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Eigenvalues and eigenvectors

a nonzero vector 𝑥 is an eigenvector of the 𝑛 × 𝑛 matrix 𝐴, with eigenvalue 𝜆, if

𝐴𝑥 = 𝜆𝑥

• the matrix 𝜆𝐼 − 𝐴 is singular and 𝑥 is a nonzero vector in the nullspace of 𝜆𝐼 − 𝐴

• the eigenvalues of 𝐴 are the roots of the characteristic polynomial:

det(𝜆𝐼 − 𝐴) = 𝜆𝑛 + 𝑐𝑛−1𝜆
𝑛−1 + · · · + 𝑐1𝜆 + (−1)𝑛 det(𝐴) = 0

• this immediately shows that every square matrix has at least one eigenvalue

• the roots of the polynomial (and corresponding eigenvectors) may be complex

• (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of det(𝜆𝐼 − 𝐴)
• there are exactly 𝑛 eigenvalues, counted with their multiplicity

• set of eigenvalues of 𝐴 is called the spectrum of 𝐴

Symmetric eigendecomposition 3.2



Diagonal matrix

𝐴 =


𝐴11 0 · · · 0
0 𝐴22 · · · 0
... ... . . . ...
0 0 · · · 𝐴𝑛𝑛


• eigenvalues of 𝐴 are the diagonal entries 𝐴11, . . . , 𝐴𝑛𝑛

• the 𝑛 unit vectors 𝑒1 = (1, 0, . . . , 0), . . . , 𝑒𝑛 = (0, . . . , 0, 1) are eigenvectors:

𝐴𝑒𝑖 = 𝐴𝑖𝑖𝑒𝑖

• linear combinations of 𝑒𝑖 are eigenvectors if the corresponding 𝐴𝑖𝑖 are equal
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Similarity transformation

two matrices 𝐴 and 𝐵 are similar if

𝐵 = 𝑇−1𝐴𝑇

for some nonsingular matrix 𝑇

• the mapping that maps 𝐴 to 𝑇−1𝐴𝑇 is called a similarity transformation

• similarity transformations preserve eigenvalues:

det(𝜆𝐼 − 𝐵) = det(𝜆𝐼 − 𝑇−1𝐴𝑇) = det(𝑇−1(𝜆𝐼 − 𝐴)𝑇) = det(𝜆𝐼 − 𝐴)

• if 𝑥 is an eigenvector of 𝐴 then 𝑦 = 𝑇−1𝑥 is an eigenvector of 𝐵:

𝐵𝑦 = (𝑇−1𝐴𝑇) (𝑇−1𝑥) = 𝑇−1𝐴𝑥 = 𝑇−1(𝜆𝑥) = 𝜆𝑦

of special interest are orthogonal similarity transformations (𝑇 is orthogonal)
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Diagonalizable matrices

a matrix is diagonalizable if it is similar to a diagonal matrix:

𝑇−1𝐴𝑇 = Λ

for some nonsingular matrix 𝑇

• the diagonal elements of Λ are the eigenvalues of 𝐴

• the columns of 𝑇 are eigenvectors of 𝐴:

𝐴(𝑇𝑒𝑖) = 𝑇Λ𝑒𝑖 = Λ𝑖𝑖 (𝑇𝑒𝑖)

• the columns of 𝑇 give a set of 𝑛 linearly independent eigenvectors

not all square matrices are diagonalizable
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Spectral decomposition

suppose 𝐴 is diagonalizable, with

𝐴 = 𝑇Λ𝑇−1 =
[
𝑣1 𝑣2 · · · 𝑣𝑛

] 
𝜆1 0 · · · 0
0 𝜆2 · · · 0
... ... . . . ...
0 0 · · · 𝜆𝑛



𝑤𝑇

1
𝑤𝑇

2...
𝑤𝑇
𝑛


= 𝜆1𝑣1𝑤

𝑇
1 + 𝜆2𝑣2𝑤

𝑇
2 + · · · + 𝜆𝑛𝑣𝑛𝑤

𝑇
𝑛

this is a spectral decomposition of the linear function 𝑓 (𝑥) = 𝐴𝑥

• elements of 𝑇−1𝑥 are coefficients of 𝑥 in the basis of eigenvectors {𝑣1, . . . , 𝑣𝑛}:

𝑥 = 𝑇𝑇−1𝑥 = 𝛼1𝑣1 + · · · + 𝛼𝑛𝑣𝑛 where 𝛼𝑖 = 𝑤𝑇
𝑖 𝑥

• applied to an eigenvector, 𝑓 (𝑣𝑖) = 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 is a simple scaling

• by superposition, we find 𝐴𝑥 as

𝐴𝑥 = 𝛼1𝜆1𝑣1 + · · · + 𝛼𝑛𝜆𝑛𝑣𝑛 = 𝑇Λ𝑇−1𝑥
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Exercise

recall from 133A the definition of a circulant matrix

𝐴 =



𝑎1 𝑎𝑛 𝑎𝑛−1 · · · 𝑎3 𝑎2
𝑎2 𝑎1 𝑎𝑛 · · · 𝑎4 𝑎3
𝑎3 𝑎2 𝑎1 · · · 𝑎5 𝑎4
... ... ... . . . ... ...

𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 · · · 𝑎1 𝑎𝑛
𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 · · · 𝑎2 𝑎1


and its factorization

𝐴 =
1
𝑛
𝑊𝐻 diag(𝑊𝑎)𝑊

𝑊 is the discrete Fourier transform matrix (𝑊𝑎 is the DFT of 𝑎) and

𝑊−1 =
1
𝑛
𝑊𝐻

what is the spectrum of 𝐴?
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Symmetric eigendecomposition

eigenvalues/vectors of a symmetric matrix have important special properties

• all the eigenvalues are real

• the eigenvectors corresponding to different eigenvalues are orthogonal

• a symmetrix matrix is diagonalizable by an orthogonal similarity transformation:

𝑄𝑇𝐴𝑄 = Λ, 𝑄𝑇𝑄 = 𝐼

in the remainder of the lecture we assume that 𝐴 is symmetric (and real)
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Eigenvalues of a symmetric matrix are real

consider an eigenvalue 𝜆 and eigenvector 𝑥 (possibly complex):

𝐴𝑥 = 𝜆𝑥, 𝑥 ≠ 0

• inner product with 𝑥 shows that 𝑥𝐻𝐴𝑥 = 𝜆𝑥𝐻𝑥

• 𝑥𝐻𝑥 =
∑𝑛

𝑖=1 |𝑥𝑖 |2 is real and positive, and 𝑥𝐻𝐴𝑥 is real:

𝑥𝐻𝐴𝑥 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 =
𝑛∑︁
𝑖=1

𝐴𝑖𝑖 |𝑥𝑖 |2 + 2
∑︁
𝑗<𝑖

𝐴𝑖 𝑗 Re(𝑥𝑖𝑥 𝑗)

• therefore 𝜆 = (𝑥𝐻𝐴𝑥)/(𝑥𝐻𝑥) is real

• if 𝑥 is complex, its real and imaginary part are real eigenvectors (if nonzero):

𝐴(𝑥re + j𝑥im) = 𝜆(𝑥re + j𝑥im) =⇒ 𝐴𝑥re = 𝜆𝑥re, 𝐴𝑥im = 𝜆𝑥im

therefore, eigenvectors can be assumed to be real
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Orthogonality of eigenvectors

suppose 𝑥 and 𝑦 are eigenvectors for different eigenvalues 𝜆, 𝜇:

𝐴𝑥 = 𝜆𝑥, 𝐴𝑦 = 𝜇𝑦, 𝜆 ≠ 𝜇

• take inner products with 𝑥, 𝑦:

𝜆𝑦𝑇𝑥 = 𝑦𝑇𝐴𝑥 = 𝑥𝑇𝐴𝑦 = 𝜇𝑥𝑇 𝑦

second equality holds because 𝐴 is symmetric

• if 𝜆 ≠ 𝜇 this implies that
𝑥𝑇 𝑦 = 0
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Eigendecomposition

every real symmetric 𝑛 × 𝑛 matrix 𝐴 can be factored as

𝐴 = 𝑄Λ𝑄𝑇 (1)

• 𝑄 is orthogonal

• Λ = diag(𝜆1, . . . , 𝜆𝑛) is diagonal, with real diagonal elements

• 𝐴 is diagonalizable by an orthogonal similarity transformation: 𝑄𝑇𝐴𝑄 = Λ

• the columns of 𝑄 are an orthonormal set of 𝑛 eigenvectors: write 𝐴𝑄 = 𝑄Λ as

𝐴
[
𝑞1 𝑞2 · · · 𝑞𝑛

]
=

[
𝑞1 𝑞2 · · · 𝑞𝑛

] 
𝜆1 0 · · · 0
0 𝜆2 · · · 0
... ... . . . ...
0 0 · · · 𝜆𝑛


=

[
𝜆1𝑞1 𝜆2𝑞2 · · · 𝜆𝑛𝑞𝑛

]
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Proof by induction

• the decomposition (1) obviously exists if 𝑛 = 1

• suppose it exists if 𝑛 = 𝑚 and 𝐴 is an (𝑚 + 1) × (𝑚 + 1) matrix

• 𝐴 has at least one eigenvalue (page 3.2)

• let 𝜆1 be any eigenvalue and 𝑞1 a corresponding eigenvector, with ∥𝑞1∥ = 1

• let 𝑉 be an (𝑚 + 1) × 𝑚 matrix that makes the matrix
[
𝑞1 𝑉

]
orthogonal:[

𝑞𝑇1
𝑉𝑇

]
𝐴

[
𝑞1 𝑉

]
=

[
𝑞𝑇1 𝐴𝑞1 𝑞𝑇1 𝐴𝑉
𝑉𝑇𝐴𝑞1 𝑉𝑇𝐴𝑉

]
=

[
𝜆1𝑞

𝑇
1𝑞1 𝜆1𝑞

𝑇
1𝑉

𝜆1𝑉
𝑇𝑞1 𝑉𝑇𝐴𝑉

]
=

[
𝜆1 0
0 𝑉𝑇𝐴𝑉

]
• 𝑉𝑇𝐴𝑉 is a symmetric 𝑚 × 𝑚 matrix, so by the induction hypothesis,

𝑉𝑇𝐴𝑉 = �̃�Λ̃�̃�𝑇 for some orthogonal �̃� and diagonal Λ̃

• the orthogonal matrix 𝑄 =
[
𝑞1 𝑉�̃�

]
defines a similarity that diagonalizes 𝐴:

𝑄𝑇𝐴𝑄 =

[
𝑞𝑇1

�̃�𝑇𝑉𝑇

]
𝐴

[
𝑞1 𝑉�̃�

]
=

[
𝜆1 0
0 �̃�𝑇𝑉𝑇𝐴𝑉�̃�

]
=

[
𝜆1 0
0 Λ̃

]
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Spectral decomposition

the decomposition (1) expresses 𝐴 as a sum of rank-one matrices:

𝐴 = 𝑄Λ𝑄𝑇 =
[
𝑞1 𝑞2 · · · 𝑞𝑛

] 
𝜆1 0 · · · 0
0 𝜆2 · · · 0
... ... . . . ...
0 0 · · · 𝜆𝑛



𝑞𝑇1
𝑞𝑇2...
𝑞𝑇𝑛


=

𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖

• the matrix–vector product 𝐴𝑥 is decomposed as

𝐴𝑥 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖 (𝑞𝑇𝑖 𝑥)

• (𝑞𝑇1𝑥, . . . , 𝑞𝑇𝑛𝑥) are coordinates of 𝑥 in the orthonormal basis {𝑞1, . . . , 𝑞𝑛}
• (𝜆1𝑞

𝑇
1𝑥, . . . , 𝜆𝑛𝑞

𝑇
𝑛𝑥) are coordinates of 𝐴𝑥 in the orthonormal basis {𝑞1, . . . , 𝑞𝑛}
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Non-uniqueness

some freedom exists in the choice of Λ and 𝑄 in the eigendecomposition

𝐴 = 𝑄Λ𝑄𝑇 =
[
𝑞1 · · · 𝑞𝑛

] 
𝜆1 · · · 0
... . . . ...
0 · · · 𝜆𝑛



𝑞𝑇1...
𝑞𝑇𝑛


Ordering of eigenvalues
diagonal Λ and columns of 𝑄 can be permuted; we will assume that

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛

Choice of eigenvectors

suppose 𝜆𝑖 is an eigenvalue with multiplicity 𝑘 : 𝜆𝑖 = 𝜆𝑖+1 = · · · = 𝜆𝑖+𝑘−1

• all nonzero vectors in span{𝑞𝑖, . . . , 𝑞𝑖+𝑘−1} are eigenvectors with eigenvalue 𝜆𝑖

• 𝑞𝑖, . . . , 𝑞𝑖+𝑘−1 can be replaced with any orthonormal basis of this “eigenspace”
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Inverse

a symmetric matrix is invertible if and only if all its eigenvalues are nonzero:

• inverse of 𝐴 = 𝑄Λ𝑄𝑇 is

𝐴−1 = (𝑄Λ𝑄𝑇)−1 = 𝑄Λ−1𝑄𝑇 , Λ−1 =


1/𝜆1 0 · · · 0

0 1/𝜆2 · · · 0
... ... . . . ...
0 0 · · · 1/𝜆𝑛


• eigenvectors of 𝐴−1 are the eigenvectors of 𝐴

• eigenvalues of 𝐴−1 are reciprocals of eigenvalues of 𝐴
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Spectral matrix functions

Integer powers

𝐴𝑘 = (𝑄Λ𝑄𝑇)𝑘 = 𝑄Λ𝑘𝑄𝑇 , Λ𝑘 = diag(𝜆𝑘1, . . . , 𝜆𝑘𝑛)

• negative powers are defined if 𝐴 is invertible (all eigenvalues are nonzero)

• 𝐴𝑘 has the same eigenvectors as 𝐴, eigenvalues 𝜆𝑘𝑖

Square root

𝐴1/2 = 𝑄Λ1/2𝑄𝑇 , Λ1/2 = diag(
√︁
𝜆1, . . . ,

√︁
𝜆𝑛)

• defined if eigenvalues are nonnegative

• a symmetric matrix that satisfies 𝐴1/2𝐴1/2 = 𝐴

Other matrix functions: can be defined via power series, for example,

exp(𝐴) = 𝑄 exp(Λ)𝑄𝑇 , exp(Λ) = diag(𝑒𝜆1, . . . , 𝑒𝜆𝑛)
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Range, nullspace, rank

eigendecomposition with nonzero eigenvalues placed first in Λ:

𝐴 = 𝑄Λ𝑄𝑇 =
[
𝑄1 𝑄2

] [
Λ1 0
0 0

] [
𝑄𝑇

1
𝑄𝑇

2

]
= 𝑄1Λ1𝑄

𝑇
1

diagonal entries of Λ1 are the nonzero eigenvalues of 𝐴

• columns of 𝑄1 are an orthonormal basis for range(𝐴)
• columns of 𝑄2 are an orthonormal basis for null(𝐴)
• this is an example of a full-rank factorization (page 1.32): 𝐴 = 𝐵𝐶 with

𝐵 = 𝑄1, 𝐶 = Λ1𝑄
𝑇
1

• rank of 𝐴 is the number of nonzero eigenvalues (with their multiplicities)
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Pseudo-inverse

we use the same notation as on the previous page

𝐴 =
[
𝑄1 𝑄2

] [
Λ1 0
0 0

] [
𝑄𝑇

1
𝑄𝑇

2

]
= 𝑄1Λ1𝑄

𝑇
1

diagonal entries of Λ1 are the nonzero eigenvalues of 𝐴

• pseudo-inverse follows from page 1.39 with 𝐵 = 𝑄1 and 𝐶 = Λ1𝑄
𝑇
1

• the pseudo-inverse is 𝐴† = 𝐶†𝐵† = (𝑄1Λ
−1
1 )𝑄𝑇

1 :

𝐴† = 𝑄1Λ
−1
1 𝑄𝑇

1 =
[
𝑄1 𝑄2

] [
Λ−1

1 0
0 0

] [
𝑄𝑇

1
𝑄𝑇

2

]
• eigenvectors of 𝐴† are the eigenvectors of 𝐴

• nonzero eigenvalues of 𝐴† are reciprocals of nonzero eigenvalues of 𝐴

• range, nullspace, and rank of 𝐴† are the same as for 𝐴
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Trace

the trace of an 𝑛 × 𝑛 matrix 𝐵 is the sum of its diagonal elements

trace(𝐵) =
𝑛∑︁
𝑖=1

𝐵𝑖𝑖

• transpose: trace(𝐵𝑇) = trace(𝐵)
• product: if 𝐵 is 𝑛 × 𝑚 and 𝐶 is 𝑚 × 𝑛, then

trace(𝐵𝐶) = trace(𝐶𝐵) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝐵𝑖 𝑗𝐶 𝑗𝑖

• eigenvalues: the trace of a symmetric matrix is the sum of the eigenvalues

trace(𝑄Λ𝑄𝑇) = trace(𝑄𝑇𝑄Λ) = trace(Λ) =
𝑛∑︁
𝑖=1

𝜆𝑖
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Frobenius norm

recall the definition of Frobenius norm of an 𝑚 × 𝑛 matrix 𝐵:

∥𝐵∥𝐹 =

√√
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐵2
𝑖 𝑗 =

√︃
trace(𝐵𝑇𝐵) =

√︃
trace(𝐵𝐵𝑇)

• this is an example of a unitarily invariant norm: if 𝑈, 𝑉 are orthogonal, then

∥𝑈𝐵𝑉 ∥𝐹 = ∥𝐵∥𝐹

Proof:

∥𝑈𝐵𝑉 ∥2
𝐹 = trace(𝑉𝑇𝐵𝑇𝑈𝑇𝑈𝐵𝑉) = trace(𝑉𝑉𝑇𝐵𝑇𝐵) = trace(𝐵𝑇𝐵) = ∥𝐵∥2

𝐹

• for a symmetric 𝑛 × 𝑛 matrix with eigenvalues 𝜆1, . . . , 𝜆𝑛,

∥𝐴∥𝐹 = ∥𝑄Λ𝑄𝑇 ∥𝐹 = ∥Λ∥𝐹 =

(
𝑛∑︁
𝑖=1

𝜆2
𝑖

)1/2
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2-Norm

recall the definition of 2-norm or spectral norm of an 𝑚 × 𝑛 matrix 𝐵:

∥𝐵∥2 = max
𝑥≠0

∥𝐵𝑥∥
∥𝑥∥

• this norm is also unitarily invariant: if 𝑈, 𝑉 are orthogonal, then

∥𝑈𝐵𝑉 ∥2 = ∥𝐵∥2

Proof:

∥𝑈𝐵𝑉 ∥2 = max
𝑥≠0

∥𝑈𝐵𝑉𝑥∥
∥𝑥∥ = max

𝑦≠0

∥𝑈𝐵𝑦∥
∥𝑉𝑇 𝑦∥ = max

𝑦≠0

∥𝐵𝑦∥
∥𝑦∥ = ∥𝐵∥2

• for a symmetric 𝑛 × 𝑛 matrix with eigenvalues 𝜆1, . . . , 𝜆𝑛,

∥𝐴∥2 = ∥𝑄Λ𝑄𝑇 ∥2 = ∥Λ∥2 = max
𝑖=1,...,𝑛

|𝜆𝑖 | = max{𝜆1,−𝜆𝑛}
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Exercises

Exercise 1

suppose 𝐴 has eigendecomposition 𝐴 = 𝑄Λ𝑄𝑇 ; give an eigendecomposition of

𝐴 − 𝛼𝐼

Exercise 2

what are the eigenvalues and eigenvectors of an orthogonal projector

𝐴 = 𝑈𝑈𝑇 (where 𝑈𝑇𝑈 = 𝐼)

Exercise 3

the condition number of a nonsingular matrix is defined as

𝜅(𝐴) = ∥𝐴∥2∥𝐴−1∥2

express the condition number of a symmetric matrix in terms of its eigenvalues
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Quadratic forms

the eigendecomposition is a useful tool for problems involving quadratic forms

𝑓 (𝑥) = 𝑥𝑇𝐴𝑥

• substitute 𝐴 = 𝑄Λ𝑄𝑇 and make an orthogonal change of variables 𝑦 = 𝑄𝑇𝑥:

𝑓 (𝑄𝑦) = 𝑦𝑇Λ𝑦 = 𝜆1𝑦
2
1 + · · · + 𝜆𝑛𝑦

2
𝑛

• 𝑦1, . . . , 𝑦𝑛 are coordinates of 𝑥 in the orthonormal basis of eigenvectors

• in this basis, the quadratic form is separable (variables are decoupled)

• the orthogonal change of variables preserves inner products and norms:

∥𝑦∥ = ∥𝑄𝑇𝑥∥ = ∥𝑥∥
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Maximum and minimum value

consider the following optimization problems with variable 𝑥

maximize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝑥 = 1

minimize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝑥 = 1

change coordinates to the spectral basis (𝑦 = 𝑄𝑇𝑥 and 𝑥 = 𝑄𝑦):

maximize 𝜆1𝑦
2
1 + · · · + 𝜆𝑛𝑦

2
𝑛

subject to 𝑦2
1 + · · · + 𝑦2

𝑛 = 1
minimize 𝜆1𝑦

2
1 + · · · + 𝜆𝑛𝑦

2
𝑛

subject to 𝑦2
1 + · · · + 𝑦2

𝑛 = 1

• maximization: 𝑦 = (1, 0, . . . , 0) and 𝑥 = 𝑞1 are optimal; maximal value is

max
∥𝑥∥=1

𝑥𝑇𝐴𝑥 = max
∥𝑦∥=1

(𝜆1𝑦
2
1 + · · · + 𝜆𝑛𝑦

2
𝑛) = 𝜆1 = max

𝑖=1,...,𝑛
𝜆𝑖

• minimization: 𝑦 = (0, 0, . . . , 1) and 𝑥 = 𝑞𝑛 are optimal; minimal value is

min
∥𝑥∥=1

𝑥𝑇𝐴𝑥 = min
∥𝑦∥=1

(𝜆1𝑦
2
1 + · · · + 𝜆𝑛𝑦

2
𝑛) = 𝜆𝑛 = min

𝑖=1,...,𝑛
𝜆𝑖
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Exercises

Exercise 1: find the extreme values of the Rayleigh quotient (𝑥𝑇𝐴𝑥)/(𝑥𝑇𝑥), i.e.,

max
𝑥≠0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
, min

𝑥≠0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥

Exercise 2: solve the optimization problems

maximize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝑥 ≤ 1

minimize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝑥 ≤ 1

Exercise 3: show that (for symmetric 𝐴)

∥𝐴∥2 = max
𝑖=1,...,𝑛

|𝜆𝑖 | = max
∥𝑥∥=1

|𝑥𝑇𝐴𝑥 |
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Sign of eigenvalues

matrix property condition on eigenvalues

positive definite 𝜆𝑛 > 0
positive semidefinite 𝜆𝑛 ≥ 0
indefinite 𝜆𝑛 < 0 and 𝜆1 > 0
negative semidefinite 𝜆1 ≤ 0
negative definite 𝜆1 < 0

• 𝜆1 and 𝜆𝑛 denote the largest and smallest eigenvalues:

𝜆1 = max
𝑖=1,...,𝑛

𝜆𝑖, 𝜆𝑛 = min
𝑖=1,...,𝑛

𝜆𝑖

• properties in the table follow from

𝜆1 = max
∥𝑥∥=1

𝑥𝑇𝐴𝑥 = max
𝑥≠0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
, 𝜆𝑛 = min

∥𝑥∥=1
𝑥𝑇𝐴𝑥 = min

𝑥≠0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
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Ellipsoids
if 𝐴 is positive definite, the set

E = {𝑥 | 𝑥𝑇𝐴𝑥 ≤ 1}

is an ellipsoid with center at the origin
1√
𝜆1
𝑞1

1√
𝜆𝑛
𝑞𝑛

after the orthogonal change of coordinates 𝑦 = 𝑄𝑇𝑥 the set is described by

𝜆1𝑦
2
1 + · · · + 𝜆𝑛𝑦

2
𝑛 ≤ 1

this shows that:

• eigenvectors of 𝐴 give the principal axes

• the width along the principal axis determined by 𝑞𝑖 is 2/√𝜆𝑖
Symmetric eigendecomposition 3.27



Exercise

give an interpretation of trace(𝐴−1) as a measure of the size of the ellipsoid

E = {𝑥 | 𝑥𝑇𝐴𝑥 ≤ 1}
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Eigendecomposition of covariance matrix

• suppose 𝑥 is a random 𝑛-vector with mean 𝜇, covariance matrix Σ

• Σ is positive semidefinite with eigendecomposition

Σ = E((𝑥 − 𝜇) (𝑥 − 𝜇)𝑇) = 𝑄Λ𝑄𝑇

define a random 𝑛-vector 𝑦 = 𝑄𝑇 (𝑥 − 𝜇)

• 𝑦 has zero mean and covariance matrix Λ:

E(𝑦𝑦𝑇) = 𝑄𝑇 E((𝑥 − 𝜇) (𝑥 − 𝜇)𝑇)𝑄 = 𝑄𝑇Σ𝑄 = Λ

• components of 𝑦 are uncorrelated and have variances E(𝑦2
𝑖 ) = 𝜆𝑖

• 𝑥 is decomposed in uncorrelated components with decreasing variance:

E(𝑦2
1) ≥ E(𝑦2

2) ≥ · · · ≥ E(𝑦2
𝑛)

the transformation is known as the Karhunen–Loève or Hotelling transform
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Multivariate normal distribution

multivariate normal (Gaussian) probability density function

𝑝(𝑥) = 1
(2𝜋)𝑛/2

√
detΣ

𝑒−
1
2 (𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)

contour lines of density function for

Σ =
1
4

[
7

√
3√

3 5

]
, 𝜇 =

[
5
4

]
eigenvalues of Σ are 𝜆1 = 2, 𝜆2 = 1,

𝑞1 =

[ √
3/2

1/2

]
, 𝑞2 =

[
1/2

−√3/2

]
𝑥1

𝑥2
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Multivariate normal distribution

the decorrelated and de-meaned variables 𝑦 = 𝑄𝑇 (𝑥 − 𝜇) have distribution

𝑝(𝑦) =
𝑛∏
𝑖=1

1√
2𝜋𝜆𝑖

exp(− 𝑦2
𝑖

2𝜆𝑖
)

𝜆1/2
1−𝜆1/2

1

𝑦1

𝜆1/2
2−𝜆1/2

2

𝑦2

𝑦1

𝑦2

𝑥1

𝑥2
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Joint diagonalization of two matrices

• a symmetric matrix 𝐴 is diagonalized by an orthogonal similarity:

𝑄𝑇𝐴𝑄 = Λ

• as an extension, if 𝐴, 𝐵 are symmetric and 𝐵 is positive definite, then

𝑆𝑇𝐴𝑆 = 𝐷, 𝑆𝑇𝐵𝑆 = 𝐼

for some nonsingular 𝑆 and diagonal 𝐷

Algorithm: 𝑆 and 𝐷 can be computed is as follows

• Cholesky factorization 𝐵 = 𝑅𝑇𝑅, with 𝑅 upper triangular and nonsingular

• eigendecomposition 𝑅−𝑇𝐴𝑅−1 = 𝑄𝐷𝑄𝑇 , with 𝐷 diagonal, 𝑄 orthogonal

• define 𝑆 = 𝑅−1𝑄:

𝑆𝑇𝐴𝑆 = 𝑄𝑇𝑅−𝑇𝐴𝑅−1𝑄 = Λ, 𝑆𝑇𝐵𝑆 = 𝑄𝑇𝑅−𝑇𝐵𝑅−1𝑄 = 𝑄𝑇𝑄 = 𝐼

Symmetric eigendecomposition 3.32



Optimization problems with two quadratic forms

as an extension of the maximization problem on page 3.24, consider

maximize 𝑥𝑇𝐴𝑥
subject to 𝑥𝑇𝐵𝑥 = 1

where 𝐴, 𝐵 are symmetric and 𝐵 is positive definite

• compute nonsingular 𝑆 that diagonalizes 𝐴, 𝐵:

𝑆𝑇𝐴𝑆 = 𝐷, 𝑆𝑇𝐵𝑆 = 𝐼

• make change of variables 𝑥 = 𝑆𝑦:

maximize 𝑦𝑇𝐷𝑦
subject to 𝑦𝑇 𝑦 = 1

• if diagonal elements of 𝐷 are sorted as 𝐷11 ≥ · · · ≥ 𝐷𝑛𝑛, solution is

𝑦 = 𝑒1 = (1, 0, . . . , 0), 𝑥 = 𝑆𝑒1, 𝑥𝑇𝐴𝑥 = 𝐷11

Symmetric eigendecomposition 3.33



Outline

• eigenvalues and eigenvectors

• symmetric eigendecomposition

• quadratic forms

• optimality theorems

• low rank matrix approximation



Quadratic form restricted to subspace

we consider quadratic forms 𝑥𝑇𝐴𝑥 with 𝑥 restricted to a subspace V

• as before, 𝐴 is symmetric, 𝑛 × 𝑛, with eigendecomposition

𝐴 = 𝑄Λ𝑄𝑇 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 , 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛

• V is a 𝑘-dimensional subspace of R𝑛, represented by an orthonormal basis:

V = {𝑋𝑦 | 𝑦 ∈ R𝑘}, 𝑋𝑇𝑋 = 𝐼, 𝑋 ∈ R𝑛×𝑘

• eigendecomposition of 𝑋𝑇𝐴𝑋 characterizes the quadratic form restricted to V
• we denote the eigendecomposition of the 𝑘 × 𝑘 matrix 𝑋𝑇𝐴𝑋 by

𝑋𝑇𝐴𝑋 =
𝑘∑︁
𝑖=1

𝜇𝑖𝑤𝑖𝑤
𝑇
𝑖 , 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑘

we are interested in how the eigenvalues 𝜇1, . . . , 𝜇𝑘 vary with the subspace V
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Courant–Fischer theorem


𝜆𝑛−𝑘+1
𝜆𝑛−𝑘+2

...
𝜆𝑛

 ≤

𝜇1
𝜇2
...
𝜇𝑘

 ≤

𝜆1
𝜆2
...
𝜆𝑘

 (2)

• the two inequalities hold component-wise:

𝜆𝑛−𝑘+1 ≤ 𝜇1 ≤ 𝜆1, 𝜆𝑛−𝑘+2 ≤ 𝜇2 ≤ 𝜆2, . . . , 𝜆𝑛 ≤ 𝜇𝑘 ≤ 𝜆𝑘

• right-hand inequality in (2) is an equality for 𝑋 =
[
𝑞1 𝑞2 · · · 𝑞𝑘

]
(V is spanned by eigenvectors of 𝐴 corresponding to the first 𝑘 eigenvalues)

• left-hand inequality is an equality for 𝑋 =
[
𝑞𝑛−𝑘+1 𝑞𝑛−𝑘+2 · · · 𝑞𝑛

]
(V is spanned by eigenvectors of 𝐴 corresponding to the last 𝑘 eigenvalues)

this is (one form of) the Courant–Fischer minimax theorem
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Proof of Courant–Fischer theorem

• we prove the right-hand inequality in (2): for 1 ≤ 𝑗 ≤ 𝑘 ,

𝜇 𝑗 ≤ 𝜆 𝑗

• left-hand inequality follows from right-hand inequality applied to −𝐴

Proof

• if we define 𝑊 𝑗 =
[
𝑤1 𝑤2 · · · 𝑤 𝑗

]
(first 𝑗 eigenvectors of 𝑋𝑇𝐴𝑋), then

𝜇1 0 · · · 0
0 𝜇2 · · · 0
... ... . . . ...
0 0 · · · 𝜇 𝑗

 = 𝑊𝑇
𝑗 (𝑋𝑇𝐴𝑋)𝑊 𝑗

= 𝑊𝑇
𝑗 𝑋

𝑇 (𝑄Λ𝑄𝑇)𝑋𝑊 𝑗

= 𝑊𝑇
𝑗 𝑋

𝑇 (
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 )𝑋𝑊 𝑗

=
𝑛∑︁
𝑖=1

𝜆𝑖 (𝑊𝑇
𝑗 𝑋

𝑇𝑞𝑖) (𝑞𝑇𝑖 𝑋𝑊 𝑗)
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Proof of Courant–Fischer theorem (continued)

• smallest eigenvalue 𝜇 𝑗 of 𝑋𝑇𝐴𝑋 can be expressed as

𝜇 𝑗 = min
𝑦2

1+···+𝑦2
𝑗=1

(𝜇1𝑦
2
1 + · · · + 𝜇 𝑗 𝑦

2
𝑗) = min

𝑦2
1+···+𝑦2

𝑗=1

𝑛∑︁
𝑖=1

𝜆𝑖 (𝑞𝑇𝑖 𝑋𝑊 𝑗 𝑦)2 (3)

• by the dimension inequality (page 1.7) the 𝑗 − 1 linear equations

𝑞𝑇1𝑋𝑊 𝑗 𝑦 = 𝑞𝑇2𝑋𝑊 𝑗 𝑦 = · · · = 𝑞𝑇𝑗−1𝑋𝑊 𝑗 𝑦 = 0, (4)

with the 𝑗 -vector 𝑦 as variable, have nonzero solutions

• let �̂� be a nonzero solution of (4), normalized to satisfy

1 = ∥ �̂�∥2 = ∥𝑄𝑇𝑋𝑊 𝑗 �̂�∥2 =
𝑛∑︁
𝑖=1

(𝑞𝑇𝑖 𝑋𝑊 𝑗 �̂�)2 =
𝑛∑︁
𝑖= 𝑗

(𝑞𝑇𝑖 𝑋𝑊 𝑗 �̂�)2 (5)

(the second equality holds because 𝑄𝑇𝑋𝑊 𝑗 has orthonormal columns)
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Proof of Courant–Fischer theorem (continued)

• since �̂�2
1 + · · · + �̂�2

𝑗 = 1, we have from (3)

𝜇 𝑗 = min
𝑦2

1+···+𝑦2
𝑗=1

𝑛∑︁
𝑖=1

𝜆𝑖 (𝑞𝑇𝑖 𝑋𝑊 𝑗 𝑦)2

≤
𝑛∑︁
𝑖=1

𝜆𝑖 (𝑞𝑇𝑖 𝑋𝑊 𝑗 �̂�)2

=
𝑛∑︁
𝑖= 𝑗

𝜆𝑖 (𝑞𝑇𝑖 𝑋𝑊 𝑗 �̂�)2 (�̂� is a solution of (4))

≤ 𝜆 𝑗

𝑛∑︁
𝑖=𝑘

(𝑞𝑇𝑖 𝑋𝑊 𝑗 �̂�)2 (𝜆 𝑗 ≥ · · · ≥ 𝜆𝑛)

= 𝜆 𝑗 (from (5))
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Rayleigh–Ritz theorem

the result on page 3.24 is a special case for 𝑘 = 1:

𝜆𝑛 ≤ 𝑥𝑇𝐴𝑥 ≤ 𝜆1

for all 𝑥 with 𝑥𝑇𝑥 = 1

• equality 𝑥𝑇𝐴𝑥 = 𝜆1 holds for 𝑥 = 𝑞1

• equality 𝑥𝑇𝐴𝑥 = 𝜆𝑛 holds for 𝑥 = 𝑞𝑛

this is known as the Rayleigh–Ritz theorem
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Min–max and max–min characterization of eigenvalues

consider the optimization problems

minimize 𝜆max(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

maximize 𝜆min(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

(6)

the variable 𝑋 is an 𝑛 × 𝑘 matrix, with 1 ≤ 𝑘 ≤ 𝑛

• 𝜆min(𝑋𝑇𝐴𝑋) and 𝜆max(𝑋𝑇𝐴𝑋) are smallest and largest eigenvalue of 𝑋𝑇𝐴𝑋

• from page 3.35, an optimal solution of the maximization problem is

𝑋 =
[
𝑞1 𝑞2 · · · 𝑞𝑘

]
,

the optimal value is 𝜆min(𝑋𝑇𝐴𝑋) = 𝜆𝑘 (the 𝑘 th largest eigenvalue of 𝐴)

• an optimal solution of the minimization problem is

𝑋 =
[
𝑞𝑛−𝑘+1 𝑞𝑛−𝑘+2 · · · 𝑞𝑛

]
,

the optimal value is 𝜆max(𝑋𝑇𝐴𝑋) = 𝜆𝑛−𝑘+1 (the 𝑘 th smallest eigenvalue of 𝐴)
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Eigenvalue interlacing theorem

let 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑛−1 be the eigenvalues of the (𝑛 − 1) × (𝑛 − 1) submatrix

𝐵 =


𝐴11 𝐴12 · · · 𝐴1,𝑛−1
𝐴21 𝐴22 · · · 𝐴2,𝑛−1
... ... ...

𝐴𝑛−1,1 𝐴𝑛−1,2 · · · 𝐴𝑛−1,𝑛−1


• we have 𝐵 = 𝑋𝑇𝐴𝑋 where

𝑋 =

[
𝐼𝑛−1

0

]
• applying the result on page 3.35 with 𝑘 = 𝑛 − 1 gives

𝜆2
𝜆3
...
𝜆𝑛

 ≤

𝜇1
𝜇2
...
𝜇𝑛

 ≤


𝜆1
𝜆2
...

𝜆𝑛−1


this is known as the eigenvalue interlacing theorem
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Exercises

give the solution of the following problems; the variable is an 𝑛 × 𝑘 matrix 𝑋

1.
maximize trace(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

minimize trace(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

recall that the trace is the sum of eigenvalues

2. assuming 𝐴 is positive definite,

maximize det(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

minimize det(𝑋𝑇𝐴𝑋)
subject to 𝑋𝑇𝑋 = 𝐼

recall that the determinant is the product of the eigenvalues
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Low-rank matrix approximation

• low rank is a useful matrix property in many applications

• low rank is not a robust property (easily destroyed by noise or estimation error)

• most matrices in practice have full rank

• often the full-rank matrix is close to being low rank

• computing low-rank approximations is an important problem in linear algebra

on the next pages we discuss this for positive semidefinite matrices
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Rank-𝑟 approximation of positive semidefinite matrix

let 𝐴 be a positive semidefinite matrix with rank(𝐴) > 𝑟 and eigendecomposition

𝐴 = 𝑄Λ𝑄𝑇 =
𝑛∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 , 𝜆1 ≥ · · · ≥ 𝜆𝑛 ≥ 0, 𝜆𝑟+1 > 0

the best rank-𝑟 approximation is the sum of the first 𝑟 terms in the decomposition:

𝐵 =
𝑟∑︁
𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖

• 𝐵 is the best approximation for the Frobenius norm: for every 𝐶 with rank 𝑟,

∥𝐴 − 𝐶∥𝐹 ≥ ∥𝐴 − 𝐵∥𝐹 =

(
𝑛∑︁

𝑖=𝑟+1
𝜆2
𝑖

)1/2

• 𝐵 is also the best approximation for the 2-norm: for every 𝐶 with rank 𝑟,

∥𝐴 − 𝐶∥2 ≥ ∥𝐴 − 𝐵∥2 = 𝜆𝑟+1

Symmetric eigendecomposition 3.44



Rank-𝑟 approximation in Frobenius norm

we show that for every symmetric 𝑛 × 𝑛 matrix 𝐶 of rank 𝑟,

∥𝐴 − 𝐶∥2
𝐹 ≥

𝑟∑︁
𝑖=1

𝜆2
𝑖

• let 𝑋 be an 𝑛 × (𝑛 − 𝑟) matrix with orthonormal columns that span null(𝐶)
• define �̃� as an 𝑛 × 𝑟 matrix that makes

[
𝑋 �̃�

]
orthogonal

∥𝐴 − 𝐶∥2
𝐹 =

[ 𝑋𝑇 (𝐴 − 𝐶)𝑋 𝑋𝑇 (𝐴 − 𝐶) �̃�
�̃�𝑇 (𝐴 − 𝐶)𝑋 �̃�𝑇 (𝐴 − 𝐶) �̃�

]2

𝐹

(Frobenius norm is
unitarily invariant)

≥ ∥𝑋𝑇 (𝐴 − 𝐶)𝑋 ∥2
𝐹

= ∥𝑋𝑇𝐴𝑋 ∥2
𝐹 (𝑋𝑇𝐶𝑋 = 0)

= 𝜇2
1 + 𝜇2

2 + · · · + 𝜇2
𝑛−𝑟 (if 𝜇1, . . . , 𝜇𝑛−𝑟 are the

eigenvalues of 𝑋𝑇𝐴𝑋)
≥ 𝜆2

𝑟+1 + 𝜆2
𝑟+2 + · · · + 𝜆2

𝑛 ((2) with 𝑘 = 𝑛 − 𝑟 and
nonnegativity of 𝜇𝑖, 𝜆𝑖)

Symmetric eigendecomposition 3.45



Rank-𝑟 approximation in 2-norm

we show that for every symmetric 𝑛 × 𝑛 matrix 𝐶 of rank 𝑟,

∥𝐴 − 𝐶∥2 ≥ 𝜆𝑟+1

let 𝑋 be an 𝑛 × (𝑛 − 𝑟) matrix with orthonormal columns that span null(𝐶)

∥𝐴 − 𝐶∥2 = max
∥𝑥∥=1

|𝑥𝑇 (𝐴 − 𝐶)𝑥 | (exercise 3 on page 3.25)

≥ max
∥𝑦∥=1

|𝑦𝑇𝑋 (𝐴 − 𝐶)𝑋𝑦 | (∥𝑋𝑦∥ = 1)

= ∥𝑋𝑇 (𝐴 − 𝐶)𝑋 ∥2 (exercise 3 on page 3.25)

= ∥𝑋𝑇𝐴𝑋 ∥2 (𝑋𝑇𝐶𝑋 = 0)

= 𝜇1 (2-norm of p.s.d. matrix 𝑋𝑇𝐴𝑋
is the largest eigenvalue 𝜇1)

≥ 𝜆𝑟+1 ((2) with 𝑘 = 𝑛 − 𝑟)

Symmetric eigendecomposition 3.46


