 𝑎1


=

1
𝑛
𝑊𝐻 diag(𝑊𝑎)𝑊

𝑊 is the DFT matrix

• 𝐴 is diagonalizable by a unitary similarity transformation

𝐴 = 𝑈𝐷𝑈𝐻, where 𝑈 =
1
√
𝑛
𝑊𝐻 and 𝐷 = diag(𝑊𝑎)

• hence, 𝐴 is normal

• eigenvalues of 𝐴 are given by the DFT of 𝑎, columns of 𝑊 are eigenvectors
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Exercises

Exercise 1

1. show that the eigenvalues of a unitary matrix are on the unit circle

2. show that the eigenvalues of a Hermitian matrix are on the real axis

3. show that the eigenvalues of a skew-Hermitian matrix are on the imaginary axis

Exercise 2: consider the transfer function

𝐻 (𝑠) = 𝑐𝑇 (𝑠𝐼 − 𝐴)−1𝑏

where 𝑐, 𝑏 ∈ R𝑛, 𝐴 ∈ R𝑛×𝑛, and 𝑠 is a complex number

explain how to evaluate 𝐻 (𝑠) at 𝑚 ≫ 𝑛 points 𝑠 with order 𝑚𝑛2 complexity
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Sylvester equation

Sylvester equation: a matrix equation

𝐴𝑋 + 𝑋𝐵 = 𝐶

where 𝐴 is 𝑚 × 𝑚, 𝐵 is 𝑛 × 𝑛, 𝐶 is 𝑚 × 𝑛

• the variable is an 𝑚 × 𝑛 matrix 𝑋

• a set of 𝑚𝑛 linear linear equations in 𝑚𝑛 variables 𝑋𝑖 𝑗

• standard algorithms for linear equations of this size have order 𝑚3𝑛3 complexity

• we’ll see that the Schur decomposition provides a much more efficient algorithm

Lyapunov equation

• special case with 𝐵 = 𝐴𝑇 and symmetric 𝐶

• important in theory of linear dynamical systems
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Solving Sylvester equations

𝐴𝑋 + 𝑋𝐵 = 𝐶

Step 1: reduce to a Sylvester equation with upper triangular matrices

• compute Schur decomposition of 𝐴, 𝐵:

𝐴 = 𝑈𝑆𝑈𝐻, 𝐵 = 𝑉𝑇𝑉𝐻, with 𝑈,𝑉 unitary and 𝑆, 𝑇 upper triangular

• complexity is order 𝑚3 for 𝑚 × 𝑚 matrix 𝐴 and order 𝑛3 for 𝑛 × 𝑛 matrix 𝐵

• substitute Schur decompositions in Sylvester equation:

𝑈𝑆𝑈𝐻𝑋 + 𝑋𝑉𝑇𝑉𝐻 = 𝐶

• change of variables 𝑌 = 𝑈𝐻𝑋𝑉 gives Sylvester equation

𝑆𝑌 + 𝑌𝑇 = 𝐷, where 𝐷 = 𝑈𝐻𝐶𝑉
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Solving Sylvester equations

Step 2: solve triangular Sylvester equation 𝑆𝑌 + 𝑌𝑇 = 𝐷 column by column

𝑆
[
𝑌1 𝑌2 · · · 𝑌𝑛

]
+
[
𝑌1 𝑌2 · · · 𝑌𝑛

]
𝑇 =

[
𝐷1 𝐷2 · · · 𝐷𝑛

]
• a set of 𝑛 upper triangular equations in the 𝑚-vectors 𝑌1, . . . , 𝑌𝑛:

(𝑆 + 𝑇11𝐼)𝑌1 = 𝐷1

(𝑆 + 𝑇22𝐼)𝑌2 = 𝐷2 − 𝑇12𝑌1

(𝑆 + 𝑇33𝐼)𝑌3 = 𝐷3 − 𝑇13𝑌1 − 𝑇23𝑌2
...

(𝑆 + 𝑇𝑛𝑛𝐼)𝑌𝑛 = 𝐷𝑛 − 𝑇1𝑛𝑌1 − · · · − 𝑇𝑛−1,𝑛𝑌𝑛−1

• solvable (by back substitution) if 𝑆𝑖𝑖 + 𝑇𝑗 𝑗 ≠ 0 for 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛

• complexity of calculating right-hand sides is order 𝑚𝑛2

• complexity of the 𝑛 back substitutions is order 𝑛𝑚2
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Solving Sylvester equations

Step 3: compute solution 𝑋 from 𝑌 :

𝑋 = 𝑈𝑌𝑉𝐻

two matrix–matrix products, with complexity 2𝑚2𝑛 + 2𝑚𝑛2

Overall complexity

• highest-order terms are cubic: 𝑚3, 𝑚2𝑛, 𝑚𝑛2, 𝑛3

• much more efficient than standard linear equation solver (𝑚3𝑛3 complexity)

this algorithm is known the Bartels–Stewart method
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