L. Vandenberghe ECE133B (Spring 2023)

10. Schur decomposition

e eigenvalues of nonsymmetric matrix
e Schur decomposition

e Sylvester equation
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Eigenvalues and eigenvectors

a nonzero vector x is an eigenvector of the n X n matrix A, with eigenvalue A, if
Ax = Ax

e the eigenvalues are the roots of the characteristic polynomial

det(Al —A) =0

e eigenvectors are nonzero vectors in the nullspace of Al — A

for most of the lecture, we assume that A is a complex n X n matrix
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Linear independence of eigenvectors

suppose x1, ..., x; are eigenvectors for k different eigenvalues:
Axy| = Axq, e Axy = Arxp
then x1, ..., x; are linearly independent

e the result holds for £ = 1 because eigenvectors are nonzero

e suppose it holds for k — 1, and assume a1x| + - - - + aix; = 0; then
0=A(ajx; +axxy+---+aqpxp) = @1Ad1x] + @adoxy + - - - + QA Xy
e subtracting A;(a1x; + - -+ arx;) = 0 gives
az(dy — Ap)xo + -+ ap(Ag — A)x =0

e since xp, ..., x; are linearly independent, ap =---=a; =0
o aix; = —(axxr+---+arxy) =0, S0 a; is also zero

e we conclude thata; =---=a; =0, so xq, ..., x; are linearly independent
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Multiplicity of eigenvalues

Algebraic multiplicity
e the multiplicity of the eigenvalue as a root of the characteristic polynomial

e the sum of the algebraic multiplicities of the eigenvalues of an n X n matrix is n

Geometric multiplicity

e the geometric multiplicity is the dimension of null(4/ — A)
e the maximum number of linearly independent eigenvectors with eigenvalue A

e sum is the maximum number of linearly independent eigenvectors of the matrix

Defective eigenvalue

e geometric multipicity never exceeds algebraic multiplicity (proof on page 10.7)
e eigenvalue is defective it geometric muliplicity is less than algebraic multiplicity

e a maitrix is defective if some of its eigenvalues are defective
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Example

, det(Al —A) = (1-1)*(1-2)?

SO =
S o OO

o O O O

SO O =

e two eigenvalues, 4 = 1 and A = 2, each with algebraic multiplicity two

e eigenvalue A = 1 is defective and has geometric multiplicity one:

null(/ — A) = span{(1,0,0,0)}

e eigenvalue A = 2 is not defective and has geometric multiplicity two:

null(2/ — A) = span{(0,0, 1,0), (0,0,0,1)}

e maximum number of linearly independent eigenvectors is three; for example,

(1,0,0,0), (0,0,1,0), (0,0,0,1)
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Similarity transformation

two matrices A and B are similar if
B=Xx'ax
for some nonsingular matrix X
e the matrices B = X~ AX and A have the same characteristic polynomial:

det(Al — B) = det(Al — X 'AX) = det(X~ 1 (A = A)X) = det(Al — A)

e similarity transformation preserves eigenvalues and algebraic multiplicities

e if x is an eigenvector of A then y = X~!x is an eigenvector of B:

By=(X"'"AX) (X ') =xAx=x"T(x) = Ay

e similarity transformation preserves geometric multiplicities:

dimnull(A/ — B) = dimnull(4/ — A)
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Geometric and algebraic multiplicities

suppose « is an eigenvalue with geometric multiplicity r:
dimnull(al — A) =r

e define an n x r matrix U with orthonormal columns that span null(al — A)

e complete U to define a unitary matrix W = [U V | and define B = W7AW:

B

| vHAau viav | | «URU UHAV | | al UHAV
| VAU vHAv | T | ViU VvHAV || 0 VHAV

e the characteristic polynomial of B is
det(Al — B) = (1 — @) det(Al — VI AV)

this shows that the algebraic multiplicity of eigenvalue a of B is at least r
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Diagonalizable matrices

the following three properties are equivalent

1. A is diagonalizable by a similarity: there exists nonsingular X, diagonal A s.t.

X laAxX =A

2. A has a set of n linearly independent eigenvectors (for example, columns of X):

AX = XA

3. all eigenvalues of A are nondefective: for every eigenvalue A,

algebraic multiplicity = geometric multiplicity

e not all square matrices are diagonalizable

e real symmetric matrices are an important class of diagonalizable matrices
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Outline
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e Schur decomposition

e Sylvester equation



Schur decomposition

every A € C"™" can be factored as
A=UrU"? (1)

e subscript 7/ denotes complex conjugate transpose

o Uisunitary: U'U =UU" =1

e T is upper triangular, with the eigenvalues of A on its diagonal

e the eigenvalues can be chosen to appear in any order on the diagonal of T

e A is reduced to triangular form by unitary similarity transformation:
UTAU =T

e in general, the matrices U, T are complex, even when A is real

e complexity of computing the factorization is order n°
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Proof by induction

e the decomposition (1) obviously exists if n = 1
e suppose itexistsifn =m and Aisan (m + 1) X (m + 1) matrix
e let A be any eigenvalue of A and u a corresponding eigenvector, with ||u|| =1

e let V be an (m + 1) x m matrix that makes the matrix [« V| unitary; then

ul? A[u V]— ullAu u? AV ] [ auflu wAV] [2 uf AV
vH ~|VPAu VHAV | T | avPu VAV | T 0 VR AY

o VHAV is an m x m matrix, so by the induction hypothesis,
VEAV = OTT"  for some unitary U and upper triangular T

e the matrix U = [u VU | is unitary and satisfies

H H g H 7
Heo | u -+ |2 ufAvO | | 2 uHAVD
UAU—lUHVH]A[u VU]—[O GHYH vQ]‘[o 7
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Real Schur decomposition

if A is real, a similar factorization with real matrices exists:
A=UTU"

e U is orthogonal: UTU =UU! =1

e T is quasi-triangular:

Ty T - Tim |
r=| 9 T2 Tin
0 0 - Tum

the diagonal blocks T;; are 1 x 1 or 2 x 2
e the scalar diagonal blocks are real eigenvalues of A

e the eigenvalues of the 2 x 2 diagonal blocks are complex eigenvalues of A
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Normal matrix

a square matrix A is normal if
ATA = AAH

Examples

e Hermitian (and symmetric real) matrices: A” = A

e skew-Hermitian (and skew-symmetric real) matrices: A" = —A
e unitary (and orthogonal real) matrices: A7A = AAH =1

e A =1+ B where B is a normal matrix
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Schur decomposition of normal matrix

a matrix is normal if and only if it is diagonalizable by a unitary similarity

A =UDU", with U unitary, D diagonal

Proof

e if A satisfies (2), then it is normal:
A"A =UuD"DU" =UDD"U" = AA"
DY D = DD is the diagonal matrix with diagonal entries |D;;|?
e if A is normal with Schur decomposition A = UTU", then
Ala =vurftu? =utThuf = AAY = 1T =TT"
a triangular matrix that satisfies THT = TTH is diagonal
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Example: circulant matrix

recall from 133A the definition of a circulant matrix

a  ap Ap-1 -+ 4z a
a» aq a, -+ a4 as
a a a .- as a 1 .
A= T T S T = —wH diag(Wa)W
: : : .. : : n
dp-1 dp-2 dp-3 -+ 41 dpn
dp  dp-1 dp-2 ~--- d2 dj |

W is the DFT matrix

e A is diagonalizable by a unitary similarity transformation

1
A=UDU",  where U =—W" and D = diag(Wa)
n

e hence, A is normal

e cigenvalues of A are given by the DFT of a, columns of W are eigenvectors
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Exercises

Exercise 1
1. show that the eigenvalues of a unitary matrix are on the unit circle
2. show that the eigenvalues of a Hermitian matrix are on the real axis

3. show that the eigenvalues of a skew-Hermitian matrix are on the imaginary axis

Exercise 2: consider the transfer function
H(s)=cl(sI-A)'b

where ¢, b € R", A € R™", and s is a complex number

2

explain how to evaluate H(s) at m > n points s with order mn~ complexity
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Sylvester equation

Sylvester equation: a matrix equation
AX+XB=C

where Aism Xm, BisnXn,CismXn

e the variable is an m x n matrix X
e a set of mn linear linear equations in mn variables X;;
e standard algorithms for linear equations of this size have order m>n> complexity

e we'll see that the Schur decomposition provides a much more efficient algorithm

Lyapunov equation
e special case with B = AT and symmetric C

e important in theory of linear dynamical systems
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Solving Sylvester equations

AX+XB=C

Step 1: reduce to a Sylvester equation with upper triangular matrices

e compute Schur decomposition of A, B:
A =USU", B=vrva, with U, V unitary and §, T" upper triangular

e complexity is order m> for m x m matrix A and order n> for n x n matrix B

e substitute Schur decompositions in Sylvester equation:

USUHX + XvTVHE = C

e change of variables Y = U XV gives Sylvester equation

SY+YT =D, where D =U"CV
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Solving Sylvester equations

Step 2: solve triangular Sylvester equation SY + YT = D column by column

SIV1 Yo - Yu|+ (Y1 Y2 Yu|T=|Dy Dy --- Dy

e a set of n upper triangular equations in the m-vectors Yy, ..., Y}:
(S+T111)Yy = Dy
(S+TnD)Y, = D;-Th
(S+T330)Ys = D3—-Ti3Y) —T3)
(S + TnnI)Yn = D, - TlnYl -t n—l,nYn—l

e solvable (by back substitution) if $;; +7;; # Ofori=1,...,mand j=1,...,n

e complexity of calculating right-hand sides is order mn?

e complexity of the n back substitutions is order nm?
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Solving Sylvester equations

Step 3: compute solution X from Y
X =UyvH

two matrix—matrix products, with complexity 2m?n + 2mn?

Overall complexity

e highest-order terms are cubic: m?>, m*n, mn?, n°

e much more efficient than standard linear equation solver (m>n> complexity)

this algorithm is known the Bartels—Stewart method
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