Analytic center cutting-plane method

- analytic center cutting-plane method
- computing the analytic center
- pruning constraints
- lower bound and stopping criterion

Analytic center and ACCPM

analytic center of a set of inequalities $Ax \leq b$

$$x_{\rm ac} = \underset{z}{\operatorname{argmin}} - \sum_{i=1}^{m} \log(b_i - a_i^T z)$$

analytic center cutting-plane method (ACCPM)

localization method that

- represents \mathcal{P}_k by set of inequalities $A^{(k)}$, $b^{(k)}$
- selects analytic center of $A^{(k)}x \preceq b^{(k)}$ as query point $x^{(k+1)}$

ACCPM algorithm outline

given an initial polyhedron $\mathcal{P}_0 = \{x \mid A^{(0)}x \leq b^{(0)}\}$ known to contain Crepeat for k = 1, 2, ...

1. compute $x^{(k)}$, the analytic center of $A^{(k-1)}x \preceq b^{(k-1)}$

2. query cutting-plane oracle at $x^{(k)}$

3. if $x^{(k)} \in C$, quit; otherwise, add returned cutting plane $a^T z \leq b$:

$$A^{(k)} = \begin{bmatrix} A^{(k-1)} \\ a^T \end{bmatrix}, \qquad b^{(k)} = \begin{bmatrix} b^{(k-1)} \\ b \end{bmatrix}$$

if $\mathcal{P}_k = \{x \mid A^{(k)}x \preceq b^{(k)}\} = \emptyset$, quit

Constructing cutting planes

cutting planes for optimal set ${\cal C}$ of convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$

• if $x^{(k)}$ is not feasible, say $f_j(x^{(k)}) > 0$, we have (deep) feasibility cut

$$f_j(x^{(k)}) + g_j^T(z - x^{(k)}) \le 0$$
 where $g_j \in \partial f_j(x^{(k)})$

• if $x^{(k)}$ is feasible, we have (deep) objective cut

$$g_0^T(z - x^{(k)}) + f_0(x^{(k)}) - f_{\text{best}}^{(k)} \le 0 \quad \text{where } g_0 \in \partial f_0(x^{(k)})$$

and $f_{\text{best}}^{(k)} = \min\{f_0(x^{(i)}) \mid i \le k, x^{(i)} \text{ feasible}\}$

Computing the analytic center

minimize
$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

dom $\phi = \{x \mid a_i^T x < b_i, i = 1, ..., m\}$

challenge: we are not given a point in $\operatorname{\mathbf{dom}} \phi$

some options

- use phase I to find $x \in \mathbf{dom} \phi$, followed by standard Newton method
- standard Newton method applied to dual problem
- infeasible start Newton method (EE236B lecture 11, BV §10.3)

Dual Newton method

dual analytic centering problem

maximize
$$g(z) = \sum_{i=1}^{m} \log z_i - b^T z + m$$

subject to $A^T z = 0$

optimality conditions

x, z are primal and dual optimal if

$$b_i - a_i^T x = 1/z_i, \qquad A^T z = 0, \qquad z \succ 0, \quad Ax \prec b$$

Initialization of dual Newton method

dual method is interesting when a strictly feasible z is easy to find, e.g.,

$$A = \left[\begin{array}{c} I \\ -I \\ B \end{array} \right]$$

• dual feasibility requires

$$A^T z = z_1 - z_2 + B^T z_3 = 0, \qquad z = (z_1, z_2, z_3) \succeq 0$$

(for example, can pick any $z_3 \succ 0$ and find corresponding z_1 , z_2)

• this corresponds to variable bounds in (primal) centering problem, e.g.,

$$\mathcal{P}_0 = \{ x \mid l \preceq x \preceq u \}$$

Dual Newton equation

analytic centering problem

minimize
$$-\sum_{i=1}^{m} \log z_i + b^T z$$

subject to $A^T z = 0$

Newton equation

$$\begin{bmatrix} -\operatorname{diag}(z)^{-2} & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta z \\ w \end{bmatrix} = \begin{bmatrix} b - \operatorname{diag}(z)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

can be solved by elimination of Δz : solve

$$(A^T \operatorname{diag}(z)^2 A) w = A^T (\operatorname{diag}(z)^2 b - z)$$

and take $\Delta z = z - \operatorname{diag}(z)^2(b - Aw)$

Stopping criterion for dual Newton method

Newton decrement at z is

$$\lambda(z) = \left(\Delta z^T \nabla g(z)\right)^{1/2} = \left\| \mathbf{diag}(z)^{-1} \Delta z \right\|_2$$

• $\lambda(z) = 0$ implies w is the analytic center:

$$b - Aw = \operatorname{diag}(z)^{-1}\mathbf{1}$$

•
$$\lambda(z) < 1$$
 implies $x = w$ is primal feasible

$$b - Aw = \operatorname{diag}(z)^{-1}(1 - \operatorname{diag}(z)^{-1}\Delta z) \succ 0$$

terminating with small $\lambda(z)$ gives strictly feasible, approximate center

Infeasible start Newton method

reformulated analytic centering problem (variables x and y)

minimize
$$-\sum_{i=1}^{m} \log y_i$$
, subject to $y = b - Ax$

optimality conditions

$$y \succ 0, \qquad z \succ 0, \qquad r(x, y, z) = \begin{bmatrix} y + Ax - b \\ A^T z \\ z - \operatorname{diag}(y)^{-1} \mathbf{1} \end{bmatrix} = 0$$

initialization: can start from *any* x, z, and *any* $y \succ 0$

example: take previous analytic center as x, and choose y as

$$y_i = b_i - a_i^T x$$
 if $b_i - a_i^T x > 0$, $y_i = 1$ otherwise

Newton equation for infeasible Newton method

$$\begin{bmatrix} A & I & 0 \\ 0 & 0 & A^T \\ 0 & \operatorname{diag}(y)^{-2} & I \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = -\begin{bmatrix} y + Ax - b \\ A^T z \\ z - \operatorname{diag}(y)^{-1} \mathbf{1} \end{bmatrix}$$

can be solved by block elimination of Δy , $\Delta z:$ solve

$$(A^T \operatorname{diag}(y)^{-2} A)\Delta x = A^T \operatorname{diag}(y)^{-2}(b - Ax - 2y)$$

and take

$$\Delta y = b - y - Ax - A\Delta x, \qquad \Delta z = \operatorname{diag}(y)^{-2}(y - \Delta y) - z$$

Pruning constraints

enclosing ellipsoid at analytic center

if x_{ac} is the analytic center of $a_i^T x \leq b_i$, $i = 1, \ldots, m$, then the ellipsoid

$$\mathcal{E} = \{ z \mid (z - x_{\mathrm{ac}})^T \nabla^2 \phi(x_{\mathrm{ac}}) (z - x_{\mathrm{ac}}) \le m^2 \}$$

contains $\mathcal{P} = \{z \mid a_i^T x \leq b_i, i = 1, \dots, m\}$

- proof in BV page 420
- from expression for Hessian,

$$\mathcal{E} = \left\{ z \; \left| \; \sum_{i=1}^{m} \left(\frac{a_i^T (z - x_{\rm ac})}{b_i - a_i^T x_{\rm ac}} \right)^2 \le m^2 \right\} \right\}$$

(ir)relevance measure for constraint $a_i^T x \leq b_i$

$$\eta_i = \frac{b_i - a_i^T x_{\rm ac}}{(a_i^T \nabla^2 \phi(x_{\rm ac})^{-1} a_i)^{1/2}}$$

if $\eta_i \geq m$, then constraint $a_i^T x \leq b_i$ is redundant

proof: the optimal value of

maximize
$$a_i^T z$$

subject to $(z - x_{ac})^T H(z - x_{ac}) \le m^2$

(with $H = \nabla^2 \phi(x_{\mathrm{ac}})$) is

$$m\sqrt{a_i^T H^{-1} a_i} + a_i^T x_{\rm ac}$$

the constraint is redundant if this is less than b_i

common ACCPM constraint dropping schemes

- drop all constraints with $\eta_i \ge m$ (guaranteed to not change \mathcal{P})
- drop constraints in order of irrelevance, keeping constant number, usually 3n 5n

Lower bound in ACCPM

suppose we apply ACCPM to a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $Gx \le h$

the inequalities $A^{(k-1)}x \preceq b^{(k-1)}$ at iteration k can be divided in two sets

- $A_{\rm f}x \preceq b_{\rm f}$ includes the constraints $Gx \preceq h$ plus the feasibility cuts
- $A_{o}x \preceq b_{o} + c_{o}$ includes the objective cuts

$$f_0(x^{(i)}) + g_0^{(i)T}(x - x^{(i)}) \le f_{\text{best}}^{(i)},$$

with $g_0^{(i)T} x^{(i)} - f_0(x^{(i)})$ stored in the vector b_0 and $f_{\text{best}}^{(i)}$ in c_0

piecewise-linear relaxation: the problem

minimize $\max(A_{o}x - b_{o})$ subject to $A_{f}x \leq b_{f}$

is a relaxation of the problem (1) $(\max(y) \text{ for vector } y \text{ means } \max_i y_i)$

• $f_0(x) \ge \max(A_0x - b_0)$ for all x (by convexity)

• optimal set is contained in the polyhedron $A_{\rm f}x \leq b_{\rm f}$ (by construction)

dual of PWL relaxation

maximize
$$-b_{o}^{T}u - b_{f}^{T}v$$

subject to $A_{o}^{T}u + A_{f}^{T}v = 0$
 $\mathbf{1}^{T}u = 1$
 $u \succeq 0, \quad v \succeq 0$

dual feasible points give lower bounds on optimal value of (1)

dual feasible point from analytic centering

 $x^{(k)}$ is the analytic center of $A_{o}x \preceq b_{o} + c_{o}$, $A_{f}x \preceq b_{f}$; hence

$$A_{\rm o}^T z_{\rm o} + A_{\rm f}^T z_{\rm f} = 0,$$

where

$$z_{\rm o} = \operatorname{diag}(b_{\rm o} + c_{\rm o} - A_{\rm o} x^{(k)})^{-1} \mathbf{1}, \qquad z_{\rm f} = \operatorname{diag}(b_{\rm f} - A_{\rm f} x^{(k)})^{-1} \mathbf{1}$$

normalizing gives a dual feasible point for the PWL relaxation:

$$u = \frac{1}{\mathbf{1}^T z_{\mathrm{o}}} z_{\mathrm{o}}, \qquad v = \frac{1}{\mathbf{1}^T z_{\mathrm{o}}} z_{\mathrm{f}}$$

• $l^{(k)} = -b_0^T u - b_f^T v$ is a lower bound on optimal value of (1)

from $x^{(k)}$ we get a readily computed lower bound

Stopping criterion

keep track of best point found, and best lower bound

• best function value so far

$$f_{\text{best}}^{(k)} = \min_{\substack{i=1,\dots,k\\x^{(i)_{\text{feasible}}}}} f_0(x^{(i)})$$

• best lower bound so far

$$l_{\text{best}}^{(k)} = \max_{i=1,...,k} l^{(i)}$$

can stop when $f_{\text{best}}^{(k)} - l_{\text{best}}^{(k)} \le \epsilon$ to guarantee ϵ -suboptimality

Example: piecewise linear minimization

minimize $\max_{i=1,...,m} (a_i^T x + b_i)$ subject to $-1 \leq x \leq 1$

n=100 variables, m=200 terms, $f^{\star}\approx 0.36$

computed lower bound on optimal value

$$f_{\text{best}}^{(k)} - l^{(k)}$$
 (dashed line) and $f_{\text{best}}^{(k)} - f^{\star}$ (solid line)

ACCPM with constraint dropping

same problem; convergence with and without pruning (to 3n constraints)

References

• Y. Ye, Interior-Point Algorithms. Theory and Analysis (1997)

§8.2.3 gives a convergence proof of ACCPM (the bound on the number of iterations is n^2 times a function of R/r)

• S. Boyd, course notes for EE364b, Convex Optimization II