16. Barrier functions

- self-concordant functions
- Newton’s method
- normal barriers
Self-concordant functions

A function \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) is self-concordant if

- \(\text{dom} \, f \) is an open convex set
- \(f \) is three times continuously differentiable and \(\nabla^2 f(x) \succ 0 \) on \(\text{dom} \, f \)
- \(f \) is closed, i.e., \(f(x) \rightarrow \infty \) as \(x \rightarrow \text{bd} \, \text{dom} \, f \)
- the Hessian of \(f \) satisfies the inequality

\[
\frac{d}{d\alpha} \nabla^2 f(x + \alpha v) \bigg|_{\alpha=0} \leq 2\|v\|_x \nabla^2 f(x)
\]

for all \(x \in \text{dom} \, f \) and all \(v \in \mathbb{R}^m \), where

\[
\|v\|_x = \left(v^T \nabla^2 f(x) v \right)^{1/2}
\]
Equivalent definitions

Two-sided matrix inequality

\[-2\|v\|_x \nabla^2 f(x) \preceq \left. \frac{d}{d\alpha} \nabla^2 f(x + \alpha v) \right|_{\alpha=0} \preceq 2\|v\|_x \nabla^2 f(x) \] \hspace{1cm} (1)

lower bound follows from the upper bound applied to \(-v\)

Restriction to a line: \(g(\alpha) = f(x + \alpha v)\) satisfies

\[-2g''(\alpha)^{3/2} \leq g'''(\alpha) \leq 2g''(\alpha)^{3/2} \] \hspace{1cm} (2)

• at \(\alpha = 0\), this follows from (1) and \(g''(\alpha) = v^T \nabla^2 f(x + \alpha v) v\)
• can be used as equivalent definition of self-concordance
Examples and basic properties

Examples

• \(f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x) \) on \(\{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\} \)

• \(f(x) = -\log(x^TPx + q^Tx + r) \) on \(\{x \mid x^TPx + q^Tx + r > 0\} \) if \(P < 0 \)

• \(f(x) = x \log x - \log x \) on \(\mathbb{R}_{++} \)

Properties

• \(f \) is self-concordant if and only if its restriction to an arbitrary line is s.c.

• if \(f_1, f_2 \) are self-concordant, then \(f_1 + f_2 \) is self-concordant

• if \(f \) is self-concordant, then \(\beta f \) is self-concordant for \(\beta \geq 1 \)

• if \(f \) is self-concordant, then \(f(Ax + b) \) is self-concordant
Bounds on second derivatives

- bounds on second derivative of restriction to a line $g(\alpha) = f(x + \alpha v)$

$$
\frac{\|v\|^2_x}{(1 + \alpha \|v\|_x)^2} \leq g''(\alpha) \leq \frac{\|v\|^2_x}{(1 - \alpha \|v\|_x)^2}
$$

(note that $\|v\|^2_x = g''(0)$)

- bounds on Hessian

$$
(1 - \alpha \|v\|_x)^2 \nabla^2 f(x) \preceq \nabla^2 f(x + \alpha v) \preceq \frac{1}{(1 - \alpha \|v\|_x)^2} \nabla^2 f(x)
$$

these inequalities hold for $0 \leq \alpha \|v\|_x < 1$
Proof of first pair of inequalities:

- from (2) on page 16-3,

\[-1 \leq \frac{d}{d\alpha} \left(\frac{1}{\sqrt{g''(\alpha)}} \right) \leq 1\]

- integrate to get

\[\frac{1}{\sqrt{g''(0)}} - \alpha \leq \frac{1}{\sqrt{g''(\alpha)}} \leq \frac{1}{\sqrt{g''(0)}} + \alpha\]

- if \(1 - \alpha \sqrt{g''(0)} > 0\) this can be written as

\[\frac{g''(0)}{(1 + \alpha g''(0)^{1/2})^2} \leq g''(\alpha) \leq \frac{g''(0)}{(1 - \alpha g''(0)^{1/2})^2}\]
Proof of second pair of inequalities:

define $h(\alpha) = w^T \nabla^2 f(x + \alpha v)w$, with arbitrary $w \neq 0$

- from (1) on page 16-3
 \[\left| \frac{d}{d\alpha} \log h(\alpha) \right| = \left| \frac{h'(\alpha)}{h(\alpha)} \right| \leq 2 \|v\|_{x+\alpha v} = 2 \sqrt{g''(\alpha)} \]

- therefore, from (3) on page 16-5,
 \[\left| \frac{d}{d\alpha} \log h(\alpha) \right| \leq \frac{2 \|v\|_x}{1 - \alpha \|v\|_x} \]

- integrate to get
 \[2 \log(1 - \alpha \|v\|_x) \leq \log(h(\alpha)/h(0)) \leq -2 \log(1 - \alpha \|v\|_x) \]
 \[(1 - \alpha \|v\|_x)^2 h(0) \leq h(\alpha) \leq (1 - \alpha \|v\|_x)^{-2} h(0) \]

 since w is arbitrary, this proves (4)
Bounds on function value

if \(\|y - x\|_x < 1 \), then

\[\omega(\|y - x\|_x) \leq f(y) - f(x) - \nabla f(x)^T(y - x) \leq \omega^*(\|y - x\|_x) \]

- \(\omega(u) \) and \(\omega^*(u) \) are defined as

\[
\omega(u) = u - \log(1 + u) \\
\omega^*(u) = -u - \log(1 - u)
\]

- \(\omega \) and \(\omega^* \) are conjugates

inequalities follow from integration of (3) with \(v = y - x \)
Dikin ellipsoid

Definition: the ellipsoid

\[E_x = \{ y \mid \| y - x \|_x \leq 1 \} \]

\[= \{ y \mid (y - x)^T \nabla^2 f(x)(y - x) \leq 1 \} \]

is called the *Dikin ellipsoid* centered at \(x \in \text{dom} \ f \)

Dikin ellipsoid theorem

\[\text{int } E_x \subseteq \text{dom } f \]

follows from:

- the upper bound on \(f(y) \) (page 16-8), which is finite for \(\| y - x \|_x < 1 \)
- the fact that \(f \) is a closed function
Outline

• self-concordant functions

• **Newton’s method**

• normal barriers
Newton decrement

Newton step at x:

$$
\Delta x = -\nabla^2 f(x)^{-1} \nabla f(x)
$$

Newton decrement:

$$
\lambda(x) = \left((\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)) \right)^{1/2}

= \|\Delta x\|_x

= \|\nabla f(x)\|_{x^*}
$$

where $\|v\|_{x^*} = (v^T \nabla^2 f(x)^{-1} v)^{1/2}$ is the dual of the local norm $\| \cdot \|_x$

Feasible step size:

Dikin ellipsoid theorem implies that $x + \alpha \Delta x \in \text{dom } f$ for $\alpha < 1/\lambda(x)$
Newton method

we will study the following version of Newton’s method

Algorithm

select $\epsilon \in (0, 1/2)$, $\eta \in (0, 1/4]$, and a starting point $x \in \text{dom } f$

repeat:

1. compute Newton step Δx and Newton decrement $\lambda(x)$
2. if $\lambda(x)^2 \leq \epsilon$, return x
3. otherwise, set $x := x + \alpha \Delta x$ with

$$\alpha = \frac{1}{1 + \lambda(x)} \quad \text{if } \lambda(x) \geq \eta, \quad \alpha = 1 \quad \text{otherwise}$$

• stopping criterion guarantees $f(x) - f(x^*) \leq \epsilon$ (see next page)
• alternatively, can use backtracking line search from EE236B
Bound on suboptimality

if $\lambda(x) < 1$ then f has a unique minimizer x^* and

$$f(x^*) \geq f(x) - \omega^*(\lambda(x))$$

$$= f(x) + \lambda(x) + \log(1 - \lambda(x))$$

in particular, if $\lambda(x) \leq 0.68$,

$$f(x) - f(x^*) \leq \lambda(x)^2$$

useful as stopping criterion
Proof:

- from the lower bound on page 16-8, in an arbitrary direction \(v \),

\[
\begin{align*}
 f(x + \alpha v) & \geq f(x) + \alpha \nabla f(x)^T v + \omega(\alpha \|v\|_x) \\
 & \geq f(x) - \alpha \lambda(x) \|v\|_x + \omega(\alpha \|v\|_x) \\
 & \geq f(x) - \alpha \lambda(x) \|v\|_x + \alpha \|v\|_x - \log(1 + \alpha \|v\|_x)
\end{align*}
\]

(5)

(seecond line from the Cauchy-Schwarz inequality)

- if \(\lambda(x) < 1 \) the r.h.s. of (5) is minimized at \(\alpha \|v\|_x = \lambda(x)/(1 - \lambda(x)) \):

\[
\inf_{\alpha} f(x + \alpha v) \geq f(x) - \omega^*(\lambda(x)) = f(x) + \lambda(x) + \log(1 - \lambda(x))
\]

right-hand side is a lower bound on \(\inf_x f(x) \) because \(v \) is arbitrary

- if \(\lambda(x) < 1 \), the right-hand side of (5) grows to infinity as \(\alpha \|v\|_x \to \infty \)

 therefore the sublevel sets of \(f \) are bounded and \(f \) attains its minimum

- since \(\nabla^2 f(x) \succ 0 \) the minimizer is unique
Damped Newton step

\[x^+ = x + \frac{1}{1 + \lambda(x)} \Delta x \]

guarantees \(x^+ \in \text{dom} \ f \) and

\[
\begin{align*}
f(x^+) & \leq f(x) - \omega(\lambda(x)) \\
& = f(x) - \lambda(x) + \log(1 + \lambda(x))
\end{align*}
\]

Consequences (for Newton algorithm on page 16-11)

- each damped Newton step decreases \(f(x) \) by at least \(\omega(\eta) \)
- if \(f \) is bounded below, number of damped Newton iterations is finite
- if \(f \) is bounded below, its minimum is attained

 (from page 16-12, since \(\lambda(x) < 1 \) after a finite number of damped steps)
Proof: from the upper bound on page 16-8:

\[f(x^+) \leq f(x) + \nabla f(x)^T (x^+ - x) + \omega^* (\|x^+ - x\|_x) \]

\[= f(x) - \frac{\lambda(x)^2}{1 + \lambda(x)} + \omega^* \left(\frac{\lambda(x)}{1 + \lambda(x)} \right) \]

\[= f(x) - \omega (\lambda(x)) \]
Quadratic convergence

if $\lambda(x) < 1$ then $x^+ = x + \Delta x \in \text{dom } f$ and

$$\lambda(x^+) \leq \left(\frac{\lambda(x)}{1 - \lambda(x)} \right)^2$$

in particular, if $\lambda(x) \leq 0.29$,

$$\lambda(x^+) \leq 2\lambda(x)^2$$
Proof: since \(\lambda(x) \) and Newton’s method are affine invariant, we can assume

\[
\nabla^2 f(x) = I, \quad \Delta x = -\nabla f(x), \quad \lambda(x) = \|\Delta x\|_2 = \|\nabla f(x)\|_2
\]

- from the Hessian bounds (4), with \(\nabla^2 f(x) = I \)

\[
(1 - \lambda(x))^2 I \preceq \nabla^2 f(x^+) \preceq \frac{1}{(1 - \lambda(x))^2} I
\]

- by integrating the Hessian bounds (4),

\[
\int_0^1 \nabla^2 f(x + \alpha \Delta x) \, d\alpha - I \preceq \frac{\lambda(x)}{1 - \lambda(x)} I
\]

and

\[
\int_0^1 \nabla^2 f(x + \alpha \Delta x) \, d\alpha - I \succeq - \left(\lambda(x) - \frac{\lambda(x)^2}{3} \right) I \succeq - \frac{\lambda(x)}{1 - \lambda(x)} I
\]
therefore (with $\lambda^+ = \lambda(x^+)$, $\lambda = \lambda(x)$)

$$\lambda^+ = (\nabla f(x^+)^T \nabla^2 f(x^+)^{-1} \nabla f(x^+))^{1/2}$$

$$\leq \frac{1}{1 - \lambda} \left\lVert \nabla f(x^+) \right\rVert_2$$

$$= \frac{1}{1 - \lambda} \left\lVert \nabla f(x^+) - \nabla f(x) - \Delta x \right\rVert_2$$

$$= \frac{1}{1 - \lambda} \left\lVert \left(\int_0^1 \nabla^2 f(x + \alpha \Delta x) d\alpha - I \right) \Delta x \right\rVert_2$$

$$\leq \frac{1}{1 - \lambda} \frac{\lambda}{1 - \lambda} \left\lVert \Delta x \right\rVert_2$$

$$= \frac{\lambda^2}{(1 - \lambda)^2}$$
Summary: Newton’s method

convergence results for the algorithm of page 16-11

• damped Newton phase: if \(\lambda(x) \geq \eta \),

\[
f(x^+) - f(x) \leq -\omega(\eta)
\]

function value decreases by at least a positive constant \(\omega(\eta) \)

• quadratically convergent phase: if \(\lambda(x) < \eta \),

\[
2\lambda(x^+) \leq (2\lambda(x))^2
\]

implies \(\lambda(x^+) \leq 2\eta^2 < \eta \), and Newton decrement decreases to zero
Iteration complexity

if f is bounded below, Newton’s algorithm terminates after at most

$$\frac{f(x^{(0)}) - f(x^*)}{\omega(\eta)} + \log_2 \log_2 (1/\epsilon) \text{ iterations}$$

- 1st term bounds number of iterations in damped Newton phase
- 2nd term bounds number of iterations in quadratically convergent phase:

 after k iterations in quadratically convergent phase,

 $$2\lambda(x) \leq (2\eta)^{2^k} \leq \left(\frac{1}{2}\right)^{2^k} , \quad f(x) - f(x^*) \leq \lambda(x)^2 \leq \left(\frac{1}{2}\right)^{2^{k+1}}$$

 so $f(x) - f(x^*) \leq \epsilon$ if $k \geq \log_2 \log_2 (1/\epsilon) - 1$
Outline

- self-concordant functions
- Newton's method
- normal barriers
Normal barrier

Definition

φ is a θ-normal barrier for the proper cone K if it is

- self-concordant with domain $\text{int } K$
- logarithmically homogeneous with parameter θ:

$$\phi(tx) = \phi(x) - \theta \log t \quad \forall x \in \text{int } K, \; t > 0$$

Interpretation

a negative ‘logarithm’ for K; generalizes $\phi(x) = -\log x$ for $K = \mathbb{R}_+$
Examples

Nonnegative orthant: \(K = \mathbb{R}^m_+ \)

\[\phi(x) = -\sum_{i=1}^{m} \log x_i \quad (\theta = m) \]

Second-order cone: \(K = Q^m = \{(x, y) \in \mathbb{R}^{m-1} \times \mathbb{R} \mid \|x\|_2 \leq y\} \)

\[\phi(x, y) = -\log(y^2 - x^T x) \quad (\theta = 2) \]

Semidefinite cone: \(K = S^p = \{x \in \mathbb{R}^{p(p+1)/2} \mid \text{mat}(x) \succeq 0\} \)

\[\phi(x) = -\log \det \text{mat}(x) \quad (\theta = p) \]
Examples

Exponential cone $K_{\text{exp}} = \text{cl}\{(x, y, z) \in \mathbb{R}^3 \mid ye^{x/y} \leq z, \ y > 0\}$

$$
\phi(x, y, z) = - \log(y \log(z/y) - x) - \log z - \log y \quad (\theta = 3)
$$

Power cone: $K = \{(x_1, x_2, y) \in \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R} \mid |y| \leq x_1^{\alpha_1}x_2^{\alpha_2}\}$

$$
\phi(x, y) = - \log \left(x_1^{2\alpha_1}x_2^{2\alpha_2} - y^2\right) - \log x_1 - \log x_2 \quad (\theta = 4)
$$
Consequences of logarithmic homogeneity

- differentiate $\phi(tx) = \phi(x) - \theta \log t$ with respect to x:
 \[
 \nabla \phi(tx) = \frac{1}{t} \nabla \phi(x), \quad \nabla^2 \phi(tx) = \frac{1}{t^2} \nabla^2 \phi(x) \]

- differentiate $\nabla \phi(tx) = (1/t) \nabla \phi(x)$ with respect to t at $t = 1$:
 \[
 \nabla^2 \phi(x)x = -\nabla \phi(x) \]

- differentiate $\phi(tx) = \phi(x) - \theta \log t$ with respect to t at $t = 1$:
 \[
 \nabla \phi(x)^T x = -\theta \]

- combine the previous two properties:
 \[
 x^T \nabla^2 \phi(x)x = \theta, \quad \nabla \phi(x)^T \nabla^2 \phi(x)^{-1} \nabla \phi(x) = \theta \]
from convexity and logarithmic homogeneity, if \(x, y \in \text{int} \ K \) and \(t > 0 \),

\[
\phi(y) \geq \phi(tx) + \nabla \phi(tx)^T (y - tx) \\
= \phi(x) - \theta \log t + \frac{1}{t} \nabla \phi(x)^T y + \theta
\]

- implies \(\nabla \phi(x)^T y < 0 \) (otherwise \(t \to 0 \) gives contradiction)

- maximizing right-hand side over \(t \) gives

\[
\phi(y) \geq \phi(x) - \theta \log \frac{-\nabla \phi(x)^T y}{\theta} \quad \forall x, y \in \text{int} \ K
\]

note: this improves the inequality \(\phi(y) \geq \phi(x) + \nabla \phi(x)^T (y - x) \)
Gradient of normal barrier

\[-\nabla \phi(x) \in \text{int } K^* \quad \forall x \in \text{int } K\]

• from previous page, \(-\nabla \phi(x)^T y > 0\) for all \(y \in \text{int } K\); hence \(-\nabla \phi(x) \in K^*\)

• \(-\nabla \phi(x)\) cannot be in the boundary of \(K^*\) because \(\nabla^2 \phi(x) \succ 0\)

 (otherwise \(\nabla \phi(x + u) \approx \nabla \phi(x) + \nabla^2 \phi(x)u \notin K^*\) for some small \(u\))

conversely, every \(y \in \text{int } K^*\) can be written as

\[y = -\nabla \phi(x)\]

for some (unique) \(x \in \text{int } K\) (namely, the minimizer of \(y^T x + \phi(x)\))
Dual barrier

Definition

\[\phi_* (y) = \sup_{x \in \text{int } K} (-y^T x - \phi(x)) \]

(we use a subscript in \(\phi_* \) to distinguish from conjugate \(\phi^*(y) = \phi_*(-y) \))

it can be shown that this is a normal barrier for \(K^* \)

- \(\phi_* \) is self-concordant

- \(\text{dom } \phi_* = \{ -\nabla \phi(x) \mid x \in \text{int } K \} = \text{int } K^* \)

- logarithmically homogeneous with degree \(\theta \):
 \[\phi_*(ty) = \phi_*(y) - \theta \log t \]
Gradient and Hessian of dual barrier

define

\[\hat{x}(y) = \arg\min_x (y^T x + \phi(x)) \]

• the (unique) maximizer in the definition of \(\phi_* \)
• satisfies \(\nabla \phi(\hat{x}(y)) = -y \)

Gradient (from properties of conjugate)

\[\nabla \phi_*(y) = -\hat{x}(y) \]

Hessian (by differentiating \(\nabla \phi(\hat{x}(y)) = -y \) with respect to \(y \))

\[\nabla^2 \phi_*(y) = \nabla^2 \phi(\hat{x}(y))^{-1} \]

 introduced a more general definition of self-concordance; the s.c. functions in this lecture correspond to nondegenerate ($\nabla^2 f(x) \succ 0$), standard ($a = 1$), strongly (f closed) self-concordant functions in the book

 explains why the results of Newton’s method extend to backtracking line search