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16. Barrier functions

• self-concordant functions

• Newton’s method

• normal barriers
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Self-concordant functions

a function f : Rm → R is self-concordant if

• dom f is an open convex set

• f is three times continuously differentiable and ∇2f(x) � 0 on dom f

• f is closed, i.e., f(x)→∞ as x→ bd dom f

• the Hessian of f satisfies the inequality

d

dα
∇2f(x+ αv)

∣∣∣∣
α=0

� 2‖v‖x∇2f(x)

for all x ∈ dom f and all v ∈ Rm, where

‖v‖x =
(
vT∇2f(x)v

)1/2
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Equivalent definitions

Two-sided matrix inequality

−2‖v‖x∇2f(x) � d

dα
∇2f(x+ αv)

∣∣∣∣
α=0

� 2‖v‖x∇2f(x) (1)

lower bound follows from the upper bound applied to −v

Restriction to a line: g(α) = f(x+ αv) satisfies

−2g′′(α)3/2 ≤ g′′′(α) ≤ 2g′′(α)3/2 (2)

• at α = 0, this follows from (1) and g′′(α) = vT∇2f(x+ αv)v

• can be used as equivalent definition of self-concordance
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Examples and basic properties

Examples

• f(x) = −
∑m
i=1 log(bi − aTi x) on {x | aTi x < bi, i = 1, . . . ,m}

• f(x) = − log(xTPx+ qTx+ r) on {x | xTPx+ qTx+ r > 0} if P ≺ 0

• f(x) = x log x− log x on R++

Properties

• f is self-concordant if and only if its restriction to an arbitrary line is s.c.

• if f1, f2 are self-concordant, then f1 + f2 is self-concordant

• if f is self-concordant, then βf is self-concordant for β ≥ 1

• if f is self-concordant, then f(Ax+ b) is self-concordant
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Bounds on second derivatives

• bounds on second derivative of restriction to a line g(α) = f(x+ αv)

‖v‖2x
(1 + α‖v‖x)2

≤ g′′(α) ≤ ‖v‖2x
(1− α‖v‖x)2

(3)

(note that ‖v‖2x = g′′(0))

• bounds on Hessian

(1− α‖v‖x)2∇2f(x) � ∇2f(x+ αv) � 1

(1− α‖v‖x)2
∇2f(x) (4)

these inequalities hold for 0 ≤ α‖v‖x < 1
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Proof of first pair of inequalities:

• from (2) on page 16-3,

−1 ≤ d

dα

(
1√
g′′(α)

)
≤ 1

• integrate to get

1√
g′′(0)

− α ≤ 1√
g′′(α)

≤ 1√
g′′(0)

+ α

• if 1− α
√
g′′(0) > 0 this can be written as

g′′(0)(
1 + αg′′(0)1/2

)2 ≤ g′′(α) ≤ g′′(0)(
1− αg′′(0)1/2

)2
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Proof of second pair of inequalities:

define h(α) = wT∇2f(x+ αv)w, with arbitrary w 6= 0

• from (1) on page 16-3∣∣∣∣ ddα log h(α)

∣∣∣∣ =

∣∣∣∣h′(α)

h(α)

∣∣∣∣ ≤ 2‖v‖x+αv = 2
√
g′′(α)

• therefore, from (3) on page 16-5,∣∣∣∣ ddα log h(α)

∣∣∣∣ ≤ 2‖v‖x
1− α‖v‖x

• integrate to get

2 log(1− α‖v‖x) ≤ log(h(α)/h(0)) ≤ −2 log(1− α‖v‖x)

(1− α‖v‖x)2h(0) ≤ h(α) ≤ (1− α‖v‖x)−2h(0)

since w is arbitrary, this proves (4)
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Bounds on function value

if ‖y − x‖x < 1, then

ω(‖y − x‖x) ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ ω∗(‖y − x‖x)

• ω(u) and ω∗(u) are defined as

ω(u) = u− log(1 + u)

ω∗(u) = −u− log(1− u)

• ω and ω∗ are conjugates
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inequalities follow from integration of (3) with v = y − x
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Dikin ellipsoid

Definition: the ellipsoid

Ex = {y | ‖y − x‖x ≤ 1}
=

{
y | (y − x)T∇2f(x)(y − x) ≤ 1

}
is called the Dikin ellipsoid centered at x ∈ dom f

Dikin ellipsoid theorem
int Ex ⊆ dom f

follows from:

• the upper bound on f(y) (page 16-8), which is finite for ‖y − x‖x < 1

• the fact that f is a closed function
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Outline

• self-concordant functions

• Newton’s method

• normal barriers



Newton decrement

Newton step at x:
∆x = −∇2f(x)−1∇f(x)

Newton decrement:

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
= ‖∆x‖x
= ‖∇f(x)‖x∗

where ‖v‖x∗ = (vT∇2f(x)−1v)1/2 is the dual of the local norm ‖ · ‖x

Feasible step size:

Dikin ellipsoid theorem implies that x+ α∆x ∈ dom f for α < 1/λ(x)
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Newton method

we will study the following version of Newton’s method

Algorithm

select ε ∈ (0, 1/2), η ∈ (0, 1/4], and a starting point x ∈ dom f

repeat:

1. compute Newton step ∆x and Newton decrement λ(x)

2. if λ(x)2 ≤ ε, return x
3. otherwise, set x := x+ α∆x with

α =
1

1 + λ(x)
if λ(x) ≥ η, α = 1 otherwise

• stopping criterion guarantees f(x)− f(x?) ≤ ε (see next page)

• alternatively, can use backtracking line search from EE236B
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Bound on suboptimality

if λ(x) < 1 then f has a unique minimizer x? and

f(x?) ≥ f(x)− ω∗(λ(x))

= f(x) + λ(x) + log(1− λ(x))

in particular, if λ(x) ≤ 0.68,

f(x)− f(x?) ≤ λ(x)2

useful as stopping criterion
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Proof:

• from the lower bound on page 16-8, in an arbitrary direction v,

f(x+ αv) ≥ f(x) + α∇f(x)Tv + ω(α‖v‖x)
≥ f(x)− αλ(x)‖v‖x + ω(α‖v‖x)
≥ f(x)− αλ(x)‖v‖x + α‖v‖x − log(1 + α‖v‖x) (5)

(second line from the Cauchy-Schwarz inequality)

• if λ(x) < 1 the r.h.s. of (5) is minimized at α‖v‖x = λ(x)/(1− λ(x)):

inf
α
f(x+ αv) ≥ f(x)− ω∗(λ(x))

= f(x) + λ(x) + log(1− λ(x))

right-hand side is a lower bound on infx f(x) because v is arbitrary

• if λ(x) < 1, the right-hand side of (5) grows to infinity as α‖v‖x →∞

therefore the sublevel sets of f are bounded and f attains its minimum

• since ∇2f(x) � 0 the minimizer is unique
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Damped Newton step

x+ = x+
1

1 + λ(x)
∆x

guarantees x+ ∈ dom f and

f(x+) ≤ f(x)− ω(λ(x))

= f(x)− λ(x) + log(1 + λ(x))

Consequences (for Newton algorithm on page 16-11)

• each damped Newton step decreases f(x) by at least ω(η)

• if f is bounded below, number of damped Newton iterations is finite

• if f is bounded below, its minimum is attained

(from page 16-12, since λ(x) < 1 after a finite number of damped steps)
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Proof: from the upper bound on page 16-8:

f(x+) ≤ f(x) +∇f(x)T (x+ − x) + ω∗(‖x+ − x‖x)

= f(x)− λ(x)2

1 + λ(x)
+ ω∗(

λ(x)

1 + λ(x)
)

= f(x)− ω (λ(x))
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Quadratic convergence

if λ(x) < 1 then x+ = x+ ∆x ∈ dom f and

λ(x+) ≤
(

λ(x)

1− λ(x)

)2

in particular, if λ(x) ≤ 0.29,

λ(x+) ≤ 2λ(x)2
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Proof: since λ(x) and Newton’s method are affine invariant, we can assume

∇2f(x) = I, ∆x = −∇f(x), λ(x) = ‖∆x‖2 = ‖∇f(x)‖2

• from the Hessian bounds (4), with ∇2f(x) = I

(1− λ(x))2I � ∇2f(x+) � 1

(1− λ(x))2
I

• by integrating the Hessian bounds (4),

∫ 1

0

∇2f(x+ α∆x) dα− I � λ(x)

1− λ(x)
I

and ∫ 1

0

∇2f(x+ α∆x) dα− I � −
(
λ(x)− λ(x)2

3

)
I � − λ(x)

1− λ(x)
I
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therefore (with λ+ = λ(x+), λ = λ(x))

λ+ =
(
∇f(x+)T∇2f(x+)−1∇f(x+)

)1/2
≤ 1

1− λ
∥∥∇f(x+)

∥∥
2

=
1

1− λ
∥∥∇f(x+)−∇f(x)−∆x

∥∥
2

=
1

1− λ

∥∥∥∥(∫ 1

0

∇2f(x+ α∆x)dα− I
)

∆x

∥∥∥∥
2

≤ 1

1− λ
λ

1− λ
‖∆x‖2

=
λ2

(1− λ)2
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Summary: Newton’s method

convergence results for the algorithm of page 16-11

• damped Newton phase: if λ(x) ≥ η,

f(x+)− f(x) ≤ −ω(η)

function value decreases by at least a positive constant ω(η)

• quadratically convergent phase: if λ(x) < η,

2λ(x+) ≤ (2λ(x))
2

implies λ(x+) ≤ 2η2 < η, and Newton decrement decreases to zero
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Iteration complexity

if f is bounded below, Newton’s algorithm terminates after at most

f(x(0))− f(x?)

ω(η)
+ log2 log2(1/ε) iterations

• 1st term bounds number of iterations in damped Newton phase

• 2nd term bounds number of iterations in quadratically convergent phase:

after k iterations in quadratically convergent phase,

2λ(x) ≤ (2η)2
k
≤
(

1

2

)2k

, f(x)− f(x?) ≤ λ(x)2 ≤
(

1

2

)2k+1

so f(x)− f(x?) ≤ ε if k ≥ log2 log2(1/ε)− 1
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Outline
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Normal barrier

Definition

φ is a θ-normal barrier for the proper coneK if it is

• self-concordant with domain intK

• logarithmically homogeneous with parameter θ:

φ(tx) = φ(x)− θ log t ∀x ∈ intK, t > 0

Interpretation

a negative ‘logarithm’ forK; generalizes φ(x) = − log x forK = R+
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Examples

Nonnegative orthant: K = Rm
+

φ(x) = −
m∑
i=1

log xi (θ = m)

Second-order cone: K = Qm = {(x, y) ∈ Rm−1 ×R | ‖x‖2 ≤ y}

φ(x, y) = − log(y2 − xTx) (θ = 2)

Semidefinite cone: K = Sp = {x ∈ Rp(p+1)/2 | mat(x) � 0}

φ(x) = − log det mat(x) (θ = p)
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Examples

Exponential coneKexp = cl{(x, y, z) ∈ R3 | yex/y ≤ z, y > 0}

φ(x, y, z) = − log (y log(z/y)− x)− log z − log y (θ = 3)

Power cone: K = {(x1, x2, y) ∈ R+ ×R+ ×R | |y| ≤ xα1
1 x

α2
2 }

φ(x, y) = − log
(
x2α1
1 x2α2

2 − y2
)
− log x1 − log x2 (θ = 4)
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Consequences of logarithmic homogeneity

• differentiate φ(tx) = φ(x)− θ log t with respect to x:

∇φ(tx) =
1

t
∇φ(x), ∇2φ(tx) =

1

t2
∇2φ(x)

• differentiate ∇φ(tx) = (1/t)∇φ(x) with respect to t at t = 1:

∇2φ(x)x = −∇φ(x)

• differentiate φ(tx) = φ(x)− θ log t with respect to t at t = 1:

∇φ(x)Tx = −θ

• combine the previous two properties:

xT∇2φ(x)x = θ, ∇φ(x)T∇2φ(x)−1∇φ(x) = θ
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Strengthened lower bound from convexity

from convexity and logarithmic homogeneity, if x, y ∈ intK and t > 0,

φ(y) ≥ φ(tx) +∇φ(tx)T (y − tx)

= φ(x)− θ log t+
1

t
∇φ(x)Ty + θ

• implies ∇φ(x)Ty < 0 (otherwise t→ 0 gives contradiction)

• maximizing right-hand side over t gives

φ(y) ≥ φ(x)− θ log
−∇φ(x)Ty

θ
∀x, y ∈ intK

note: this improves the inequality φ(y) ≥ φ(x) +∇φ(x)T (y − x)
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Gradient of normal barrier

−∇φ(x) ∈ intK∗ ∀x ∈ intK

• from previous page, −∇φ(x)Ty > 0 for all y ∈ intK; hence −∇φ(x) ∈ K∗

• −∇φ(x) cannot be in the boundary ofK∗ because ∇2φ(x) � 0

(otherwise ∇φ(x+ u) ≈ ∇φ(x) +∇2φ(x)u 6∈ K∗ for some small u)

conversely, every y ∈ intK∗ can be written as

y = −∇φ(x)

for some (unique) x ∈ intK (namely, the minimizer of yTx+ φ(x))
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Dual barrier

Definition
φ∗(y) = sup

x∈intK
(−yTx− φ(x))

(we use a subscript in φ∗ to distinguish from conjugate φ∗(y) = φ∗(−y))

it can be shown that this is a normal barrier forK∗

• φ∗ is self-concordant

• domφ∗ = {−∇φ(x) | x ∈ intK} = intK∗

• logarithmically homogeneous with degree θ: φ∗(ty) = φ∗(y)− θ log t
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Gradient and Hessian of dual barrier

define
x̂(y) = argmin

x
(yTx+ φ(x))

• the (unique) maximizer in the definition of φ∗

• satisfies ∇φ(x̂(y)) = −y

Gradient (from properties of conjugate)

∇φ∗(y) = −x̂(y)

Hessian (by differentiating ∇φ(x̂(y)) = −y with respect to y)

∇2φ∗(y) = ∇2φ(x̂(y))−1
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