
ECE236C. Optimization Methods for Large-Scale Systems

Exercises

Lieven Vandenberghe

June 7, 2022

1 Barzilai–Borwein step sizes. Consider the gradient method

xk+1 = xk − tk∇f(xk).

We assume f is convex and differentiable, with dom f = Rn, and that ∇f is Lipschitz
continuous with respect to a norm ‖ · ‖:

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y,

where L is a positive constant. Define

sk = xk − xk−1, yk = ∇f(xk)−∇f(xk−1)

and assume yk 6= 0. Use the properties in lecture 1 (pages 1.10–1.15) to show that the
following two choices for tk satisfy tk ≥ 1/L:

tk =
‖sk‖2

sTk yk
, tk =

sTk yk
‖yk‖2

∗
.

2 Heavy-ball method [Polyak]. We consider a “two-step” variant of the gradient method:

xk+1 = xk − t∇f(xk) + s(xk − xk−1), k = 1, 2, . . . ,

with x1 = x0. The step sizes t and s are fixed. The term s(xk − xk−1) is a momentum term
added to suppress the typical zigzagging in the gradient method.

We examine the convergence of the method applied to a strictly convex quadratic function
f(x) = (1/2)xTAx+ bTx+ c. The notation m and L will be used for the smallest and largest
eigenvalues of the symmetric positive definite matrix A:

m = λmin(A) > 0, L = λmax(A) ≥ m.

1

(a) Verify that the iteration can be written as a linear recursion

zk+1 = Mzk + q, k = 1, 2, . . . ,

where

zk =

[
xk
xk−1

]
, M =

[
(1 + s)I − tA −sI

I 0

]
, q =

[
−tb
0

]
.

If the sequence converges, the limit z? = Mz? + q is z? = (−A−1b,−A−1b).

(b) The speed of convergence depends on the spectral radius ρ(M) of the matrix M . The
spectral radius of a matrix is the largest absolute value of its eigenvalues. If ρ(M) < 1,
then the iterates zk converge to z?. For large k the distance ‖zk − z?‖ decreases as
ρ(M)k.

Express the eigenvalues of M in terms of the eigenvalues λ1, . . . , λn of A. Show that
ρ(M) =

√
s if

s < 1,
(1−

√
s)2

m
≤ t ≤ (1 +

√
s)2

L
. (1)

(c) Find s, t that minimize the spectral radius subject to the constraints (1). Show that
for the optimal step sizes,

ρ(M) =

√
L−
√
m√

L+
√
m

=

√
γ − 1
√
γ + 1

,

where γ = L/m. Compare this with the linear convergence rate

‖xk − x?‖2 ≤
(
γ − 1

γ + 1

)k
‖x0 − x?‖2

of the gradient method (page 1.31 of the lecture notes).

3 Let F (x) = Ax + b be an affine function, with A an n × n-matrix. What properties of the
matrix A correspond to the following conditions (a)–(e) on F? Distinguish three cases for
each subproblem: (1) A is symmetric, so F (x) is the gradient of a quadratic function, (2) A
is skew-symmetric (A+ AT = 0), and (3) A is a general non-symmetric matrix.

(a) Monotonicity:
(F (x)− F (y))T (x− y) ≥ 0 for all x, y.

(b) Strict monotonicity:

(F (x)− F (y))T (x− y) > 0 for all x and y 6= x.

(c) Strong monotonicity (for the Euclidean norm):

(F (x)− F (y))T (x− y) ≥ m‖x− y‖2
2 for all x, y,

where m is a positive constant.

2

(d) Lipschitz continuity (for the Euclidean norm):

‖F (x)− F (y)‖2 ≤ L‖x− y‖2 for all x, y,

where L is a positive constant.

(e) Co-coercivity (for the Euclidean norm):

(F (x)− F (y))T (x− y) ≥ 1

L
‖F (x)− F (y)‖2

2 for all x, y,

where L is a positive constant.

4 For each of the following convex functions on Rn, explain how to calculate a subgradient at
a given x.

(a) f(x) = sup0≤t≤1 p(t) where p(t) = x1 + x2t+ · · ·+ xnt
n−1.

(b) f(x) = x[1] + x[2] + · · ·+ x[k] where x[i] denotes the ith largest element of x.

(c) f(x) = ‖Ax− b‖2 + ‖x‖2 where A ∈ Rm×n.

(d) f(x) = λmax(W + diag(x)) where W ∈ Sn.

(e) f(x) = infy∈R ‖x−y1‖1 = ‖x−med(x)1‖1, where med(x) is the median of the elements
of x.

(f) f(x) = infy ‖Ay − x‖∞ where A ∈ Rn×m.

(g) f(x) = supAy�b x
Ty, where A ∈ Rm×n and the polyhedron defined by Ay � b is

nonempty and bounded.

5 Relaxation method for linear inequalities [Agmon, Motzkin, and Schoenberg]. We consider
the problem of solving a set of linear inequalities aTi x ≤ bi, i = 1, . . . ,m. We assume that
the inequalities are strictly feasible, and that ai 6= 0 for all i. The problem is a special case
of the problem on page 3.12 of the lecture notes, where Ci is the halfspace

Ci = {x | aTi x ≤ bi}, i = 1, . . . ,m.

As in the lecture notes, we denote by fi(x) the Euclidean distance of x to Ci, and by f(x)
the maximum of f1(x), . . . , fm(x):

fi(x) = max {0, a
T
i x− bi
‖ai‖2

}, f(x) = max {f1(x), . . . , fm(x)}.

The Euclidean projection of x on the halfspace Ci is denoted by Pi(x):

Pi(x) = x− fi(x)
ai
‖ai‖2

.

3

The subgradient method with step size tk = λf(xk) uses the iteration

xk+1 = xk + λ(Pjk(xk)− xk) where jk = argmax
i=1,...,m

aTi xk − bi
‖ai‖2

, (2)

until xk is feasible. The constant λ ∈ (0, 2] is an algorithm parameter. If λ = 1, the new
point xk+1 is the projection of xk on the halfspace Cjk farthest from xk. If λ = 2, the new
point xk+1 is the reflection of xk through the boundary hyperplane of Cjk .

Cjk

xk Pjk(xk) 2Pjk(xk)− xk

Algorithm (3) was proposed by Agmon, Motzkin, and Schoenberg in 1954. Other variants,
with different rules to select jk (for example, cyclic or random), have also been studied. In
the neural network literature, the recursion is known as the perceptron learning algorithm
for training linear classifiers.

Motzkin and Schoenberg showed that for λ ∈ (0, 2) the algorithm either finds a solution in
a finite number of iterations or converges to a point in the boundary of C = ∩i=1,...,mCi. For
λ = 2 they showed that the algorithm finds a solution in a finite number of iterations. The
following is an outline of the proof with some questions to complete.

(a) Show that the projection Pi(x) on the halfspace Ci satisfies the property

‖z − Pi(x)‖2 ≤ ‖z − x‖2 for all z ∈ Ci.

Use this to show that the iterates (3) satisfy

‖z − xk+1‖2 ≤ ‖z − xk‖2 for all z ∈ C.

(b) We use the result in part (a) to show that the sequence xk converges.

A first consequence of (a) is that the iterates xk are bounded. A standard result from
analysis says that every bounded sequence has at least one limit point (a limit of
a converging subsequence). To show that the entire sequence converges we show that
there is at most one limit point. Consider any z ∈ C. From part (a) the distances ‖xk−
z‖2 form a nonincreasing sequence of nonnegative numbers. Therefore this sequence
converges to a limit, which we denote by r(z) = limk→∞ ‖xk − z‖2. Every limit point

4

of the sequence xk must lie on the sphere {x | ‖x − z‖2 = r(z)}. Now suppose x̂ and
x̃ are two distinct limit points of the sequence xk. Since ‖x̂ − z‖2 = ‖x̃ − z‖2 = r(z),
the point z is at the same distance from x̂ and x̃. This is true for any z ∈ C. Explain
why this contradicts the assumption that the inequalities are strictly feasible, i.e., the
polyhedron C has nonempty interior.

(c) Let x̄ be the limit of xk. We show that x̄ ∈ C. The iteration (3) satisfies

f(xk) =
‖xk+1 − xk‖2

λ
.

Since xk converges, limk→∞ f(xk) = 0. Since the function f is continuous, f(x̄) =
limk→∞ f(xk) = 0. Hence x̄ ∈ C.

(d) In the last part of the problem we show that if λ = 2, then xk ∈ C after a finite number
of iterations. We prove this by contradiction. Suppose xk 6∈ C for all k, and let jk be
the index of the halfspace selected in iteration k of (3). Verify that

|aTjk x̄− bjk |
‖ajk‖2

≤ ‖xk+1 − xk‖2

2
+
|aTjk(x̄− xk)|
‖ajk‖2

.

The left-hand side is the distance of x̄ to Hjk = {x | aTjkx = bjk}. The right-hand side
converges to zero as k → ∞. Since jk is chosen from a finite set {1, . . . ,m}, we must
have x̄ ∈ Hjk for all k after some finite number of iterations K. Show that this implies
that ‖x̄−xk+1‖2 = ‖x̄−xk‖2 for all k ≥ K, and therefore ‖x̄−xk‖2 remains constant for
k ≥ K. This contradicts the assumption that xk is an infinite non-constant sequence
with limit x̄.

6 For each f , find the subdifferential ∂f , the conjugate f ∗, the subdifferential of the conjugate
∂f ∗, and verify graphically that ∂f and ∂f ∗ are inverses.

(a) f(x) = exp(|x|).
(b) f(x) = −

√
1− x2 with domain [−1, 1].

(c) The Huber penalty

f(x) =

{
x2/2 |x| ≤ 1
|x| − 1/2 |x| > 1.

(d) f(x) = max {0, |x| − 1}.
(e) f(x) = log(1 + exp(x)).

7 Give a formula or simple algorithm for evaluating the proximal mapping

proxf (x) = argmin
u

(
f(u) +

1

2
‖u− x‖2

2

)
of each of the following functions on Rn.

5

(a) f(x) = ‖x‖1 with domain dom f = {x ∈ Rn | ‖x‖∞ ≤ 1}.
(b) f(x) = ‖Ax− b‖1 where AAT = D with D positive diagonal.

(c) f(x) = maxk=1,...,n xk.

(d) f(x) = ‖x‖2 with domain Rn
+.

(e) The function

f(x) = inf
t≥0

(rt+
n∑
i=1

max{xi − t, 0})

where r is an integer between 1 and n. Taking the dual of the optimization problem in
the definition, we can derive the equivalent expression

f(x) =
r∑
i=1

max{x[i], 0},

where x[1] ≥ x[2] ≥ · · · ≥ x[n] are the components of x sorted in descending order.

(f) f(x) = ‖Ax‖2 with A nonsingular.

Hints. For the function (a) the minimization in the definition of proxf is separable. In
problem (b), combine the property on page 6.8 with the scaling rule on page 6.4. The
functions in (c), (d), (e) can be expressed as support functions, and the proximal operators
follow from the property on page 6.18. If we omit the t ≥ 0 constraint in the definition of f
in part (e), the answer is given in the example on page 6.18, since it can be shown that the
function

f̃(x) = inf
t

(rt+
n∑
i=1

max{xi − t, 0})

is equal to f̃(x) =
∑r

i=1 x[i]. The functions f̃ and f in part (e) are used in finance (the
conditional value at risk for discrete distributions) and machine learning (ν-support vector
regression and classification). The function in (f) is a norm and the proximal mapping can
be computed via projection on the unit ball for the dual norm (page 6.19).

8 Give the proximal mapping of the following two functions.

(a) f(X) = − log detX where X ∈ Sn and dom f = Sn++.

(b) f(X) = ‖X‖∗ where X ∈ Rm×n and ‖ · ‖∗ is the trace norm (sum of singular values).
This is the dual norm of the spectral norm (maximum singular value).

We use the Frobenius norm ‖ · ‖F to define the proximal mappings of functions of matrices:

proxf (X) = argmin
U

(
f(U) +

1

2
‖U −X‖2

F

)
.

6

9 The Moreau envelope of a closed convex function f is defined as

f(λ)(x) = inf
u

(
f(u) +

1

2λ
‖u− x‖2

2

)
(lecture 8, page 11). Prove the following formula for the proximal mapping of f(λ):

proxµf(λ)(x) =
λ

λ+ µ
x+

µ

λ+ µ
prox(λ+µ)f (x).

As an example, applying this to f(x) = ‖x‖1 gives a formula for the proximal mapping of
the Huber penalty. Another example (for f(x) = δC(x)) is the formula for the prox-operator
of the squared Euclidean distance on page 6.21.

10 We have discussed the following technique for smoothing a nondifferentiable convex function
f(x): find the conjugate f ∗(y), add a small strongly convex term d(y) to it, and take the
conjugate (f ∗ + d)∗ of the modified conjugate. The Moreau–Yosida smoothing in lecture 8
is an example with d(y) = (t/2)‖y‖2

2.

In this problem, we work out two other examples. Find (f ∗ + d)∗ for the following com-
binations of f and d. In both problems, the variable x is an n-vector and µ is a positive
constant.

(a) f(x) = ‖x‖1 and d(y) = µ
∑n

i=1(1−
√

1− y2
i).

(b) f(x) = maxi=1,...,n xi and d(y) = µ(
∑n

i=1 yi log yi + log n).

11 Projection on order cone.

Ordering constraints x1 ≤ x2 ≤ · · · ≤ xn arise in many applications. In this problem we
discuss the Euclidean projection on the cone defined by these inequalities, i.e., the problem

minimize 1
2
‖x− a‖2

2

subject to x1 ≤ x2 ≤ · · · ≤ xn.
(3)

This is known in statistics as the isotonic regression problem. It can be written as

minimize 1
2
‖x− a‖2

2

subject to Ax � 0,
(4)

where A is the (n− 1)× n matrix

A =

1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1

.

7

The following algorithm is called the Pool Adjacent Violators Algorithm. We use the following
notation. If β is a subset of {1, 2, . . . , n}, then aβ is the subvector of a with elements indexed
by β, and avg(aβ) denotes the average of the elements of the vector aβ. Thus, if β = {2, 3, 4},
then

aβ = (a2, a3, a4), avg(aβ) =
a2 + a3 + a4

3
.

Pool Adjacent Violators Algorithm. Initially, l = 1 and β1 = {1}. For
i = 2, . . . , n, execute the following steps.

(a) Set l := l + 1 and define βl = {i}.
(b) While avg(aβl−1

) ≥ avg(aβl), merge the sets βl−1 and βl:

βl−1 := βl−1 ∪ βl, l := l − 1.

An example is shown in Table 1.

When the algorithm terminates, the sets β1, . . . , βl partition {1, 2, . . . , n}. We show that
the optimal solution of (5) is given by

xβi = avg(aβi)1, i = 1, . . . , l. (5)

(a) Show that x is optimal for (6) if and only if there exists an (n− 1)-vector z with

Ax � 0, z � 0, zTAx = 0, x+ AT z = a.

(b) Verify that after cycle i = 1, . . . , n in the algorithm, the following properties hold.

(i) The sets βi are nonempty sets of consecutive indices in {1, 2, . . . , n} and they follow
each other, i.e., max βk+1 = min βk+1 for k = 1, . . . , l−1. Together, they partition
{1, 2, . . . ,max βl}.

(ii) The averages of the subvectors aβk are strictly increasing:

avg(aβk) < avg(aβk+1
), k = 1, . . . , l − 1.

(iii) The cumulative sums of the vectors aβk − avg(aβk)1 are nonnegative:

cs(aβk) � 0, k = 1, . . . , l,

where cs(u) is defined as

cs(u) =

1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 (u− avg(u)1).

(Note that the last element of cs(u) is necessarily zero.)

8

i Subvectors aβ1 , . . . , aβl Averages avg(aβ1), . . . , avg(aβl)

1 7 7

2 7 −8 7, −8

7, −8 −1/2

3 7, −8 −6 −1/2, −6

7, −8, −6 −7/3

4 7, −8, −6 18 −7/3, 18

5 7, −8, −6 18 −9 −7/3, 18, −9

7, −8, −6 18, −9 −7/3, 9/2

6 7, −8, −6 18, −9 4 −7/3, 9/2, 4

7, −8, −6 18, −9, 4 −7/3, 13/3

7 7, −8, −6 18, −9, 4 16 −7/3, 13/3, 16

8 7, −8, −6 18, −9, 4 16 17 −7/3, 13/3, 16, 17

9 7, −8, −6 18, −9, 4 16 17 −10 −7/3, 13/3, 16, 17, −10

7, −8, −6 18, −9, 4 16 17,−10 −7/3, 13/3, 16, 7/2

7, −8, −6 18, −9, 4 16, 17, −10 −7/3, 13/3, 23/3

10 7, −8, −6 18, −9, 4 16, 17, −10 −8 −7/3, 13/3, 23/3, −8

7, −8, −6 18, −9, 4 16, 17, −10, −8 −7/3, 13/3, 15/4

7, −8, −6 18, −9, 4, 16, 17, −10, −8 −7/3, 4

Table 1: The projection of the vector a = (7,−8,−6, 18,−9, 4, 16, 17,−10,−8) on the order
cone is x = (−7/3,−7/3,−7/3, 4, 4, 4, 4, 4, 4, 4).

9

(c) Show that the optimality conditions in part (a) are satisfied by the vector x defined
in (7) and the (n− 1)-vector z defined by

zβi = cs(aβi), i = 1, . . . , l − 1, (zβ̄l , 0) = cs(aβl),

where β̄l = βl \ {n}.
(d) Explain why the complexity of the algorithm is linear in n.

12 In the lecture we derived ADMM from the Douglas–Rachford splitting method applied to a
dual problem. One can also derive the Douglas–Rachford splitting from ADMM. Show that
ADMM applied to the problem

minimize f(x) + g(u)
subject to x− u = 0

(with variables x and u) gives the Douglas–Rachford splitting method in its equivalent form
on page 11.5.

13 Describe an efficient implementation of ADMM for each of the following four optimization
problems with variable x ∈ Rn.

We use the notation H(x) for the linear function that maps an n-vector x to the p×q Hankel
matrix

H(x) =

x1 x2 x3 · · · xq
x2 x3 x4 · · · xq+1

x3 x4 x5 · · · xq+2
...

...
...

...
xp xp+1 xp+2 · · · xn

 ,
for some fixed p, q with p+ q− 1 = n. The matrix D in parts (b) and (d) is the (n− 1)× n
finite-difference matrix

D =

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

.

The matrix norm ‖ · ‖∗ is the trace norm or nuclear norm (sum of the singular values). See
problem 2(b) of homework 4 for the proximal mapping of the trace norm.

By “efficient implementation” we mean that the cost per iteration should be dominated by
the cost of a singular value decomposition of a p×q matrix (assuming p and q are not small).

(a) Given a ∈ Rn, solve

minimize ‖H(x)‖∗ +
1

2
‖x− a‖2

2.

10

(b) Given a ∈ Rn and γ > 0, solve

minimize ‖H(x)‖∗ +
1

2
‖x− a‖2

2

subject to ‖Dx‖2 ≤ γ.

(c) Given a ∈ Rn, solve
minimize ‖H(x)‖∗ + ‖x− a‖1.

(d) Given a ∈ Rn and γ > 0, solve

minimize ‖H(x)‖∗ + ‖x− a‖1

subject to ‖Dx‖2 ≤ γ.

14 Linearized ADMM. Consider the standard problem

minimize f(x) + g(Ax) (6)

where f and g are closed convex functions. In lecture 12 (page 12.31) we derived the proximal
method of multipliers from the proximal point method applied to the primal–dual optimality
conditions. Here we write the proximal method of multipliers as

(xk+1, yk+1) = argmin
x,y

(f(x) + g(y) +
τ

2
‖Ax− y + uk‖2

2 +
1

2σ
‖x− xk‖2

2)

uk+1 = uk + Axk+1 − yk+1.

The two parameters τ and σ correspond to τ = σ = t on page 12.31. Using different values
can be interpreted as a simple “preconditioning” of the proximal point method (see page
12.29). The variable uk corresponds to uk = zk/t on page 12.31.

We note that the iteration is similar to the augmented Lagrangian method, with an extra
term ‖x − xk‖2

2 added to the augmented Lagrangian. Motivated by the interpretation of
ADMM as a simplified augmented Lagrangian method, we can replace the joint minimization
over x, y by an alternating minimization:

xk+1 = argmin
x

(f(x) +
τ

2
‖Ax− yk + uk‖2

2 +
1

2σ
‖x− xk‖2

2)

yk+1 = prox(1/τ)g(Axk+1 + uk)

uk+1 = uk + Axk+1 − yk+1.

For general f and A, the optimization problem in the x-update may be expensive, because
the second term in the cost function contributes a quadratic term xTATAx. To avoid this,
one can make a further simplification and linearize the second term around xk:

1

2
‖Ax− yk + uk‖2

2 ≈
1

2
‖Axk − yk + uk‖2

2 + (Axk − yk + uk)
TA(x− xk).

11

If we omit the constant terms (in x), the simplified x-update is

xk+1 = argmin
x

(f(x) + τ(Axk − yk + uk)
TAx+

1

2σ
‖x− xk‖2

2)

= argmin
x

(f(x) +
1

2σ
‖x− xk + τσAT (Axk − yk + uk)‖2

2)

= proxσf (xk − τσAT (Axk − yk + uk)).

The resulting method is known as linearized ADMM:

xk+1 = proxσf (xk − τσAT (Axk − yk + uk))

yk+1 = prox(1/τ)g(Axk+1 + uk)

uk+1 = uk + Axk+1 − yk+1.

Show that linearized ADMM is equivalent to PDHG applied to the dual of (9),

maximize −g∗(z)− f ∗(−AT z).

PDHG for this problem is

zk+1 = proxτg∗(zk + τAx̃k)

x̃k+1 = proxσf (x̃k − σAT (2zk+1 − zk)).

15 Proximal gradient method as Bregman proximal point algorithm [O’Connor]. The following
iteration is an extension of the proximal point algorithm (page 8.2, with tk = 1) to a Bregman
distance d:

xk+1 = argmin
x

(f(x) + d(x, xk)). (7)

We apply this to a cost function f(x) = g(x) + h(x), where g and h are convex, and g is
differentiable with a Lipschitz continuous gradient. As we have seen in lecture 1 (page 1.17),
this means that the function

φ(x) =
1

2t
xTx− g(x)

is convex for 0 < t ≤ 1/L, if L is the Lipschitz constant for the Euclidean norm.

Find the Bregman distance d generated by this kernel φ. Show that the proximal point
iteration (10) with this distance reduces to the proximal gradient iteration

xk+1 = proxth(xk − t∇g(xk)).

16 Exponential method of multipliers. We consider a convex problem with m linear inequality
constraints, and the dual problem:

Primal: minimize f(x)
subject to Ax � b

Dual: maximize −bT z − f ∗(−AT z)
subject to z � 0.

12

The dual variable z is an m-vector. In lecture 8 we interpreted the augmented Lagrangian
method as the proximal point method applied to the dual problem. Here we work out what
happens if we replace the squared Euclidean distance in the proximal point method with the
relative entropy

d(u, v) =
m∑
i=1

(ui log(ui/vi)− ui + vi).

The Bregman proximal point iteration for the dual problem is

zk+1 = argmin
u

(
bTu+ f ∗(−ATu) +

1

tk
d(u, zk)

)
,

where tk is a positive step size and the starting point z0 is a positive vector. Show that this
is equivalent to the following iteration:

x̂ = argmin
x

(f(x) +
1

tk

m∑
i=1

zk,ie
tk(aTi x−bi))

zk+1,i = zk,ie
tk(aTi x̂−bi), i = 1, . . . ,m.

Here aTi is the ith row of A, and zk,i is the ith component of the m-vector zk.

17 [Polyak] In this problem we compare the convergence results for the conjugate gradient
method (lecture 13) with the gradient method (lecture 1). We consider the minimization of
a quadratic function

f(x) =
1

2
xTAx− bTx

with A positive definite and λmax(A) = L. From the last expression on page 13.15 we have
the following bound on the error after k iterations:

2(f(xk)− f ?) ≤

(
n∑
i=1

d2
i

λ2
i

)
inf

deg(q)≤k, q(0)=1

(
max
i=1,...,n

λiq(λi)
2

)
= ‖x?‖2

2 inf
deg(q)≤k, q(0)=1

(
max
i=1,...,n

λiq(λi)
2

)
. (8)

The second line follows from ‖Λ−1d‖2 = ‖QΛ−1d‖2 = ‖QΛ−1QT b‖2 = ‖A−1b‖2.

The infimum in (11) is over all polynomials q that satisfy q(0) = 1 and have degree k or
less. We will use Chebyshev polynomials to construct a polynomial q that satisfies these
conditions, and therefore gives an upper bound on the right-hand side of (11).

The Chebyshev polynomial of degree m, denoted by Tm, is defined by the recursion

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t)− Tm−1(t) for m ≥ 1.

The following properties will be needed.

13

• The Chebyshev polynomials of odd degree only contain odd powers of t. The coefficient
of t in T2k+1(t) is (−1)k(2k + 1). For example,

T1(t) = t, T3(t) = 4t3 − 3t, T5(t) = 16t5 − 20t3 + 5t,

• |Tm(t)| ≤ 1 for t ∈ [−1, 1].

Verify that the polynomial

q(t) =
(−1)k

2k + 1

T2k+1(
√
t/L)√

t/L

is a polynomial of degree k and satisfies q(0) = 1. Use this polynomial in (11) to show that
after k iterations of the conjugate gradient method (started at x0 = 0),

f(xk)− f ? ≤
L

2(2k + 1)2
‖x0 − x?‖2

2. (9)

The corresponding result for the gradient method (page 1.26) with fixed step size t = 1/L is

f(xk)− f ? ≤
L

2k
‖x0 − x?‖2

2.

While the bound (12) only holds for quadratic functions, the faster 1/k2 convergence has
motivated research on accelerated gradient methods.

18 Perturbation lemma. With the notation of page 14.3, show that if A is invertible and
‖A−1B‖ < 1, then

‖(A+B)−1 − A−1‖ ≤ ‖A−1B‖
1− ‖A−1B‖

‖A−1‖.

19 [Deuflhard] Consider a nonlinear equation f(x) = 0 where f : Rn → Rn is differentiable.
Suppose f(x̂) 6= 0 and the Jacobian matrix f ′(x̂) of f at x̂ is nonsingular. Show that the
Newton direction v = −f ′(x̂)−1f(x̂) is a descent direction of the function gA(x) = ‖Af(x)‖2

2,
for any nonsingular matrix A. In other words, show that

∇gA(x̂)Tv < 0 for all nonsingular A. (10)

Are there other directions v (other than the Newton direction) with this property?

20 [Myklebust and Tunçel] Quasi-Newton update with two secant equations. Let y1, y2, s1, s2 be
n-vectors that satisfy [

sT1 y1 sT1 y2

sT2 y1 sT2 y2

]
=

[
α β
β γ

]
� 0.

Suppose H is a given symmetric positive definite n×n matrix. We construct an update H+

of H as follows.

(a) Define ŷ = y2 − (β/α)y1 and ŝ = s2 − (β/α)s1.

14

(b) Make two consecutive BFGS updates:

Ĥ = H +
1

yT1 s1

y1y
T
1 −

1

sT1Hs1

Hs1s
T
1H

H+ = Ĥ +
1

ŷT ŝ
ŷŷT − 1

ŝT Ĥŝ
ĤŝŝT Ĥ.

Show that H+ is positive definite and satisfies the two secant equations

H+s1 = y1, H+s2 = y2.

15

