L. Vandenberghe ECE133B (Spring 2023)

3. Symmetric eigendecomposition

e cigenvalues and eigenvectors
e symmetric eigendecomposition
e quadratic forms

e optimality theorems

e low rank matrix approximation
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Eigenvalues and eigenvectors

a nonzero vector x is an eigenvector of the n X n matrix A, with eigenvalue A, if

Ax = Ax

e the matrix AI — A is singular and x is a nonzero vector in the nullspace of A —

e the eigenvalues of A are the roots of the characteristic polynomial:
det(Al —A) = A"+ cp A+ -+ 0+ (=1)"det(A) = 0

e this immediately shows that every square matrix has at least one eigenvalue

A

e the roots of the polynomial (and corresponding eigenvectors) may be complex

e (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of det(Al — A)

e there are exactly n eigenvalues, counted with their multiplicity

e set of eigenvalues of A is called the spectrum of A
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Diagonal matrix

[ Ay 0 - 0
e
0 0 - A |
e cigenvalues of A are the diagonal entries A1, ..., Aun
e the n unitvectorse; = (1,0,...,0),...,e,=1(0,...,0,1) are eigenvectors:
Ae; = Ajie;

e linear combinations of e; are eigenvectors if the corresponding A;; are equal
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Similarity transformation

two matrices A and B are similar if
B=T71AT
for some nonsingular matrix T

e the mapping that maps A to T~ AT is called a similarity transformation

e similarity transformations preserve eigenvalues:

det(Al — B) = det(Al — T~'AT) = det(T~' (Al = A)T) = det(Al — A)

e if x is an eigenvector of A then y = T~!x is an eigenvector of B:

By=(T'AT)YT %) =T "Ax =T (ax) = Ay

of special interest are orthogonal similarity transformations (7" is orthogonal)
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Diagonalizable matrices

a matrix is diagonalizable if it is similar to a diagonal matrix:
T~ YAT = A
for some nonsingular matrix T

e the diagonal elements of A are the eigenvalues of A

e the columns of T" are eigenvectors of A:

A(Te;) =TAe; = \ii(Te;)

e the columns of T' give a set of n linearly independent eigenvectors

not all square matrices are diagonalizable
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Spectral decomposition

suppose A is diagonalizable, with

—/11 0 0 - Wi—
A=TAT ! = [v1 Vo o e vn] O /1:2 . O W‘Z
_ 0 o ... /1”_ _wg_

= /llvlw{ + /lzvzwg + .-+ /lnvnwg

this is a spectral decomposition of the linear function f(x) = Ax

e eclements of T~ 'x are coefficients of x in the basis of eigenvectors {vi, ..., v,}:

x=TT 'x = vy + -+ ayvy where a; = wl.Tx

e applied to an eigenvector, f(v;) = Av; = A;v; is a simple scaling

e by superposition, we find Ax as

Ax = aiApvi + -+ audyvy, = TAT 'x
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Exercise

recall from 133A the definition of a circulant matrix

a  ap, dap-1 -+ az a
aj aj An e dg a3
a a a s a a
A_| @ 2 1 5 a4
dp-1 dp-2 dp-3 -+ d] dp
adnp  dp-1 dp-2 - dp 4yl

and its factorization {
A = -WH diag(Wa)W

n
W is the discrete Fourier transform matrix (Wa is the DFT of a) and

w1 = Lo
n

what is the spectrum of A?
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Symmetric eigendecomposition

eigenvalues/vectors of a symmetric matrix have important special properties

e all the eigenvalues are real
e the eigenvectors corresponding to different eigenvalues are orthogonal

e a symmetrix matrix is diagonalizable by an orthogonal similarity transformation:
0'A0=A, Q'0=1I

in the remainder of the lecture we assume that A is symmetric (and real)
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Eigenvalues of a symmetric matrix are real
consider an eigenvalue A and eigenvector x (possibly complex):
Ax=Ax, x#0

e inner product with x shows that x?Ax = Ax"x

o xlx =" |x;|*is real and positive, and x Ax is real:

xTAx = Z ZAl]xlx] = Z A,,|x,|2 + 22 A;jRe(Xx;)

i=1 j=1 Jj<i

o therefore 1 = (x Ax)/(x"x) is real

e if x is complex, its real and imaginary part are real eigenvectors (if nonzero):
A(Xre + jXim) = A(Xre + jXim) — AXxre = AXre,  AXim = AXim

therefore, eigenvectors can be assumed to be real
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Orthogonality of eigenvectors

suppose x and y are eigenvectors for different eigenvalues A, u:
Ax = Ax, Ay = uy, A+ u
e take inner products with x, y:
/lyTx = yTAx = xTAy = ,uxTy
second equality holds because A is symmetric

e if A # u this implies that
xTy 0

Symmetric eigendecomposition
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every real symmetric n X n matrix A can be factored as

e ( is orthogonal

o A =diag(1y,...

e A is diagonalizable by an orthogonal similarity transformation: 0’ AQ = A

Eigendecomposition

A =0AQ!

, ) is diagonal, with real diagonal elements

e the columns of Q are an orthonormal set of n eigenvectors: write AQ = QA as

Alqr g2 -+

Symmetric eigendecomposition

qn|

- g1 a2 -

qn|

= |liq1 g2 -

(A, 0 ---
0 Ay ---

00 -

/ann]

0

0

/‘ln-
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Proof by induction

e the decomposition (1) obviously exists if n = 1

e suppose itexistsifn =m and Aisan (m + 1) X (m + 1) matrix

e A has at least one eigenvalue (page 3.2)

e let 11 be any eigenvalue and g; a corresponding eigenvector, with ||g|| = 1

e let V be an (m + 1) x m matrix that makes the matrix | ¢, V | orthogonal:

T T
q _l4jAq1 q{AV lglqr gl Vv 1 0
[V%]A[ql ] _[ %ACII V]rAV] [alv% g1 VTAY 0 viav
o VI'AV is a symmetric m x m matrix, so by the induction hypothesis,

~ A~ A~

VvIAV = QAQ! for some orthogonal O and diagonal A

e the orthogonal matrix Q = [q1 VQ] defines a similarity that diagonalizes A:

T
T _ q ~1 /11 O _ /11 O
QAQ—[QT%,T]A[%VQ]—[O QTVTAVQ]_[O ]\]
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Spectral decomposition

the decomposition (1) expresses A as a sum of rank-one matrices:

(A, 0 .- O-FQi-

0O A --- 0
A=QAN0" = [q1 q2 -+ qn] : 52 SO q=2

_O O “ e An- _q’]/;-

C T
= Z Aiqiq;
i=1
e the matrix—vector product Ax is decomposed as

n
Ax = > Aiqi(q! x)
=1

o (q{x, ..., qrx) are coordinates of x in the orthonormal basis {q1, ..., ¢}

e (Lig}x,...,Axq}x) are coordinates of Ax in the orthonormal basis {g1, . . ., gn}
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Non-uniqueness

some freedom exists in the choice of A and Q in the eigendecomposition

A=0AQ" = [q1 - qn]

Ordering of eigenvalues

diagonal A and columns of Q can be permuted; we will assume that

2z 22

Choice of eigenvectors

suppose 4; is an eigenvalue with multiplicity k: A4; = A;41 =+ = Aj1x—1

e all nonzero vectors in span{q,, ..., g;+x_1} are eigenvectors with eigenvalue A4;

® gi, ..., qi+k—1 Can be replaced with any orthonormal basis of this “eigenspace”
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Inverse

a symmetric matrix is invertible if and only if all its eigenvalues are nonzero:

e inverse of A = QAQ! is

1A, 0 -0
A7 = (0AQT) ! = oA 0T, ATl = 0 1/:/12 0
0 0 o 1A, |

e eigenvectors of A~! are the eigenvectors of A

e eigenvalues of A~! are reciprocals of eigenvalues of A
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Spectral matrix functions

Integer powers
AF = (QAQTY* = oARQT,  AF =diag(AX, ..., A5

e negative powers are defined if A is invertible (all eigenvalues are nonzero)

e AX has the same eigenvectors as A, eigenvalues /ll’.‘

Square root

A2 = oA2QT,  AY2 = diag(\/A, ..., V)

e defined if eigenvalues are nonnegative

e a symmetric matrix that satisfies A1/241/2 = A

Other matrix functions: can be defined via power series, for example,

exp(A) = Qexp(A)Q7, exp(A) = diag(e, ..., e")
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Range, nullspace, rank

eigendecomposition with nonzero eigenvalues placed first in A:

vl

A:QAQT:[QI QZ][ 0 0 Q ]:QlAlQ{
2

diagonal entries of A are the nonzero eigenvalues of A

e columns of QO are an orthonormal basis for range(A)
e columns of O, are an orthonormal basis for null(A)

e this is an example of a full-rank factorization (page 1.32): A = BC with
B=0Q;, C=A\Q

e rank of A is the number of nonzero eigenvalues (with their multiplicities)
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Pseudo-inverse

we use the same notation as on the previous page

T
A= 0 Qz][AO1 8”3“=Q1A1QT

diagonal entries of A are the nonzero eigenvalues of A

e pseudo-inverse follows from page 1.39 with B = Q0 and C = Ale

e the pseudo-inverseis A" = C*B" = (1A QT

- A_l 0 ]
AT=01A7'07 = [ Oy Qz]l 0 0”3“

e eigenvectors of AT are the eigenvectors of A
e nonzero eigenvalues of A" are reciprocals of nonzero eigenvalues of A

e range, nullspace, and rank of AT are the same as for A

Symmetric eigendecomposition
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Trace

the frace of an n X n matrix B is the sum of its diagonal elements
n
trace(B) = Z Bj;
i=1

e transpose: trace(B!) = trace(B)

e product: if Bisn xm and C is m X n, then

n m
trace(BC) = trace(CB) = Z B;;Cj;
i=1 j=1

e eigenvalues: the trace of a symmetric matrix is the sum of the eigenvalues

trace(QAQ!) = trace(QT QA) = trace(A) = an A;
i=1
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Frobenius norm

recall the definition of Frobenius norm of an m X n matrix B:

|B||F = JZ Z B, \/trace(BTB) = \/trace(BBT)

i=1 j=1
e this is an example of a unitarily invariant norm: if U, V are orthogonal, then
|UBV||F = [|BllF
Proof:

|UBV||% = trace(V! B'UTUBV) = trace(VV' B B) = trace(B" B) = || B||%

e for a symmetric n X n matrix with eigenvalues 44, ..., 4,,

1Al = 1QAQ" IF = l|AllF =
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2-Norm

recall the definition of 2-norm or spectral norm of an m X n matrix B:

|Bx|
]|

1Bll2 = max

e this norm is also unitarily invariant: if U, V are orthogonal, then

IUBV||> = || Bl
Proof:
IUBVx|| IIUByII Byl
|UBV||, = max = = —— =||Bll2
x20  ||x]| y%0 IVIyl - yz0 [yl
e for a symmetric n X n matrix with eigenvalues 44, ..., 4,,

1All2 = 1QAQ" Iz = [|All2 = max_|2;| = max{dy, —An}

i=1,...,

Symmetric eigendecomposition 3.21



Exercises

Exercise 1

suppose A has eigendecomposition A = QAQ?; give an eigendecomposition of

A—al

Exercise 2

what are the eigenvalues and eigenvectors of an orthogonal projector

A=U0U"  (where UTU =)

Exercise 3

the condition number of a nonsingular matrix is defined as
k(A) = [|All2[| A7l

express the condition number of a symmetric matrix in terms of its eigenvalues
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Quadratic forms

the eigendecomposition is a useful tool for problems involving quadratic forms
f(x) = x! Ax
e substitute A = QAQ! and make an orthogonal change of variables y = Q' x:

£(Oy) =y Ay = 1192 + -+ + A,y7

® Vi, ..., y, are coordinates of x in the orthonormal basis of eigenvectors
e in this basis, the quadratic form is separable (variables are decoupled)

e the orthogonal change of variables preserves inner products and norms:

Iyl = 110" x[l = |1xll
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Maximum and minimum value

consider the following optimization problems with variable x

maximize x! Ax minimize x! Ax
subjectto xfx =1 subjectto x'x =1

change coordinates to the spectral basis (y = Q'x and x = Qy):

maximize Ayy3+- -+ A,yi minimize  Ayy3+- -+ Auyi
subjectto  y7+---+yi=1 subjectto  yT+---+yi=1
e maximization: y = (1,0,...,0) and x = g are optimal; maximal value is

max x! Ax = max (/lly% +- 4 /lny%) = A1 = max A;
[lx]]=1 IylI=1 i=1,...n

e minimization: y = (0,0, ...,1) and x = g, are optimal; minimal value is

min x! Ax = min (/lly% +--- 4 /lny,%) =A, = min A;
lx||=1 IylI=1 i=1,....n
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Exercises

Exercise 1: find the extreme values of the Rayleigh quotient (x Ax)/(x"x), i.e.,

xl Ax , xl Ax
, min —
x#0 x'x

max T
x#20 x'Xx

Exercise 2: solve the optimization problems
maximize x! Ax minimize  x! Ax
subjectto  x'x < 1 subjectto x'x < 1
Exercise 3: show that (for symmetric A)

|A]l; = max |1;] = max |x! Ax|
i=1,..n llx||=1
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Sign of eigenvalues

matrix property condition on eigenvalues
positive definite Ay >0
positive semidefinite Ap 20
indefinite A, <0and4; >0
negative semidefinite A1 20
negative definite A1 <0

e 1; and 4,, denote the largest and smallest eigenvalues:

A1 = max A;, A, = min A;
i=1,....n i=1,...,n

e properties in the table follow from

T
x' Ax
A1 = max x! Ax = max s T
|lx||=1 x#0 x'Xx lx||=1 x#0 x'x
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Ellipsoids

if A is positive definite, the set
E={x|xTAx < 1}
is an ellipsoid with center at the origin

1
\/7—1611

after the orthogonal change of coordinates y = Q' x the set is described by
/lly%+---+/lny% <1

this shows that:

e eigenvectors of A give the principal axes

e the width along the principal axis determined by ¢; is 2/VA;
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Exercise

give an interpretation of trace(A~!) as a measure of the size of the ellipsoid

E={x|xTAx < 1}
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Eigendecomposition of covariance matrix

e suppose x is a random n-vector with mean u, covariance matrix -

e 2 is positive semidefinite with eigendecomposition
E=E((x-p)(x-p)')=0A0"
define a random n-vector y = Q7 (x — p)

e y has zero mean and covariance matrix A:

E(yy') = Q" E((x - ) (x - )")Q = 0'20 = A
e components of y are uncorrelated and have variances E(yl.z) = A;

e x is decomposed in uncorrelated components with decreasing variance:

E(y?) > E(y3) > -+ > E(y2)

the transformation is known as the Karhunen—Loeve or Hotelling transform

Symmetric eigendecomposition 3.29



Multivariate normal distribution

multivariate normal (Gaussian) probability density function

1

o2 (=) =7 (x=p)

p(x) = (2m)"/24/det =

contour lines of density function for

R H

eigenvalues of X are 4; =2, 4 = 1,

_ | V372 o2
q1 = 1/2 ,» (42 = _\/5/2

Z_1
4

Symmetric eigendecomposition
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Multivariate normal distribution

the decorrelated and de-meaned variables y = Q7 (x — 1) have distribution

n

p(y)=]]

i=1

~ L S — V1
1/2 1/2
_/11 /11

‘ ‘ — 2
DI

Symmetric eigendecomposition
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l
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Joint diagonalization of two matrices
e a symmetric matrix A is diagonalized by an orthogonal similarity:
0'AQ = A
e as an extension, if A, B are symmetric and B is positive definite, then
s'AS=D, S'BS=1
for some nonsingular S and diagonal D

Algorithm: S and D can be computed is as follows

e Cholesky factorization B = RT R, with R upper triangular and nonsingular
e eigendecomposition R"”TAR™! = 9DQT, with D diagonal, Q orthogonal
e define S = R710:

STAS=0"RTAR'0=A, S'BS=0'RTBR'0=0T0=1
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Optimization problems with two quadratic forms

as an extension of the maximization problem on page 3.24, consider

maximize x!Ax
subjectto x'Bx =1

where A, B are symmetric and B is positive definite

e compute nonsingular S that diagonalizes A, B:

sTAS =D, S'BS =1

e make change of variables x = Sy:

maximize y!Dy
subjectto y'y =1

e if diagonal elements of D are sortedas D; > --- > D,;, solution is

y:elz(la()"'-ao)’ xzsel, XTAx:Dll

Symmetric eigendecomposition
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Quadratic form restricted to subspace

we consider quadratic forms x! Ax with x restricted to a subspace V

e as before, A is symmetric, n X n, with eigendecomposition

n
A=QAQT=Z/L'M,-T, A=z =2-- 22
i=1

e V is a k-dimensional subspace of R”, represented by an orthonormal basis:

V={Xy|yeR"Y, xTx=1 XeR™

e eigendecomposition of X! AX characterizes the quadratic form restricted to V

e we denote the eigendecomposition of the k x k matrix X' AX by

k
XTAX =D ww!, 12> 2y
i=1

we are interested in how the eigenvalues uy, ..., ux vary with the subspace V
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Courant-Fischer theorem

Akl | [ ][ A
A | | e | | A

e the two inequalities hold component-wise:

Ap—k+1 < H1 < Ay, An—k+2 < 12 < Ao, Cee Ap < p < Ag

e right-hand inequality in (2) is an equality for X = [q1 qr - qk]
(V' is spanned by eigenvectors of A corresponding to the first £ eigenvalues)
¢ left-hand inequality is an equality for X = [qn_k+1 dn—k+2 " qn]

(V' is spanned by eigenvectors of A corresponding to the last k& eigenvalues)

this is (one form of) the Courant—Fischer minimax theorem
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Proof of Courant—-Fischer theorem

e we prove the right-hand inequality in (2): for 1 < j < k,

Hj <4

e left-hand inequality follows from right-hand inequality applied to —A

Proof

o if we define W; = [w; wy ---

Symmetric eigendecomposition

w1 O
0
0 0

wj] (first j eigenvectors of X! AX), then

-

Wl (X"AX)W;

wix"(oAQ")XW;

n
WIXT (3] Aigig] ) XW;
i=1
C T~T T
/li(WjX Qi)(qi XWj)
=1

l
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Proof of Courant-Fischer theorem (continued)

e smallest eigenvalue u; of X’ AX can be expressed as

. 2 2
pj =  min (u1yy+ YY) = _ min E ,ﬂ (g XW;y)

e by the dimension inequality (page 1.7) the j — 1 linear equations
q{XWJ-y = quij == q]T._lXij =0,
with the j-vector y as variable, have nonzero solutions

e let y be a nonzero solution of (4), normalized to satisfy

1= 191> = 1T XW;$|1* = Z(q,TXW]y)2 Z(qfxwmz
ll _]

(the second equality holds because QTXW]- has orthonormal columns)

Symmetric eigendecomposition
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Proof of Courant-Fischer theorem (continued)

e since HT+---+ y? = 1, we have from (3)

mj = min Z/l(qTXW
y1+ +y2 17

IA

Z (g} XW;$)?

- Z Ai(q; XW;9)? (¥ is a solution of (4))
Sy Z(qTXW 9)° (A= 2 A)
= 4 (from (5))
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Rayleigh—Ritz theorem

the result on page 3.24 is a special case for k = 1:
A < xlAx < A4
for all x with x’x =1

e equality x’ Ax = 11 holds for x = ¢,

e equality x” Ax = 1, holds for x = g,

this is known as the Rayleigh—Ritz theorem

Symmetric eigendecomposition
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Min—max and max—min characterization of eigenvalues
consider the optimization problems

minimize  Apax (X' AX) maximize Ay (X' AX) (6)
subjectto XX =1 subjectto XX =1

the variable X is an n x kK matrix, with 1 <k <n

o Anin(XTAX) and Apax (X7 AX) are smallest and largest eigenvalue of X7 AX

e from page 3.35, an optimal solution of the maximization problem is

X=|q1 92 - aqx],

the optimal value is A (XY AX) = A, (the kth largest eigenvalue of A)

e an optimal solution of the minimization problem is

X = [Qn—k+1 dn-k+2 ' 4n ] ’
the optimal value is Amax(XT AX) = A,,_x+1 (the kth smallest eigenvalue of A)
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Eigenvalue interlacing theorem

let uy > up > --- > u,_1 be the eigenvalues of the (n — 1) X (n — 1) submatrix

A1y A o Arp-
B— Az Ay o Adp-d
| Ap-11 Ap-12 0 Ap—ip-1

e we have B = X AX where

e applying the result on page 3.35 with kK = n — 1 gives

L] [wm ] [ A
Bl <] b
_/ln_ _/vln_ _/ln—l_

this is known as the eigenvalue interlacing theorem
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Exercises

give the solution of the following problems; the variable is an n X k£ matrix X

maximize trace(X! AX) minimize  trace(X!' AX)
subjectto X'X =1 subjectto XX =1

recall that the trace is the sum of eigenvalues

2. assuming A is positive definite,

maximize det(X!AX) minimize  det(X! AX)
subjectto X'X =1 subjectto X'X =1

recall that the determinant is the product of the eigenvalues
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Low-rank matrix approximation

e low rank is a useful matrix property in many applications

e low rank is not a robust property (easily destroyed by noise or estimation error)
e most matrices in practice have full rank

e often the full-rank matrix is close to being low rank

e computing low-rank approximations is an important problem in linear algebra

on the next pages we discuss this for positive semidefinite matrices
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Rank-r approximation of positive semidefinite matrix

let A be a positive semidefinite matrix with rank(A) > r and eigendecomposition
n
A=0AQ" = > Niqigl, A1z 22,20, 241>0
i=1
the best rank-r approximation is the sum of the first r terms in the decomposition:
C T
B =) Aiqiq;
i=1

e B is the best approximation for the Frobenius norm: for every C with rank r,

1/2
n
|A-Cllr = ||A-B|F= ( > /1%)

i=r+1

e B is also the best approximation for the 2-norm: for every C with rank r,

|A=Cll2 2 [|[A=Bll2 = 441
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Rank-r approximation in Frobenius norm
we show that for every symmetric n X n matrix C of rank r,
2 - 2
IA=Cllz = D4
i=1

e let X be an n x (n — r) matrix with orthonormal columns that span null(C)

o define X as an n x r matrix that makes [ X X | orthogonal

IA—CIP = )~(T(A - 0)X )~(T(A - C)):( . (Frobenius norm is
F X'(A-0x X'(A-0OX |||, unitarily invariant)
> || XT(A-O)X|%
= IXTAX|% (XTCX =0)
= UTHUSH (if i, ..., tn_r are the

eigenvalues of X! AX)

((2) with k =n —r and
nonnegativity of u;, 4;)

2 2 . 2
/lr+1 + ﬂ'r+2 + + /l”l
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Rank-r approximation in 2-norm

we show that for every symmetric n X n matrix C of rank r,

A =Cll2 2 441

let X be an n x (n — r) matrix with orthonormal columns that span null(C)

1A =Cll2

vV

IV

Symmetric eigendecomposition

max |x! (A = C)x|
[lx]|=1

max |y! X(A — C)Xy|

ly]l=1
1XT(A-O)X|,
1XTAX]|

M1

/lr+1

(exercise 3 on page 3.25)
(IXyll = 1)

(exercise 3 on page 3.25)
(XT'CXx =0)

(2-norm of p.s.d. matrix X7 AX
is the largest eigenvalue u)

((2) with k =n —r)
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