L. Vandenberghe ECE133B (Spring 2023)

4. Singular value decomposition

e singular value decomposition

e related eigendecompositions

e matrix properties from singular value decomposition
e optimality theorems

e low-rank approximation

e sensitivity of linear equations
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Singular value decomposition (SVD)

every m X n matrix A can be factored as
A=Uxv!

e U is m X m and orthogonal

e V is n X n and orthogonal

e X is m X n and “diagonal’. diagonal with diagonal elements o7, ..

(o 0 -+ 0]

0020 op 0O 00---
> = 0 6"'% it m > n. s = 00-2 ()()

oL 0 0. om0

000

e the diagonal entries of X are nonnegative and sorted:

012022 "2 Onin{mn} 2 0
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Singular values and singular vectors

A=UxvV!

e the numbers oy, ..., Omingm.n) are the singular values ot A
e the m columns u; of U are the left singular vectors

e the n columns v; of V are the right singular vectors

if we write the factorization A = UXV! as
AV =Ux, Alyu=vxT

and compare the ith columns on the left- and right-hand sides, we see that

Av; =ou; and Alu; = oy, fori =1,..., min{m,n}
e if m > n the additional m — n vectors u; satisfy Aly,=0fori=n+1,...,m
e if n > m the additional n — m vectors v; satisty Av;, =0fori=m+1,...,n
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Reduced SVD

often m > n or n > m, which makes one of the orthogonal matrices very large

Tall matrix: if m > n, the last m — n columns of U can be omitted to define

n
A=Uxv! = Z O'iuiviT
—
e U is m X n with orthonormal columns l
e Vis n X n and orthogonal

e 2 is n X n and diagonal with diagonal entries oy >0, > --- >0, >0

Wide matrix: if m < n, the last n — m columns of V can be omitted to define

m
A=Uuzv! = Z O'iuivl-T
: i=1
e U is m X m and orthogonal
e V is m X n with orthonormal columns

e X is m X m and diagonal with diagonal entries oy >0, > --- > 0, =2 0

we refer to these as reduced SVDs (and to the factorization on p. 4.2 as a full SVD)
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Eigendecomposition of Gram matrix

suppose A is an m x n matrix with full SVD
A=Uuzvl

the SVD is related to the eigendecomposition of the Gram matrix AT A:

min{m,n}
ATA=velsvl = > ofvp]
i=1

e V is an orthogonal n X n matrix

e XY is a diagonal n x n matrix with (non-increasing) diagonal elements

2 2 2
O-l, 0-2, o« s o s O-min{m,n}’ O, O, Tt Q

-~

n — min{m, n} times
e the n diagonal elements of =X are the eigenvalues of AT A

e the right singular vectors (columns of V) are corresponding eigenvectors
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Gram matrix of transpose

the SVD also gives the eigendecomposition of AA”:

min{m,n}
AAT =uzzlu! = Z a'l-zu,-uiT
i=1
e U is an orthogonal m X m matrix

e > is a diagonal m x m matrix with (non-increasing) diagonal elements

2 2 2
O, 05 -ves O-min{m,n}’ 9’ 0, ---, 9

m — min{m, n} times
e the m diagonal elements of X! are the eigenvalues of AA!

e the left singular vectors (columns of U) are corresponding eigenvectors

in particular, the first min{m, n} eigenvalues of A’ A and AA’ are the same:

2 2 2
01> O35 o5 Omintmn)
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Example
scatter plot shows m = 500 points from the normal distribution on page 3.29
5 1 7 V3
H = 4 | Zex = \/g 5

4
e we define an m x 2 data matrix X with the m vectors as its rows

e the centered data matrix is X, = X — (1/m)117X

X2
sample estimate of mean is .
-~ 1 XTl _ 5.01 i R Oogogooooagooo(bo y Oo
- 3.93 : e ShmeadR i
ooo oco: § éﬁg&i}%@o&%@%%@@ 5 © o
. . . | . o OO k xR Oo %8 Ooo oO80 oo
sample estimate of covariance is ° 50 WP o oogmerto e o
S o 2g20 % 8% S%°
TR
S _ IXTX | 1.67 0.48 - T g et ol
T om ¢ [ 048 1.35 f o o T
! xl
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Example

1
A=—X.

Jm

e eigenvectors of S are right singular vectors vy, v, of A (and of X,)

e cigenvalues of X are squares of the singular values of A

X2

o ° direction v;
directionv, . &

| x 1
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Existence of singular value decomposition

the Gram matrix connection gives a proof that every matrix has an SVD

e assume A ism X n withm > n and rank r

e the n x n matrix AT A has rank r (page 2.5) and an eigendecomposition

ATA =vav! (1)
A is diagonal with diagonal elements 4; > --- >4, >0=4,4,1=--- =4,
e define o; =+, fori =1,...,n, and an n X n matrix
U= [u1 un] = [%Avl %sz G%Avr Upyl -+ Up
where u,1, ..., u, form an orthonormal basis for null(A”)
e (1) and the choice of u;,1, ..., u, imply that U is orthogonal
e (1) alsoimpliesthat Av; =0fori=r+1,...,n

e together with the definition of u,..., u, this shows that AV = UX
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Non-uniqueness of singular value decomposition
the derivation from the eigendecomposition
ATA =vAV!

shows that the singular value decomposition of A is almost unique

Singular values
e the singular values of A are uniquely defined

e we have also shown that A and A have the same singular values

Singular vectors (assuming m > n): see the discussion on page 3.14

e right singular vectors v; with the same positive singular value span a subspace
e in this subspace, any other orthonormal basis can be chosen

e the first r = rank(A) left singular vectors then follow from oju; = Av;

e the remaining vectors v,,, ..., v, can be any orthonormal basis for null(A)

e the remaining vectors u,,1, ..., u,, can be any orthonormal basis for null(A”)

Singular value decomposition 410



Exercises

Exercise 1

suppose A is an m X n matrix with m > n, and define

B=1 41

0 A]
1. suppose A = UXV! is a full SVD of A; verify that
T
s [U o][0o =|[U o
o v Iz o 0 V

2. derive from this an eigendecomposition of B

Hint: if X1 is square, then
0 X |_1| 1T 1 21 0 1
21 0 B 20 I =1 0 —21 I
3. what are the m + n eigenvalues of B?

Singular value decomposition
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Exercises

Exercise 2

how are the singular values of a symmetric matrix related to its eigenvalues?

Exercise 3: give an SVD of the matrix
A= abT,

where a is an m-vector and b is an n-vector

Singular value decomposition
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Rank

the number of positive singular values is the rank of a matrix

e suppose there are r positive singular values:

0'1Z"'20'r>020'r+1:"'20-min{m,n}

e partition the matrices in a full SVD of A as

21 0 T
A=lu ]| [ Vi V2 |
0O O
= UL,V (2)
21 is r X r with the positive singular values o7, ..., o on the diagonal

e since U; and V| have orthonormal columns, the factorization (2) proves that
rank(A) =r
(see page 1.13)
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Inverse and pseudo-inverse

we use the same notation as on the previous page

21 O

A=| U Uz][ 0 0

diagonal entries of 2; are the positive singular values of A
e pseudo-inverse follows from page 1.39:
AT = vixiluT
SCR(H e
= vyt
e if A is square and nonsingular, this reduces to the inverse
A7l = wzvhH =y 1T

Singular value decomposition
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Four subspaces

we continue with the same notation for the SVD of an m x n matrix A with rank r:

A=[ U Uz]lzol 8][\/1 vy '

the diagonal entries of X are the positive singular values of A

the SVD provides orthonormal bases for the four subspaces associated with A

e the columns of the m X r matrix U; are a basis of range(A)
e the columns of the m x (m — r) matrix U, are a basis of range(A)* = null(A”)
e the columns of the n x r matrix V; are a basis of range(A”)

e the columns of the n x (n — r) matrix V, are a basis of null(A)
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Frobenius norm and 2-norm

for an m x n matrix A with singular values o7:

min{m,n} 1/2
|A]lF = ( > o], |A]l2 = o
i=1

this readily follows from the unitary invariance of the two norms:

- 1/2
Al = IUZVT1lF = IZ]F = (mm{an’n} 02)

. 1 l

1=

and
1Al = [UZV |12 = |1Z]|2 = oy

Singular value decomposition
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Image of unit ball

define &, as the image of the unit ball under the linear mapping y = Ax:

Ey = {Ax | |lxll < 1} = {UZV'x | |lx]| < 1}

X2 fZ
~ e
/ 2 F=Vlx 2
_—
e ~
X1 1 X1
\ . \

= Ax 5 y = 22X
Y l y2 Y2 ly

02€7
01€1

e e
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Control interpretation

system A maps input x to output y = Ax

A

> v = Ax

e if ||x||% represents input energy, the set of outputs realizable with unit energy is

Ey ={Ax | x|l = 1}

e assume rank(A) = m: every desired y can be realized by at least one input

e the most energy-efficient input that generates a given output y is

xef = ATy = AT(AAT) 7y,

m

Ixeel|* = y' (AAT) Ty =7

i=1

(ul y)?

o2
l

o (if rank(A) = m) the set &, is an ellipsoid &, = {y | y1 (AAT)" 1y < 1}

Singular value decomposition
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Inverse image of unit ball

define &, as the inverse image of the unit ball under the linear mapping y = Ax:

o= (x| Ax] < 1} = {x | [UZV %] < 1}

X2
-1
0'2 1 %)
i=VTx
E ———
Ex
X1
-1
O'1 Vi
y = Ax - y=2X
y2 Y2
un €2
73
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Estimation interpretation

measurement A maps unknown quantity xq.c to observation

Yobs = A (Xtrye + V)

where v is unknown but bounded by [|Av|| < 1

e if rank(A) = n, there is a unique estimate X that satisfies AX = ygps

e uncertainty in y causes uncertainty in estimate: true value xqy. must satisfy
|A (xtrue —2)|| < 1

o theset &, = {x | ||[A(x —X)|| < 1} is the uncertainty region around estimate x
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First singular value

the first singular value is the maximal value of several functions:

01 = max ||Ax|| = max yTAx — max ||ATy|| (3)
|| =1 [x[[=llyll=1 ly||=1

e the first and last expressions follow from page 3.24 and

07 = Amax (AT A) = max x'ATAx,  of = Amax(AAT) = max ylAATy
X||= MIE

e second expression in (3) follows from the Cauchy—Schwarz inequality:

|Ax|| = max y' (Ax),  ||ATy|l = max x"(ATy)
|ly]l=1 lIx]|=1
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First singular value

alternatively, we can use an SVD of A to solve the maximization problems in
o] = max ||[Ax||= max y'Ax = max ||ATy|| (4)

[lx[[=1 [lx[[=[ly[I=1 Iyll=1

e suppose A = USV! is a full SVD of A
o if we define ¥ = V1x, ¥ = Uy, then (4) can be written as

o) = max ||Z%|| = max §'XF = max |27
1%[l=1 IXl=l131=1 17]1=1

e an optimal choice forx and yis ¥ = (1,0,...,0) and y = (1,0, ...,0)

e therefore x = vy, y = uj (first right and left singular vectors) are optimal in (4)
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Last singular value
two of the three expressions in (3) have a counterpart for the last singular value
e for an m X n matrix A, the last singular value oyin(m »} can be written as follows:
ifm >n: o,= min |Ax|, ifn>m: o, = min ||ATy] (5)
[lx]|=1 Iyll=1

e if m # n, we need to distinguish the two cases because

min ||[Ax||=0 ifn > m, min ||ATy||=0 ifm>n
lxll=1 lyll=1

to prove (5), we substitute full SVD A = UZV!, and define ¥ = VIx, § = Ul'y:

] . . 22 22 1/2

if m > n: min ||ZX|| = min (0'1321 + .- +0'nin) = Oy,
1%]1=1 [1%]]=1

_ . T . 22 2 ~2 1/2

if n > m: ”1?”1311”2 )’”:lglnlfll (O'lyl"'"""a'm)’m) —Om

optimal choices for x and y in (5) are x = v, y = u,,
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Exercises

Exercise 1: express ||A||, and ||AT||r in terms of the singular values of A

Exercise 2: the condition number of a square nonsingular matrix A is defined as
k(A) = [|All2[ A7l

express k(A) in terms of the singular values of A

Exercise 3: what is the 2-norm of the matrix
A =ab!

where a is an n-vector and b is an m-vector?
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Exercises

Exercise 4

suppose Aism X n, Bism X p, and A, B have orthonormal columns

e define 0(x, y) as the angle between Ax and By:

_ (By)'(Ax) (By)" (Ax)
f(x,y) = arccos = arccos
| Ax||[|By| (I

(assuming x # 0 and y # 0)

e give a method for finding the coefficients x, y that minimize the angle 6(x, y)

Singular value decomposition 4.25
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SVD analog of Courant—Fischer theorem

let A be an m X n matrix with singular values
01202 2+ 2 Onmin{m,n}

e consider an n X k matrix X with orthonormal columns and & < min{m, n}

e we denote the singular values of the m X k matrix AX by

TN 2T 2> 2Tk

e we derive bounds on the singular values of AX from bounds on eigenvalues of
x'ATA)x

(using the Courant—Fischer theorem on page 3.35)
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Upper bound on singular values

T (0K
2 | < 2
Tk O
e 7|,...,T; are the k singular values of AX
e 01,...,0% are the first k singular values of A

e follows from upper bound on page 3.35 applied to AT A and X7 (ATA)X

e inequality is an equality for

X

_Tl-

| vi »m

(first k right singular vectors of A)

Singular value decomposition
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Lower bound on singular values

ifm>n ] S -
On—k+1 7
On—k+2 < L
On ] Tk |
e 71,..., T, are the k singular values of AX
® 0,_k+1,--.,0y are the smallest k singular values of A

e follows from lower bound on page 3.35 applied to A’ A and X' (ATA)X

e inequality is an equality for

X=| Vpcksl Vioke2

(last k right singular vectors of A)

Va |

e note the assumption m > n (otherwise A’ A has at least n — m zero eigenvalues)

Singular value decomposition
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Max—min characterization

we extend (3) to a max—min characterization of the other singular values:

O = max O'min(AX) (63.)
XTX=I,

= max o (YT AX) (6b)
XTX=YTy=I,

= max O'min(ATY ) (6¢)
YTYy=I,

o o) fork =1,..., min{m,n} are the singular values of the m x n matrix A

e X is n X k with orthonormal columns, Y is m x k with orthonormal columns
e oin(B) denotes the smallest singular value of the matrix B

e in the three expressions in (6) oy (-) denotes the kth singular value

e for k = 1, we obtain the three expressions for o in (3)

o these follow from page 4.27 (applied to A, AT, AX, or A'Y)
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Min—max characterization

we extend (5) to a min—max characterization of the other singular values

Tall or square matrix: if A is m X n with m > n

On—k+1 = min ||AX||2, k=1,...,n
TX=I

e we minimize over n X kK matrices X with orthonormal columns
e ||AX]||y is the maximum singular value of an m x k matrix
e for k = 1, this is the first expression in (5)

e follows from page 4.28

Wide or square matrix (A is m X n with m < n)

Om_ks1 = min [|[ATY]o,  k=1,....m
YTY=I,

e we minimize over n X k matrices Y with orthonormal columns

e follows from (7) applied to AT

Singular value decomposition
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Rank-r approximation

let A be an m X n matrix with rank(A) > r and full SVD

min{m,n}
A=UZV' = D Tiuiv; o122 Omin{mn) =20, 0rg1 >0
i=1

the best rank-r approximation of A is the sum of the first r terms in the SVD:

r
B = Z O'iuivl-T
i=1

e B is the best approximation for the Frobenius norm: for every C with rank r,

min{m,n} 1/2
IA-C|lF=||A-B|F= ( > af)

i=r+1
e B is also the best approximation for the 2-norm: for every C with rank r,

|A=Cll2 2 [|[A = Bll2 = 0741

Singular value decomposition
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Rank-r approximation in Frobenius norm

we show that for every m X n matrix C of rank r

min{m,n}

2 2
IA-Cllz> > o

i=r+1

e we will assume m > n (otherwise, first take the transpose of A and C)
e let X be an n x (n — r) matrix with orthonormal columns that span null(C)

e define X as an n x r matrix that makes [X X| orthogonal

IA-Cll% = ||[(A-0OX (A-0O)X] ||12U (Frobenius norm is
unitarily invariant)
> [[(A-O)X||%

— AXII% (CX =0)

= TI+TI4+ T, (if 71, ..., T, are the
singular values of AX)

> o2 40t t0p (page 4.28 with k = n —r)
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we show that for every m X n matrix C of rank r

Rank-r approximation in 2-norm

1A =Cll2 2 0741

e we will assume m > n (otherwise, first take the transpose of A and C)

e let X be an n x (n — r) matrix with orthonormal columns that span null(C)

1A =Cll2

Singular value decomposition

vV

max |[(A — C)x||
lx]|=1

max [|(A - C)Xy|
lyll=1

(A - C)XIl2
IAX 2

71

Or+1

(IXyll = 1if [[yll = 1)

(CX = 0)

(if 71 is the maximum
singular value of AX)

(page 4.28 with k =n —r)
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SVD of square matrix

for the rest of the lecture we assume that A is n X n and nonsingular with SVD

n
A=Uxv! = Z O'iuivl-T
i=1
e 2-normof Ais ||A|lp = 0
e A is nonsingular if and only if o, > 0

e inverse of A and 2-norm of the inverse are

o1 1
AT =vEUT = 3 v, AT = —
i=1 I On
e condition number of A is
_ 01
k(A) = [|AlL[A o =— > 1
On

A is called ill-conditioned if the condition number is very high
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Sensitivity to right-hand side perturbations

linear equation with right-hand side » # 0 and perturbed right-hand side b + e:

Ax = b, Ay=b+e
e bound on distance between the solutions:
-1 ~1
ly = x| = |[A""e|| < [[A7|2]lel|

recall that ||Bx|| < [|B||2||x|| for matrix 2-norm and Euclidean vector norm

e bound on relative change in the solution, in terms of 6, = ||e]|/||p]|:

Ly = Il _ 1y llell
< [l All2l[A™ ll2 ==
]| .

k(A) op

in the first step we use ||b]|| = ||Ax]|| < [|All2]]x]|

large k(A) indicates that the solution can be very sensitive to changes in b

Singular value decomposition
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Worst-case perturbation of right-hand side

Iy = x| < k(A)dp  where g, = el
] 151l

e the upper bound is often very conservative

e however, for every A one can find b, e for which the bound holds with equality

e choose b = u; (first left singular vector of A): solution of Ax = b is

1
x=A"b=vEluty = —v
01

e choose ¢ = 6, u, (0, times last left singular vector u;): solution of Ay =b + e is

)
yzA_l(b+e):x+—bvn

e relative change is
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Nearest singular matrix

the singular matrix closest to A is
n—1
> o) =A+E  where E = —ojupv),
i=1

e this gives another interpretation of the condition number:

_ 1 IEl w1
AT AL o1 k(4)

||E||2 = Op

1/x(A) is the relative distance of A to the nearest singular matrix

e this also implies that a perturbation A + E of A is certainly nonsingular if

1 —_—
1A=

”E”Z < (0F7)
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Bound on inverse

on the next page we prove the following inequality:

Al 1
A7 ]2 "

I(A+E)7, <
1 — A=Y LIE

using ||[A"Y|, = 1/o:

1
Opn — ||E||2

I(A+E)7 ) <

if ”E”2 < Op

1/o

IE||2

Singular value decomposition
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Proof:

e the matrix Y = (A + E)~! satisfies

I+A'EYY=A""(A+E)Y = A7

e therefore

Y|, = AP =A7lEY|,
< 1A YL+ |A7LEY], (triangle inequality)
< AL+ 1A E L)Y |I2

in the last step we use the property ||CD||, < ||C||2||DP||, of the matrix 2-norm

e rearranging the last inquality for ||Y||, gives

< A2 147
ST 1A El = T- 147 LIIEN,

in the second step we again use the property |[A~ E|» < |A7||2]IE]l
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Sensitivity to perturbations of coefficient matrix

linear equation with matrix A and perturbed matrix A + E:
Ax = b, (A+E)y=»b

e we assume ||E||> < 1/]|A~Y||5, which guarantees that A + E is nonsingular

e bound on distance between the solutions:

(A+E)"'(b-(A+E)x)|
(A+E) "Ex||
(A+E) 2 IE] |Ix]

1A~ 21 El2
L= AT 20 E N

Iy — x|l

IA

lx[[ (applying (8))

e bound on relative change in solution interms of 64 = ||E||2/||A]|2:

Iy —xll _ %(A) 64
Xl = T=x(A)84

Singular value decomposition 4.40



Worst-case perturbation of coefficient matrix

n
an example where the upper bound (9) is sharp (from SVD A = o-,-uivl.T)
i=1

e choose b = u,: the solution of Ax = b is
x=A"lp= (1/03)vn

e choose E = =5 01u,v! with 64 < 0 /0 = 1/k(A):

n—1

T T

A+E = oiuiv; + (0pn — 0401 Uy,
i=1

e solutionof (A+E)y=0>is
1

y=(A+E)"'b= Vi
Op — 0AC]

e relative change in solution is
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Exercises
Exercise 1
to evaluate the sensivity to changes in A, we can also look at the residual
(A + E)x - b
where x = A~!b is the solution of Ax = b

1. show that I(A + E) bl IE|
+ E)x —

< k(A)d4 where 64 = —

1Dl | A

2. show that for every A there exist b, E for which the inequality is sharp
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Exercises

Exercise 2: consider perturbations in A and b
Ax = b, (A+E)y=b+e

assuming ||E||> < 1/]|A~Y|5, show that

Iy =xll _ (84 +0p)x(A)

K = 1= 0ak(A)
where lel IE|
€ 2

§p = 54 =
151 1Al
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