L. Vandenberghe EE236C (Spring 2016)

16. Barrier functions

e self-concordant functions
e Newton’s method

e normal barriers
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Self-concordant functions

a function f : R™ — R is self-concordant if

e dom f is an open convex set
e fis three times continuously differentiable and V2 f(x) = 0 on dom f
e fisclosed,ie., f(x) = ocoasz — bddom f

e the Hessian of f satisfies the inequality

d
@VQf(x—Fozv) = 20, V* f(2)

a=0
forall z € dom f and all v € R™, where

1/2

lvlle = (0" V*f(2)v)
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Equivalent definitions
Two-sided matrix inequality

V(@) 2 VP dar)| 2ol V@) ()

a=0

lower bound follows from the upper bound applied to —v

Restriction to a line: g(a) = f(z + awv) satisfies
—29”(0&)3/2 < g///(&) < 29//(a)3/2 (2)

e at o = 0, this follows from (1) and ¢" (o) = vIV2f(z + av)v

e can be used as equivalent definition of self-concordance
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Examples and basic properties

Examples

o f(x)=—-> " log(bi—alz)on{z|alxz<b;,i=1,...,m}

o f(z)=—log(z!Px+qlz+r)on{z |z Pr+q¢'z+r>0}ifP <0
o f(x)=xlogz —logron R,

Properties

e f is self-concordant if and only if its restriction to an arbitrary line is s.c.
e if f1, fo are self-concordant, then f; + f5 is self-concordant
e if f is self-concordant, then [ f is self-concordant for 3 > 1

e if f is self-concordant, then f(Ax + b) is self-concordant

Barrier functions 16-4



Bounds on second derivatives

e bounds on second derivative of restriction to a line g(a) = f(x + av)

[v]lZ

(1 = afjv]l.)?

IvIZ
(1+afjv]lz)

5 < g"'(a) <

(note that o] = g"(0))

e bounds on Hessian

1

(1 = aflvz)?

(1 = allvlls)* V2 f(z) 2 VEf(z + av) = Vif(z) @)

these inequalities hold for 0 < al|v]|, < 1
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Proof of first pair of inequalities:

e from (2) on page 16-3,

e integrate to get

o if 1 —a+/g"”(0) > 0 this can be written as

Oy« 9'O)

(1+ag(0)/2)"
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Proof of second pair of inequalities:
define h(a) = w! V2 f(z + av)w, with arbitrary w # 0
e from (1) on page 16-3

d
= log h(a)

< QHUHQZ—I—CX’U =2 g”(Oé)

e therefore, from (3) on page 16-5,

% log h(a)

<

e integrate to get
2log(1 — al|v]z) < log(h(a)/h(0)) < —2log(1 — al[v||,)
(1 = eflvll2)?h(0) < h(e) < (1= allv]le)~*h(0)
since w is arbitrary, this proves (4)
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Bounds on function value

if ||y — x|/ < 1, then

W(lly —zlle) < fly) = fl2) = V@) (y—2) < o (ly—2/)

2
= w(u)
e w(u)and w*(u) are defined as L5l — w(w)
w(u) = u—log(l+u) 1
wi(u) = —u—log(l—u) |
0.5
e w and w* are conjugates | /

0 0.2 0.4 0.6 0.8 1
U

inequalities follow from integration of (3) withv =y — x
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Dikin ellipsoid

Definition: the ellipsoid

e = {yllly—zlle <1}
= {ylly—-2)'Vf(2)(y —2) < 1}

is called the Dikin ellipsoid centered at x € dom f
Dikin ellipsoid theorem
int £, C dom f

follows from:

e the upper bound on f(y) (page 16-8), which is finite for ||y — z||, < 1

e the fact that f is a closed function
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Outline

e self-concordant functions

e Newton’s method

e normal barriers



Newton decrement

Newton step at x:
Az =—V>f(z)"'Vf(=z)

Newton decrement:

M) = (VA@)TV2 @) Vi)
= A,
= Vi@,

where ||[v||z« = (WTV2f(2)"v)!/2 is the dual of the local norm || - ||,

Feasible step size:

Dikin ellipsoid theorem implies that x + aAx € dom f for a < 1/A(x)
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Newton method

we will study the following version of Newton’s method

Algorithm
selecte € (0,1/2),n € (0,1/4], and a starting point x € dom f
repeat:

1. compute Newton step Ax and Newton decrement A(x)
2.if M(x)? < ¢, return z
3. otherwise, set x := x + aAx with

1

=7 e if A\(x) > n, a =1 otherwise

e stopping criterion guarantees f(x) — f(x*) < € (see next page)

e alternatively, can use backtracking line search from EE236B
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Bound on suboptimality

if A\(z) < 1then f has a unique minimizer x* and

fla®) =z flz) —w ' (Mz))
= f(z) + Az) + log(1 — A(z))

* —w*(Qu)

- U

0.6 |
in particular, if A(x) < 0.68,

0.4}

f(z) = f(=*) < M=)

useful as stopping criterion 0.27
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Proof:

e from the lower bound on page 16-8, in an arbitrary direction v,

fl@a+av) > f(@)+aVf(z)v+walv])
> f(x) — aX(z)||v]| + w(al|v])
> fx) — aA(@)|v]|e + afv]l. — log(1 +aljv]l.)  (5)

(second line from the Cauchy-Schwarz inequality)
e if \(z) < 1therh.s. of (5) is minimized at a|v||, = A(x)/(1 — A(x)):
inf f(z +av) > f(z)—w"(Az))
= [(@) + Alz) +log(1 — Axz))
right-hand side is a lower bound on inf, f(x) because v is arbitrary
e if \(x) < 1, the right-hand side of (5) grows to infinity as a||v||, — oo

therefore the sublevel sets of f are bounded and f attains its minimum

e since V2f(z) = 0 the minimizer is unique
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Damped Newton step

+ A
x x+1—|—)\(a:) x

guarantees z+ € dom f and

fla™) < flz) —wi(z))
= f(z) — Xx) +log(1 + A(x))

Consequences (for Newton algorithm on page 16-11)

e each damped Newton step decreases f(x) by at least w(n)
e if f is bounded below, number of damped Newton iterations is finite
e if f is bounded below, its minimum is attained

(from page 16-12, since A(x) < 1 after a finite number of damped steps)
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Proof: from the upper bound on page 16-8:

f(@)+ V(@) (@" —2) +w (a7’ - 2l.)

_ A@)® e A@)
= T e T T

= f(z) —w(A(z))

f@™)

IA
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Quadratic convergence

if \(x) < 1thenxz™ =2 + Az € dom f and

in particular, if A(x) < 0.29,
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Proof: since A(x) and Newton’s method are affine invariant, we can assume
Vif(e)=1, Az=-Vf(z), Ma)=|[Azl2=|V](z)|-

e from the Hessian bounds (4), with V2 f(z) = I

1

_ 2 2 (.4
(1—X2))%I = V2f(z) < A —)\(a:))QI
e by integrating the Hessian bounds (4),
! Az)
2
/0 Vef(x + alAx)da — I =< 1—)\(:1:)[

and

/01V2f(x—|—ozAa:)doz—I§ - ()\(x)—
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therefore (with AT = A(z7), A = A(2))

1/2

A= (VfEDTV )TV f(ET))
< Vi,

— —||Vf(a") = V() — Az,

1
= T (/o V2f(x+ozAa:)doz—I>A:B

1 A

<

< o Al
)\2

(1=X)?

2
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Summary: Newton’s method

convergence results for the algorithm of page 16-11

e damped Newton phase: if A\(z) > 7,

f(@T) = f(z) < —w(n)

function value decreases by at least a positive constant w(7)

e quadratically convergent phase: if \(x) < 7,
oA (zT) < (2\(z))°

implies A\(z™) < 2n? < 7, and Newton decrement decreases to zero
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Iteration complexity

if fis bounded below, Newton’s algorithm terminates after at most

f(@®) — f(x*)
w(n)

+ log, log,(1/¢) iterations

e 1st term bounds number of iterations in damped Newton phase

e 2nd term bounds number of iterations in quadratically convergent phase:

after k iterations in quadratically convergent phase,

@) < 2 < (5) @) e A ()

so f(x) — f(z*) < e€ifk > log,log,(1/€) — 1

Barrier functions 16-20



Outline

e self-concordant functions

e Newton’s method

e normal barriers



Normal barrier
Definition
¢ is a f-normal barrier for the proper cone K if it is

e self-concordant with domain int K

e logarithmically homogeneous with parameter 6:

o(tr) = ¢p(x) —Ologt Vreint K, t >0

Interpretation

a negative ‘logarithm’ for K; generalizes ¢(x) = —logx for K = R
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Examples

Nonnegative orthant: X' = R

é(z) = =) _loga, (0 =m)

Second-order cone: K = Q™ = {(z,y) e R ! x R | ||z]|2 < y}

o(z,y) = —log(y* — ' x) (0 =2)

Semidefinite cone: K = S? = {x ¢ RPP+1/2 | mat(x) > 0}

¢(x) = —log det mat(x) (0 = p)
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Examples

Exponential cone K., = cl{(z,y,2) € R? | ye®/¥ < z, y > 0}

¢(z,y,2) = —log (ylog(z/y) — x) — log z — log y (0 =3)

Power cone: K = {(x1,22,y) € Ry Xx Ry x R | |y| < {257}

¢(x,y) = —log (:c%o‘lazgw — y2> — log x1 — log x2 (0 =4)

Barrier functions 16-23



Consequences of logarithmic homogeneity

e differentiate ¢(tx) = ¢(x) — 6 logt with respect to x:

Voltr) = ;Vo(r),  VE6(t) = 5V76()

42
e differentiate Vo (tx) = (1/t)Vp(x) with respectto t att = 1:
Vip(z)r = —V(z)
e differentiate ¢(tx) = ¢(x) — O logt with respect to t at ¢ = 1:
ng(x)T:z: = —0
e combine the previous two properties:
' Vi(r)r =0,  Vo(x) ' Vi(x)T'Ve(z) =0
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Strengthened lower bound from convexity

from convexity and logarithmic homogeneity, if z,y € int K and ¢ > 0,

dy) > o(tx) + Vo(te)' (y — tx)
= o¢(x) —Ologt + %V(b(x)Ty + 0

e implies Vo(z)1y < 0 (otherwise t — 0 gives contradiction)

e maximizing right-hand side over ¢ gives

—Vo(z)'y

P(y) > ¢(x) — 0log Va,y € int K

note: this improves the inequality ¢(y) > ¢(z) + Vo(x)! (y — )
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Gradient of normal barrier

—Vo(r) €int K* Ve eint K

e from previous page, —V¢(z)?y > 0forall y € int K; hence —V¢(z) € K*

e —V¢(x) cannot be in the boundary of K* because VZ¢(z) = 0
(otherwise Vo(x + u) ~ Vo(x) + V¢(x)u & K* for some small u)

conversely, every y € int K™ can be written as

y=—Vo(x)

for some (unique) = € int K (namely, the minimizer of y' = + o(x))
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Dual barrier

Definition

¢:(y) = sup (—y'z — ¢(x))

rxeint K

(we use a subscript in ¢, to distinguish from conjugate ¢*(y) = ¢«(—y))

it can be shown that this is a normal barrier for K*

e ¢, is self-concordant
e dom¢, ={—Vo¢(x) |x €int K} =int K*

e logarithmically homogeneous with degree 0: ¢.(ty) = ¢.(y) — Ologt

Barrier functions 16-27



Gradient and Hessian of dual barrier

define
#(y) = argmin (y" z + ¢())

e the (unique) maximizer in the definition of ¢,

e satisfies Vo(2(y)) = —y
Gradient (from properties of conjugate)

Hessian (by differentiating V¢ (2(y)) = —y with respect to y)

V0. (y) = V3o (d(y)) "

Barrier functions

16-28



References

e Yu. Nesterov and A. NemirovskKii, Interior-Point Polynomial Algorithms in
Convex Programming (1994).

introduced a more general definition of self-concordance; the s.c. functions in this lecture
correspond to nondegenerate (VQf(:c) > 0), standard (a = 1), strongly (f closed)
self-concordant functions in the book

e Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course
(2004), chapter 4.

e S. Boyd, L. Vandenberghe, Convex Optimization (2004), §9.6.

explains why the results of Newton’s method extend to backtracking line search

Barrier functions 16-29



