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4. Singular value decomposition

• singular value decomposition

• related eigendecompositions

• matrix properties from singular value decomposition

• optimality theorems

• low-rank approximation

• sensitivity of linear equations
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Singular value decomposition (SVD)

every 𝑚 × 𝑛 matrix 𝐴 can be factored as

𝐴 = 𝑈Σ𝑉𝑇

• 𝑈 is 𝑚 × 𝑚 and orthogonal

• 𝑉 is 𝑛 × 𝑛 and orthogonal

• Σ is 𝑚 × 𝑛 and “diagonal”: diagonal with diagonal elements 𝜎1, . . . , 𝜎𝑛 if 𝑚 = 𝑛,

Σ =



𝜎1 0 · · · 0
0 𝜎2 · · · 0
... ... . . . ...
0 0 · · · 𝜎𝑛

0 0 · · · 0
... ... ...
0 0 · · · 0


if 𝑚 > 𝑛, Σ =


𝜎1 0 · · · 0 0 · · · 0
0 𝜎2 · · · 0 0 · · · 0
... ... . . . ... ... ...
0 0 · · · 𝜎𝑚 0 · · · 0

 if 𝑚 < 𝑛

• the diagonal entries of Σ are nonnegative and sorted:

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎min{𝑚,𝑛} ≥ 0
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Singular values and singular vectors

𝐴 = 𝑈Σ𝑉𝑇

• the numbers 𝜎1, . . . , 𝜎min{𝑚,𝑛} are the singular values of 𝐴

• the 𝑚 columns 𝑢𝑖 of 𝑈 are the left singular vectors

• the 𝑛 columns 𝑣𝑖 of 𝑉 are the right singular vectors

if we write the factorization 𝐴 = 𝑈Σ𝑉𝑇 as

𝐴𝑉 = 𝑈Σ, 𝐴𝑇𝑈 = 𝑉Σ𝑇

and compare the 𝑖th columns on the left- and right-hand sides, we see that

𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 and 𝐴𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖 for 𝑖 = 1, . . . ,min{𝑚, 𝑛}

• if 𝑚 > 𝑛 the additional 𝑚 − 𝑛 vectors 𝑢𝑖 satisfy 𝐴𝑇𝑢𝑖 = 0 for 𝑖 = 𝑛 + 1, . . . , 𝑚

• if 𝑛 > 𝑚 the additional 𝑛 − 𝑚 vectors 𝑣𝑖 satisfy 𝐴𝑣𝑖 = 0 for 𝑖 = 𝑚 + 1, . . . , 𝑛
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Reduced SVD
often 𝑚 ≫ 𝑛 or 𝑛 ≫ 𝑚, which makes one of the orthogonal matrices very large

Tall matrix: if 𝑚 > 𝑛, the last 𝑚 − 𝑛 columns of 𝑈 can be omitted to define

𝐴 = 𝑈Σ𝑉𝑇 =
𝑛∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• 𝑈 is 𝑚 × 𝑛 with orthonormal columns

• 𝑉 is 𝑛 × 𝑛 and orthogonal

• Σ is 𝑛 × 𝑛 and diagonal with diagonal entries 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑛 ≥ 0

Wide matrix: if 𝑚 < 𝑛, the last 𝑛 − 𝑚 columns of 𝑉 can be omitted to define

𝐴 = 𝑈Σ𝑉𝑇 =
𝑚∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• 𝑈 is 𝑚 × 𝑚 and orthogonal

• 𝑉 is 𝑚 × 𝑛 with orthonormal columns

• Σ is 𝑚 × 𝑚 and diagonal with diagonal entries 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑚 ≥ 0

we refer to these as reduced SVDs (and to the factorization on p. 4.2 as a full SVD)
Singular value decomposition 4.4



Outline

• singular value decomposition

• related eigendecompositions

• matrix properties from singular value decomposition

• optimality theorems

• low-rank approximation

• sensitivity of linear equations



Eigendecomposition of Gram matrix

suppose 𝐴 is an 𝑚 × 𝑛 matrix with full SVD

𝐴 = 𝑈Σ𝑉𝑇

the SVD is related to the eigendecomposition of the Gram matrix 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑉Σ𝑇Σ𝑉𝑇 =
min{𝑚,𝑛}∑︁

𝑖=1
𝜎2
𝑖 𝑣𝑖𝑣

𝑇
𝑖

• 𝑉 is an orthogonal 𝑛 × 𝑛 matrix

• Σ𝑇Σ is a diagonal 𝑛 × 𝑛 matrix with (non-increasing) diagonal elements

𝜎2
1 , 𝜎2

2 , . . . , 𝜎2
min{𝑚,𝑛}, 0, 0, · · · , 0︸                ︷︷                ︸

𝑛 − min{𝑚, 𝑛} times

• the 𝑛 diagonal elements of Σ𝑇Σ are the eigenvalues of 𝐴𝑇𝐴

• the right singular vectors (columns of 𝑉) are corresponding eigenvectors
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Gram matrix of transpose

the SVD also gives the eigendecomposition of 𝐴𝐴𝑇 :

𝐴𝐴𝑇 = 𝑈ΣΣ𝑇𝑈𝑇 =
min{𝑚,𝑛}∑︁

𝑖=1
𝜎2
𝑖 𝑢𝑖𝑢

𝑇
𝑖

• 𝑈 is an orthogonal 𝑚 × 𝑚 matrix

• ΣΣ𝑇 is a diagonal 𝑚 × 𝑚 matrix with (non-increasing) diagonal elements

𝜎2
1 , 𝜎2

2 , . . . , 𝜎2
min{𝑚,𝑛}, 0, 0, · · · , 0︸                ︷︷                ︸

𝑚 − min{𝑚, 𝑛} times

• the 𝑚 diagonal elements of ΣΣ𝑇 are the eigenvalues of 𝐴𝐴𝑇

• the left singular vectors (columns of 𝑈) are corresponding eigenvectors

in particular, the first min{𝑚, 𝑛} eigenvalues of 𝐴𝑇𝐴 and 𝐴𝐴𝑇 are the same:

𝜎2
1 , 𝜎2

2 , . . . , 𝜎2
min{𝑚,𝑛}
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Example

scatter plot shows 𝑚 = 500 points from the normal distribution on page 3.29

𝜇 =

[
5
4

]
, Σex =

1
4

[
7

√
3√

3 5

]
• we define an 𝑚 × 2 data matrix 𝑋 with the 𝑚 vectors as its rows

• the centered data matrix is 𝑋c = 𝑋 − (1/𝑚)11𝑇𝑋

sample estimate of mean is

𝜇 =
1
𝑚
𝑋𝑇1 =

[
5.01
3.93

]
sample estimate of covariance is

Σ̂ =
1
𝑚
𝑋𝑇

c 𝑋c =

[
1.67 0.48
0.48 1.35

]
𝑥1

𝑥2
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Example

𝐴 =
1√
𝑚
𝑋c

• eigenvectors of Σ̂ are right singular vectors 𝑣1, 𝑣2 of 𝐴 (and of 𝑋c)

• eigenvalues of Σ̂ are squares of the singular values of 𝐴

direction 𝑣1
direction 𝑣2

𝑥1

𝑥2
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Existence of singular value decomposition

the Gram matrix connection gives a proof that every matrix has an SVD

• assume 𝐴 is 𝑚 × 𝑛 with 𝑚 ≥ 𝑛 and rank 𝑟

• the 𝑛 × 𝑛 matrix 𝐴𝑇𝐴 has rank 𝑟 (page 2.5) and an eigendecomposition

𝐴𝑇𝐴 = 𝑉Λ𝑉𝑇 (1)

Λ is diagonal with diagonal elements 𝜆1 ≥ · · · ≥ 𝜆𝑟 > 0 = 𝜆𝑟+1 = · · · = 𝜆𝑛

• define 𝜎𝑖 =
√
𝜆𝑖 for 𝑖 = 1, . . . , 𝑛, and an 𝑛 × 𝑛 matrix

𝑈 =
[
𝑢1 · · · 𝑢𝑛

]
=

[
1
𝜎1
𝐴𝑣1

1
𝜎2
𝐴𝑣2 · · · 1

𝜎𝑟
𝐴𝑣𝑟 𝑢𝑟+1 · · · 𝑢𝑛

]
where 𝑢𝑟+1, . . . , 𝑢𝑛 form an orthonormal basis for null(𝐴𝑇)

• (1) and the choice of 𝑢𝑟+1, . . . , 𝑢𝑛 imply that 𝑈 is orthogonal

• (1) also implies that 𝐴𝑣𝑖 = 0 for 𝑖 = 𝑟 + 1, . . . , 𝑛

• together with the definition of 𝑢1,. . . , 𝑢𝑟 this shows that 𝐴𝑉 = 𝑈Σ
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Non-uniqueness of singular value decomposition

the derivation from the eigendecomposition

𝐴𝑇𝐴 = 𝑉Λ𝑉𝑇

shows that the singular value decomposition of 𝐴 is almost unique

Singular values

• the singular values of 𝐴 are uniquely defined

• we have also shown that 𝐴 and 𝐴𝑇 have the same singular values

Singular vectors (assuming 𝑚 ≥ 𝑛): see the discussion on page 3.14

• right singular vectors 𝑣𝑖 with the same positive singular value span a subspace

• in this subspace, any other orthonormal basis can be chosen

• the first 𝑟 = rank(𝐴) left singular vectors then follow from 𝜎𝑖𝑢𝑖 = 𝐴𝑣𝑖

• the remaining vectors 𝑣𝑟+1, . . . , 𝑣𝑛 can be any orthonormal basis for null(𝐴)
• the remaining vectors 𝑢𝑟+1, . . . , 𝑢𝑚 can be any orthonormal basis for null(𝐴𝑇)
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Exercises

Exercise 1

suppose 𝐴 is an 𝑚 × 𝑛 matrix with 𝑚 ≥ 𝑛, and define

𝐵 =

[
0 𝐴
𝐴𝑇 0

]
1. suppose 𝐴 = 𝑈Σ𝑉𝑇 is a full SVD of 𝐴; verify that

𝐵 =

[
𝑈 0
0 𝑉

] [
0 Σ
Σ𝑇 0

] [
𝑈 0
0 𝑉

]𝑇
2. derive from this an eigendecomposition of 𝐵

Hint: if Σ1 is square, then[
0 Σ1
Σ1 0

]
=

1
2

[
𝐼 𝐼
𝐼 −𝐼

] [
Σ1 0
0 −Σ1

] [
𝐼 𝐼
𝐼 −𝐼

]
3. what are the 𝑚 + 𝑛 eigenvalues of 𝐵?
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Exercises

Exercise 2

how are the singular values of a symmetric matrix related to its eigenvalues?

Exercise 3: give an SVD of the matrix

𝐴 = 𝑎𝑏𝑇 ,

where 𝑎 is an 𝑚-vector and 𝑏 is an 𝑛-vector
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Rank

the number of positive singular values is the rank of a matrix

• suppose there are 𝑟 positive singular values:

𝜎1 ≥ · · · ≥ 𝜎𝑟 > 0 = 𝜎𝑟+1 = · · · = 𝜎min{𝑚,𝑛}

• partition the matrices in a full SVD of 𝐴 as

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0
0 0

] [
𝑉1 𝑉2

]𝑇
= 𝑈1Σ1𝑉

𝑇
1 (2)

Σ1 is 𝑟 × 𝑟 with the positive singular values 𝜎1, . . . , 𝜎𝑟 on the diagonal

• since 𝑈1 and 𝑉1 have orthonormal columns, the factorization (2) proves that

rank(𝐴) = 𝑟

(see page 1.13)
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Inverse and pseudo-inverse

we use the same notation as on the previous page

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0
0 0

] [
𝑉1 𝑉2

]𝑇
= 𝑈1Σ1𝑉

𝑇
1

diagonal entries of Σ1 are the positive singular values of 𝐴

• pseudo-inverse follows from page 1.39:

𝐴† = 𝑉1Σ
−1
1 𝑈𝑇

1

=
[
𝑉1 𝑉2

] [
Σ−1

1 0
0 0

] [
𝑈𝑇

1
𝑈𝑇

2

]
= 𝑉Σ†𝑈𝑇

• if 𝐴 is square and nonsingular, this reduces to the inverse

𝐴−1 = (𝑈Σ𝑉𝑇)−1 = 𝑉Σ−1𝑈𝑇
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Four subspaces

we continue with the same notation for the SVD of an 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟:

𝐴 =
[
𝑈1 𝑈2

] [
Σ1 0
0 0

] [
𝑉1 𝑉2

]𝑇
the diagonal entries of Σ1 are the positive singular values of 𝐴

the SVD provides orthonormal bases for the four subspaces associated with 𝐴

• the columns of the 𝑚 × 𝑟 matrix 𝑈1 are a basis of range(𝐴)
• the columns of the 𝑚 × (𝑚 − 𝑟) matrix 𝑈2 are a basis of range(𝐴)⊥ = null(𝐴𝑇)
• the columns of the 𝑛 × 𝑟 matrix 𝑉1 are a basis of range(𝐴𝑇)
• the columns of the 𝑛 × (𝑛 − 𝑟) matrix 𝑉2 are a basis of null(𝐴)
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Frobenius norm and 2-norm

for an 𝑚 × 𝑛 matrix 𝐴 with singular values 𝜎𝑖:

∥𝐴∥𝐹 =

(
min{𝑚,𝑛}∑︁

𝑖=1
𝜎2
𝑖

)1/2

, ∥𝐴∥2 = 𝜎1

this readily follows from the unitary invariance of the two norms:

∥𝐴∥𝐹 = ∥𝑈Σ𝑉𝑇 ∥𝐹 = ∥Σ∥𝐹 =

(
min{𝑚,𝑛}∑︁

𝑖=1
𝜎2
𝑖

)1/2

and
∥𝐴∥2 = ∥𝑈Σ𝑉𝑇 ∥2 = ∥Σ∥2 = 𝜎1
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Image of unit ball

define E𝑦 as the image of the unit ball under the linear mapping 𝑦 = 𝐴𝑥:

E𝑦 = {𝐴𝑥 | ∥𝑥∥ ≤ 1} = {𝑈Σ𝑉𝑇𝑥 | ∥𝑥∥ ≤ 1}

𝑥1

𝑥2

𝑣1

𝑣2 𝑥 = 𝑉𝑇𝑥

𝑥1

𝑥2

𝑒1

𝑒2

�̃� = Σ𝑥

�̃�1

�̃�2

𝜎1𝑒1

𝜎2𝑒2

𝑦 = 𝑈�̃�

𝑦1

𝑦2

𝜎1𝑢1𝜎2𝑢2

E𝑦

𝑦 = 𝐴𝑥
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Control interpretation

system 𝐴 maps input 𝑥 to output 𝑦 = 𝐴𝑥

𝐴𝑥 𝑦 = 𝐴𝑥

• if ∥𝑥∥2 represents input energy, the set of outputs realizable with unit energy is

E𝑦 = {𝐴𝑥 | ∥𝑥∥ ≤ 1}

• assume rank(𝐴) = 𝑚: every desired 𝑦 can be realized by at least one input

• the most energy-efficient input that generates a given output 𝑦 is

𝑥eff = 𝐴†𝑦 = 𝐴𝑇 (𝐴𝐴𝑇)−1𝑦, ∥𝑥eff∥2 = 𝑦𝑇 (𝐴𝐴𝑇)−1𝑦 =
𝑚∑︁
𝑖=1

(𝑢𝑇𝑖 𝑦)2

𝜎2
𝑖

• (if rank(𝐴) = 𝑚) the set E𝑦 is an ellipsoid E𝑦 = {𝑦 | 𝑦𝑇 (𝐴𝐴𝑇)−1𝑦 ≤ 1}
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Inverse image of unit ball

define E𝑥 as the inverse image of the unit ball under the linear mapping 𝑦 = 𝐴𝑥:

E𝑥 = {𝑥 | ∥𝐴𝑥∥ ≤ 1} = {𝑥 | ∥𝑈Σ𝑉𝑇𝑥∥ ≤ 1}

𝑥1

𝑥2

𝜎−1
1 𝑣1

𝜎−1
2 𝑣2

E𝑥

𝑥 = 𝑉𝑇𝑥

𝑥1

𝑥2

𝜎−1
1 𝑒1

𝜎−1
2 𝑒2

�̃� = Σ𝑥

�̃�1

�̃�2

𝑒1

𝑒2

𝑦 = 𝑈�̃�

𝑦1

𝑦2

𝑢1
𝑢2

𝑦 = 𝐴𝑥
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Estimation interpretation

measurement 𝐴 maps unknown quantity 𝑥true to observation

𝑦obs = 𝐴(𝑥true + 𝑣)

where 𝑣 is unknown but bounded by ∥𝐴𝑣∥ ≤ 1

• if rank(𝐴) = 𝑛, there is a unique estimate 𝑥 that satisfies 𝐴𝑥 = 𝑦obs

• uncertainty in 𝑦 causes uncertainty in estimate: true value 𝑥true must satisfy

∥𝐴(𝑥true − 𝑥)∥ ≤ 1

• the set E𝑥 = {𝑥 | ∥𝐴(𝑥 − 𝑥)∥ ≤ 1} is the uncertainty region around estimate 𝑥
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First singular value

the first singular value is the maximal value of several functions:

𝜎1 = max
∥𝑥∥=1

∥𝐴𝑥∥ = max
∥𝑥∥=∥𝑦∥=1

𝑦𝑇𝐴𝑥 = max
∥𝑦∥=1

∥𝐴𝑇 𝑦∥ (3)

• the first and last expressions follow from page 3.24 and

𝜎2
1 = 𝜆max(𝐴𝑇𝐴) = max

∥𝑥∥=1
𝑥𝑇𝐴𝑇𝐴𝑥, 𝜎2

1 = 𝜆max(𝐴𝐴𝑇) = max
∥𝑦∥=1

𝑦𝑇𝐴𝐴𝑇 𝑦

• second expression in (3) follows from the Cauchy–Schwarz inequality:

∥𝐴𝑥∥ = max
∥𝑦∥=1

𝑦𝑇 (𝐴𝑥), ∥𝐴𝑇 𝑦∥ = max
∥𝑥∥=1

𝑥𝑇 (𝐴𝑇 𝑦)
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First singular value

alternatively, we can use an SVD of 𝐴 to solve the maximization problems in

𝜎1 = max
∥𝑥∥=1

∥𝐴𝑥∥ = max
∥𝑥∥=∥𝑦∥=1

𝑦𝑇𝐴𝑥 = max
∥𝑦∥=1

∥𝐴𝑇 𝑦∥ (4)

• suppose 𝐴 = 𝑈𝑆𝑉𝑇 is a full SVD of 𝐴

• if we define 𝑥 = 𝑉𝑇𝑥, �̃� = 𝑈𝑇 𝑦, then (4) can be written as

𝜎1 = max
∥𝑥∥=1

∥Σ𝑥∥ = max
∥𝑥∥=∥ �̃�∥=1

�̃�𝑇Σ𝑥 = max
∥ �̃�∥=1

∥Σ𝑇 �̃�∥

• an optimal choice for 𝑥 and �̃� is 𝑥 = (1, 0, . . . , 0) and �̃� = (1, 0, . . . , 0)

• therefore 𝑥 = 𝑣1, 𝑦 = 𝑢1 (first right and left singular vectors) are optimal in (4)
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Last singular value

two of the three expressions in (3) have a counterpart for the last singular value

• for an 𝑚 × 𝑛 matrix 𝐴, the last singular value 𝜎min{𝑚,𝑛} can be written as follows:

if 𝑚 ≥ 𝑛: 𝜎𝑛 = min
∥𝑥∥=1

∥𝐴𝑥∥, if 𝑛 ≥ 𝑚: 𝜎𝑚 = min
∥𝑦∥=1

∥𝐴𝑇 𝑦∥ (5)

• if 𝑚 ≠ 𝑛, we need to distinguish the two cases because

min
∥𝑥∥=1

∥𝐴𝑥∥ = 0 if 𝑛 > 𝑚, min
∥𝑦∥=1

∥𝐴𝑇 𝑦∥ = 0 if 𝑚 > 𝑛

to prove (5), we substitute full SVD 𝐴 = 𝑈Σ𝑉𝑇 , and define 𝑥 = 𝑉𝑇𝑥, �̃� = 𝑈𝑇 𝑦:

if 𝑚 ≥ 𝑛: min
∥𝑥∥=1

∥Σ𝑥∥ = min
∥𝑥∥=1

(
𝜎2

1𝑥
2
1 + · · · + 𝜎2

𝑛𝑥
2
𝑛

)1/2
= 𝜎𝑛

if 𝑛 ≥ 𝑚: min
∥ �̃�∥=1

∥Σ𝑇 �̃�∥ = min
∥ �̃�∥=1

(
𝜎2

1 �̃�
2
1 + · · · + 𝜎2

𝑚 �̃�
2
𝑚

)1/2
= 𝜎𝑚

optimal choices for 𝑥 and 𝑦 in (5) are 𝑥 = 𝑣𝑛, 𝑦 = 𝑢𝑚
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Exercises

Exercise 1: express ∥𝐴†∥2 and ∥𝐴†∥𝐹 in terms of the singular values of 𝐴

Exercise 2: the condition number of a square nonsingular matrix 𝐴 is defined as

𝜅(𝐴) = ∥𝐴∥2∥𝐴−1∥2

express 𝜅(𝐴) in terms of the singular values of 𝐴

Exercise 3: what is the 2-norm of the matrix

𝐴 = 𝑎𝑏𝑇

where 𝑎 is an 𝑛-vector and 𝑏 is an 𝑚-vector?
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Exercises

Exercise 4

suppose 𝐴 is 𝑚 × 𝑛, 𝐵 is 𝑚 × 𝑝, and 𝐴, 𝐵 have orthonormal columns

• define 𝜃 (𝑥, 𝑦) as the angle between 𝐴𝑥 and 𝐵𝑦:

𝜃 (𝑥, 𝑦) = arccos
(𝐵𝑦)𝑇 (𝐴𝑥)
∥𝐴𝑥∥∥𝐵𝑦∥ = arccos

(𝐵𝑦)𝑇 (𝐴𝑥)
∥𝑥∥∥𝑦∥

(assuming 𝑥 ≠ 0 and 𝑦 ≠ 0)

• give a method for finding the coefficients 𝑥, 𝑦 that minimize the angle 𝜃 (𝑥, 𝑦)
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SVD analog of Courant–Fischer theorem

let 𝐴 be an 𝑚 × 𝑛 matrix with singular values

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎min{𝑚,𝑛}

• consider an 𝑛 × 𝑘 matrix 𝑋 with orthonormal columns and 𝑘 ≤ min{𝑚, 𝑛}
• we denote the singular values of the 𝑚 × 𝑘 matrix 𝐴𝑋 by

𝜏1 ≥ 𝜏2 ≥ · · · ≥ 𝜏𝑘

• we derive bounds on the singular values of 𝐴𝑋 from bounds on eigenvalues of

𝑋𝑇 (𝐴𝑇𝐴)𝑋

(using the Courant–Fischer theorem on page 3.35)
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Upper bound on singular values


𝜏1
𝜏2
...
𝜏𝑘

 ≤

𝜎1
𝜎2
...
𝜎𝑘


• 𝜏1, . . . , 𝜏𝑘 are the 𝑘 singular values of 𝐴𝑋

• 𝜎1, . . . , 𝜎𝑘 are the first 𝑘 singular values of 𝐴

• follows from upper bound on page 3.35 applied to 𝐴𝑇𝐴 and 𝑋𝑇 (𝐴𝑇𝐴)𝑋

• inequality is an equality for

𝑋 =
[
𝑣1 𝑣2 · · · 𝑣𝑘

]
(first 𝑘 right singular vectors of 𝐴)
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Lower bound on singular values

if 𝑚 ≥ 𝑛 
𝜎𝑛−𝑘+1
𝜎𝑛−𝑘+2

...
𝜎𝑛

 ≤

𝜏1
𝜏2
...
𝜏𝑘


• 𝜏1, . . . , 𝜏𝑘 are the 𝑘 singular values of 𝐴𝑋

• 𝜎𝑛−𝑘+1, . . . , 𝜎𝑛 are the smallest 𝑘 singular values of 𝐴

• follows from lower bound on page 3.35 applied to 𝐴𝑇𝐴 and 𝑋𝑇 (𝐴𝑇𝐴)𝑋
• inequality is an equality for

𝑋 =
[
𝑣𝑛−𝑘+1 𝑣𝑛−𝑘+2 · · · 𝑣𝑛

]
(last 𝑘 right singular vectors of 𝐴)

• note the assumption 𝑚 ≥ 𝑛 (otherwise 𝐴𝑇𝐴 has at least 𝑛−𝑚 zero eigenvalues)
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Max–min characterization

we extend (3) to a max–min characterization of the other singular values:

𝜎𝑘 = max
𝑋𝑇𝑋=𝐼𝑘

𝜎min(𝐴𝑋) (6a)

= max
𝑋𝑇𝑋=𝑌𝑇𝑌=𝐼𝑘

𝜎min(𝑌𝑇𝐴𝑋) (6b)

= max
𝑌𝑇𝑌=𝐼𝑘

𝜎min(𝐴𝑇𝑌 ) (6c)

• 𝜎𝑘 for 𝑘 = 1, . . . ,min{𝑚, 𝑛} are the singular values of the 𝑚 × 𝑛 matrix 𝐴

• 𝑋 is 𝑛 × 𝑘 with orthonormal columns, 𝑌 is 𝑚 × 𝑘 with orthonormal columns

• 𝜎min(𝐵) denotes the smallest singular value of the matrix 𝐵

• in the three expressions in (6) 𝜎min(·) denotes the 𝑘 th singular value

• for 𝑘 = 1, we obtain the three expressions for 𝜎1 in (3)

• these follow from page 4.27 (applied to 𝐴, 𝐴𝑇 , 𝐴𝑋 , or 𝐴𝑇𝑌 )
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Min–max characterization

we extend (5) to a min–max characterization of the other singular values

Tall or square matrix: if 𝐴 is 𝑚 × 𝑛 with 𝑚 ≥ 𝑛

𝜎𝑛−𝑘+1 = min
𝑋𝑇𝑋=𝐼𝑘

∥𝐴𝑋 ∥2, 𝑘 = 1, . . . , 𝑛 (7)

• we minimize over 𝑛 × 𝑘 matrices 𝑋 with orthonormal columns

• ∥𝐴𝑋 ∥2 is the maximum singular value of an 𝑚 × 𝑘 matrix

• for 𝑘 = 1, this is the first expression in (5)

• follows from page 4.28

Wide or square matrix (𝐴 is 𝑚 × 𝑛 with 𝑚 ≤ 𝑛)

𝜎𝑚−𝑘+1 = min
𝑌𝑇𝑌=𝐼𝑘

∥𝐴𝑇𝑌 ∥2, 𝑘 = 1, . . . , 𝑚

• we minimize over 𝑛 × 𝑘 matrices 𝑌 with orthonormal columns

• follows from (7) applied to 𝐴𝑇
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Rank-𝑟 approximation

let 𝐴 be an 𝑚 × 𝑛 matrix with rank(𝐴) > 𝑟 and full SVD

𝐴 = 𝑈Σ𝑉𝑇 =
min{𝑚,𝑛}∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 , 𝜎1 ≥ · · · ≥ 𝜎min{𝑚,𝑛} ≥ 0, 𝜎𝑟+1 > 0

the best rank-𝑟 approximation of 𝐴 is the sum of the first 𝑟 terms in the SVD:

𝐵 =
𝑟∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• 𝐵 is the best approximation for the Frobenius norm: for every 𝐶 with rank 𝑟,

∥𝐴 − 𝐶∥𝐹 ≥ ∥𝐴 − 𝐵∥𝐹 =

(
min{𝑚,𝑛}∑︁
𝑖=𝑟+1

𝜎2
𝑖

)1/2

• 𝐵 is also the best approximation for the 2-norm: for every 𝐶 with rank 𝑟,

∥𝐴 − 𝐶∥2 ≥ ∥𝐴 − 𝐵∥2 = 𝜎𝑟+1
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Rank-𝑟 approximation in Frobenius norm

we show that for every 𝑚 × 𝑛 matrix 𝐶 of rank 𝑟

∥𝐴 − 𝐶∥2
𝐹 ≥

min{𝑚,𝑛}∑︁
𝑖=𝑟+1

𝜎2
𝑖

• we will assume 𝑚 ≥ 𝑛 (otherwise, first take the transpose of 𝐴 and 𝐶)

• let 𝑋 be an 𝑛 × (𝑛 − 𝑟) matrix with orthonormal columns that span null(𝐶)
• define �̃� as an 𝑛 × 𝑟 matrix that makes

[
𝑋 �̃�

]
orthogonal

∥𝐴 − 𝐶∥2
𝐹 =

[(𝐴 − 𝐶)𝑋 (𝐴 − 𝐶) �̃�]2
𝐹 (Frobenius norm is

unitarily invariant)
≥ ∥(𝐴 − 𝐶)𝑋 ∥2

𝐹

= ∥𝐴𝑋 ∥2
𝐹 (𝐶𝑋 = 0)

= 𝜏2
1 + 𝜏2

2 + · · · + 𝜏2
𝑛−𝑟 (if 𝜏1, . . . , 𝜏𝑛−𝑟 are the

singular values of 𝐴𝑋)
≥ 𝜎2

𝑟+1 + 𝜎2
𝑟+2 + · · · + 𝜎2

𝑛 (page 4.28 with 𝑘 = 𝑛 − 𝑟)
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Rank-𝑟 approximation in 2-norm

we show that for every 𝑚 × 𝑛 matrix 𝐶 of rank 𝑟

∥𝐴 − 𝐶∥2 ≥ 𝜎𝑟+1

• we will assume 𝑚 ≥ 𝑛 (otherwise, first take the transpose of 𝐴 and 𝐶)

• let 𝑋 be an 𝑛 × (𝑛 − 𝑟) matrix with orthonormal columns that span null(𝐶)

∥𝐴 − 𝐶∥2 = max
∥𝑥∥=1

∥(𝐴 − 𝐶)𝑥∥

≥ max
∥𝑦∥=1

∥(𝐴 − 𝐶)𝑋𝑦∥ (∥𝑋𝑦∥ = 1 if ∥𝑦∥ = 1)

= ∥(𝐴 − 𝐶)𝑋 ∥2

= ∥𝐴𝑋 ∥2 (𝐶𝑋 = 0)

= 𝜏1 (if 𝜏1 is the maximum
singular value of 𝐴𝑋)

≥ 𝜎𝑟+1 (page 4.28 with 𝑘 = 𝑛 − 𝑟)
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SVD of square matrix

for the rest of the lecture we assume that 𝐴 is 𝑛 × 𝑛 and nonsingular with SVD

𝐴 = 𝑈Σ𝑉𝑇 =
𝑛∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖

• 2-norm of 𝐴 is ∥𝐴∥2 = 𝜎1

• 𝐴 is nonsingular if and only if 𝜎𝑛 > 0

• inverse of 𝐴 and 2-norm of the inverse are

𝐴−1 = 𝑉Σ−1𝑈𝑇 =
𝑛∑︁
𝑖=1

1
𝜎𝑖
𝑣𝑖𝑢

𝑇
𝑖 , ∥𝐴−1∥2 =

1
𝜎𝑛

• condition number of 𝐴 is

𝜅(𝐴) = ∥𝐴∥2∥𝐴−1∥2 =
𝜎1
𝜎𝑛

≥ 1

𝐴 is called ill-conditioned if the condition number is very high
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Sensitivity to right-hand side perturbations

linear equation with right-hand side 𝑏 ≠ 0 and perturbed right-hand side 𝑏 + 𝑒:

𝐴𝑥 = 𝑏, 𝐴𝑦 = 𝑏 + 𝑒

• bound on distance between the solutions:

∥𝑦 − 𝑥∥ = ∥𝐴−1𝑒∥ ≤ ∥𝐴−1∥2∥𝑒∥

recall that ∥𝐵𝑥∥ ≤ ∥𝐵∥2∥𝑥∥ for matrix 2-norm and Euclidean vector norm

• bound on relative change in the solution, in terms of 𝛿𝑏 = ∥𝑒∥/∥𝑏∥:

∥𝑦 − 𝑥∥
∥𝑥∥ ≤ ∥𝐴∥2∥𝐴−1∥2

∥𝑒∥
∥𝑏∥ = 𝜅(𝐴) 𝛿𝑏

in the first step we use ∥𝑏∥ = ∥𝐴𝑥∥ ≤ ∥𝐴∥2∥𝑥∥

large 𝜅(𝐴) indicates that the solution can be very sensitive to changes in 𝑏
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Worst-case perturbation of right-hand side

∥𝑦 − 𝑥∥
∥𝑥∥ ≤ 𝜅(𝐴) 𝛿𝑏 where 𝛿𝑏 =

∥𝑒∥
∥𝑏∥

• the upper bound is often very conservative

• however, for every 𝐴 one can find 𝑏, 𝑒 for which the bound holds with equality

• choose 𝑏 = 𝑢1 (first left singular vector of 𝐴): solution of 𝐴𝑥 = 𝑏 is

𝑥 = 𝐴−1𝑏 = 𝑉Σ−1𝑈𝑇𝑢1 =
1
𝜎1

𝑣1

• choose 𝑒 = 𝛿𝑏 𝑢𝑛 (𝛿𝑏 times last left singular vector 𝑢𝑛): solution of 𝐴𝑦 = 𝑏 + 𝑒 is

𝑦 = 𝐴−1(𝑏 + 𝑒) = 𝑥 + 𝛿𝑏
𝜎𝑛

𝑣𝑛

• relative change is
∥𝑦 − 𝑥∥
∥𝑥∥ =

𝜎1𝛿𝑏
𝜎𝑛

= 𝜅(𝐴) 𝛿𝑏
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Nearest singular matrix

the singular matrix closest to 𝐴 is

𝑛−1∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 = 𝐴 + 𝐸 where 𝐸 = −𝜎𝑛𝑢𝑛𝑣

𝑇
𝑛

• this gives another interpretation of the condition number:

∥𝐸 ∥2 = 𝜎𝑛 =
1

∥𝐴−1∥2
,

∥𝐸 ∥2
∥𝐴∥2

=
𝜎𝑛

𝜎1
=

1
𝜅(𝐴)

1/𝜅(𝐴) is the relative distance of 𝐴 to the nearest singular matrix

• this also implies that a perturbation 𝐴 + 𝐸 of 𝐴 is certainly nonsingular if

∥𝐸 ∥2 <
1

∥𝐴−1∥2
= 𝜎𝑛
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Bound on inverse

on the next page we prove the following inequality:

∥(𝐴 + 𝐸)−1∥2 ≤ ∥𝐴−1∥2
1 − ∥𝐴−1∥2∥𝐸 ∥2

if ∥𝐸 ∥2 <
1

∥𝐴−1∥2
(8)

using ∥𝐴−1∥2 = 1/𝜎𝑛:

∥(𝐴 + 𝐸)−1∥2 ≤ 1
𝜎𝑛 − ∥𝐸 ∥2

if ∥𝐸 ∥2 < 𝜎𝑛

𝜎𝑛

1/𝜎𝑛

1
𝜎𝑛 − ∥𝐸 ∥2

∥𝐸 ∥2
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Proof:

• the matrix 𝑌 = (𝐴 + 𝐸)−1 satisfies

(𝐼 + 𝐴−1𝐸)𝑌 = 𝐴−1(𝐴 + 𝐸)𝑌 = 𝐴−1

• therefore

∥𝑌 ∥2 = ∥𝐴−1 − 𝐴−1𝐸𝑌 ∥2

≤ ∥𝐴−1∥2 + ∥𝐴−1𝐸𝑌 ∥2 (triangle inequality)
≤ ∥𝐴−1∥2 + ∥𝐴−1𝐸 ∥2∥𝑌 ∥2

in the last step we use the property ∥𝐶𝐷∥2 ≤ ∥𝐶∥2∥𝐷∥2 of the matrix 2-norm

• rearranging the last inquality for ∥𝑌 ∥2 gives

∥𝑌 ∥2 ≤ ∥𝐴−1∥2
1 − ∥𝐴−1𝐸 ∥2

≤ ∥𝐴−1∥2
1 − ∥𝐴−1∥2∥𝐸 ∥2

in the second step we again use the property ∥𝐴−1𝐸 ∥2 ≤ ∥𝐴−1∥2∥𝐸 ∥2
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Sensitivity to perturbations of coefficient matrix

linear equation with matrix 𝐴 and perturbed matrix 𝐴 + 𝐸 :

𝐴𝑥 = 𝑏, (𝐴 + 𝐸)𝑦 = 𝑏

• we assume ∥𝐸 ∥2 < 1/∥𝐴−1∥2, which guarantees that 𝐴 + 𝐸 is nonsingular

• bound on distance between the solutions:

∥𝑦 − 𝑥∥ = ∥(𝐴 + 𝐸)−1(𝑏 − (𝐴 + 𝐸)𝑥)∥
= ∥(𝐴 + 𝐸)−1𝐸𝑥∥
≤ ∥(𝐴 + 𝐸)−1∥2 ∥𝐸 ∥2 ∥𝑥∥

≤ ∥𝐴−1∥2∥𝐸 ∥2
1 − ∥𝐴−1∥2∥𝐸 ∥2

∥𝑥∥ (applying (8))

• bound on relative change in solution in terms of 𝛿𝐴 = ∥𝐸 ∥2/∥𝐴∥2:

∥𝑦 − 𝑥∥
∥𝑥∥ ≤ 𝜅(𝐴) 𝛿𝐴

1 − 𝜅(𝐴)𝛿𝐴
(9)
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Worst-case perturbation of coefficient matrix

an example where the upper bound (9) is sharp (from SVD 𝐴 =
𝑛∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 )

• choose 𝑏 = 𝑢𝑛: the solution of 𝐴𝑥 = 𝑏 is

𝑥 = 𝐴−1𝑏 = (1/𝜎𝑛)𝑣𝑛

• choose 𝐸 = −𝛿𝐴𝜎1𝑢𝑛𝑣
𝑇
𝑛 with 𝛿𝐴 < 𝜎𝑛/𝜎1 = 1/𝜅(𝐴):

𝐴 + 𝐸 =
𝑛−1∑︁
𝑖=1

𝜎𝑖𝑢𝑖𝑣
𝑇
𝑖 + (𝜎𝑛 − 𝛿𝐴𝜎1)𝑢𝑛𝑣𝑇𝑛

• solution of (𝐴 + 𝐸)𝑦 = 𝑏 is

𝑦 = (𝐴 + 𝐸)−1𝑏 =
1

𝜎𝑛 − 𝛿𝐴𝜎1
𝑣𝑛

• relative change in solution is

∥𝑦 − 𝑥∥
∥𝑥∥ = 𝜎𝑛

(
1

𝜎𝑛 − 𝛿𝐴𝜎1
− 1
𝜎𝑛

)
=

𝛿𝐴𝜅(𝐴)
1 − 𝛿𝐴𝜅(𝐴)
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Exercises

Exercise 1

to evaluate the sensivity to changes in 𝐴, we can also look at the residual

∥(𝐴 + 𝐸)𝑥 − 𝑏∥

where 𝑥 = 𝐴−1𝑏 is the solution of 𝐴𝑥 = 𝑏

1. show that ∥(𝐴 + 𝐸)𝑥 − 𝑏∥
∥𝑏∥ ≤ 𝜅(𝐴)𝛿𝐴 where 𝛿𝐴 =

∥𝐸 ∥
∥𝐴∥

2. show that for every 𝐴 there exist 𝑏, 𝐸 for which the inequality is sharp
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Exercises

Exercise 2: consider perturbations in 𝐴 and 𝑏

𝐴𝑥 = 𝑏, (𝐴 + 𝐸)𝑦 = 𝑏 + 𝑒

assuming ∥𝐸 ∥2 < 1/∥𝐴−1∥2, show that

∥𝑦 − 𝑥∥
∥𝑥∥ ≤ (𝛿𝐴 + 𝛿𝑏)𝜅(𝐴)

1 − 𝛿𝐴𝜅(𝐴)

where
𝛿𝑏 =

∥𝑒∥
∥𝑏∥ , 𝛿𝐴 =

∥𝐸 ∥2
∥𝐴∥2
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